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STEIN-TYPE ESTIMATORS FOR PARAMETERS
RESTRICTED BY LINEAR INEQUALITIES

YuaN-Tsune CHANG

Dept. of Administration Engineering, Keio University,
Yokohama 223, Japan

(June 26, 1981)

ABSTRACT

In simultaneous estimation of p normal means, James and Stein (1961) introduced an
estimator, called Stein-type estimator, and showed that it has uniformly smaller risk than
the maximum likelihood estimator (MLE) if p=3 under the squared error loss. Since then
many authors have discussed the Stein-type estimator under various situations. In this
paper we discuss the cases where constraints of linear inequalities are given on p normal
means and give Stein-type estimator for means. We also give Stein-type estimator for
means of Hudson class of probability distributions when constraints of simpler linear in-
equalities are given on means.

1. Introduction

Suppose that a p-variate random variable X is normally distributed and has a
mean vector g and the identity covariance matrix. This assumption is denoted
by X~MN, I). Discussing simultaneous estimation of the mean vector g under
the squared error loss, James and Stein (1961) introduced an estimator

<1- %)x (11)

which has uniformly smaller risk than X, a very natural estimator and the maxi-
mum likelihood estimator (MLE) of g, if p=3. In this paper, such a shrinked
estimator as (1.1) is called Stein-type.

Since then, the Stein-type estimator has been extended by many authors in
two directions. One direction is to extend the Stein-type estimator for nonnormal
distributions. In simultaneous estimation %4 Poisson means, Clevenson and Zidek
(1975) gave a Stein-type estimator which dominates the usual estimator if 2>1.
For a sub-class of the exponential family, which we call Hudson class. Hudson
(1978) gave some improved estimators. Another direction is to extend the Stein-
type estimator under more general loss functions. For a bibliography the reader
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is referred to Berger et al. (1977).

In this paper, we construct Stein-type estimators in cases where unknown
population means are restricted by a set of linear inequalities, and prove that the
MLE is not admissible in those cases also. There are many situations in which
linear inequalities on parameters are essential in the statistical inference. The MLE

in those situations were discussed, for example and among others, in Brunk et al.
(1972).

In section 2, a Stein-type estimator which shrinks towards the origin will be
)4
discussed when X~N(g, I) and g=(pu, -+, p)’ satisfies linear inequalities X Zi;0=
=1
0, i=1, -, k.
In section 3, a Stein-type estimator which shrinks towards a given point or a
sub-space will be discussed under the same assumption on X and ge.
In section 4, a Stein-type estimator for Hudson class will be discussed when
simpler linear inequalities
(i) ‘Ui;(:i, i—__l)"',p

or
(ii) —oo< = =pp<oo

are given on means, g.

2. Stein-type estimators for multivariate normal means restricted
by linear inequalities

In this section we shall give a Stein-type estimator of multivariate normal
mean vector g which satisfies linear inequalities 7Twp=0, where T is a known
matrix.

Suppose that Y~N(@, ), and partition ¥ and @ in two parts,
Y(l) 0(1)
Ysli ...... :l and 05': ...... jl (2_1)
Y(2)

The sizes of Y and @ are £x1 and those of Y and 8 are /x1. Assume
further ¥ to have the form
2/'1 0
Y= , (2.2)

O pX 2

namely Y ~N@OD,2,), YO ~NO®,Y,;), and they are independent.

First we shall consider the simultaneous estimation of # under the loss func-
tion (3—0)’2"‘(3—0) when =0, where & is an estimator of @. For this case a
Stein-type estimator of & is given by the following lemma.

Lemma 1. Suppose that Y~N(@,2Y), where Y, 8 and Y are defined as (2.1) and
(2.2), respectively. Let
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(1_L
3(Y)= Y3y
d(Y), the MLE of @, otherwise,

)Y, i Ym=0

where a is a constant. Then, in simultaneous estimation of @ under °=0 and
under the loss function (§—6)2-(8—8),8'(Y) has uniformly smaller risk than the
MLE, 8(Y), of 0, if p=k+[=3 and 0<a<2(p—2).

Proof: Define a convex cone S* in the sample space of Y by

St={yly=0}.
Since §(Y)=Y for Y®=0, the difference of risks of #(Y) and 8'(Y) is given by

20y’ X y—0)— a*
¥y

AR=R(6,8)—R(3',0)= S( )p(y, 0)dy , (2.3)

where p(y, 8) is the probability density function of ¥. To show (2.3) positive, note
that
Y2 y—0)=y Iy —6V)+y® Y —6%),
and
Yy rly=y iy +y @ 2ry® .
We have

C 2ay' X7 (y—6)
== (Y, 8)d
Ss+ vy Py, @)dy
zay(l)'zl-l(y(l)__a(l))
S s YO ITYD 4D IYD
8§ 2
+ 2ay ' 37 (y® — )
" y(l)’Z’Z—Iy(l)+y(2)‘22—1y(2)
8

Py, 8)dy

by, 0)dy 2.4)

Integrating the first term of (2.4) by parts with respect to the ith component of
y», i=1, -, k, we have

: 2ak  day®’'I7iyw
S [ y Y ]p(y,ﬂ)dy.
st

Wy @ ?

Integrating the second term of (2.4) by parts with respect to the jth component
of y®,j=1,.--,/, we have

S [ 2al _ 4ay(2)’2’2—1y(2)
LY 27y ' 'yy

Therefore, the difference 4R turns out to be

oo [

]p(y, O)dy .

which is positive if p=k£+/=3 and 0<a<2(k+/-2).
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Based on Lemma 1, we have the following theorem.

Theorem 1. Suppose that X~MN(g,I) and Tp=0, where T is a kXp known
matrix of rank k. Let

a
1——>X, if 7X=0
az(X):< XX '

£A(X), the MLE of u, otherwise,

where ¢ is a constant. Then, in simultaneous estimation of g under the squared
error loss, 8%(X) has uniformly smaller risk than @#(X), the MLE of g, if p=3 and
0<a<2p—2).

Proof: There exists a (p—£k)Xp matrix 7, whose rows are orthogonal to those
of T. Define a random variable Z by

Z=CX

where C is a nonsingular matrix defined by

It is clear that Z~N(§, 4), where §=Cp and 4=CC’. Now Z,& and 4 are ex-
pressed by partitioned matrices as

ZW
ZE[ ...... }’ Zo=TX, Z9=TX,

Z(Z)
e(l)
ef[é};}’ §O=TEX)=Tp, §°=TEX)=Tp,
™ 0 -
AECC’z[ J .
(U AV AV

By applying Lemma 1 to the random variable Z,3'(Z) defined by Lemma 1 has
uniformly smaller risk than é(Z ), the MLE of &, when constraints §°=7Tp=0 are
given. The difference of risks between é(Z ) and 8%(Z) is given by

-~ 202’47 (z—&)— a?
4R= S[z|z(l)go,< 247z >P(Z, E)dz

J( [me-tere
__S{zu(l);o)l: 24z :|ﬁ(2, &)dz,

where p(z, &) is the probability density function of Z.
Changing the variable z to x by the relation x=C"'z, we have
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2ax’(x— p)—a?
(x|Txg0)< x'x
v [2ap—(4a+az)
B S(xmcgm

AR=S )p(x, p)dx

x ]p(x, pdx,
which is positive if p=3 and 0<ae<2(p—2).

Example 1. Suppose that X~MN(g, 7) and that linear inequalities —co<p=---
pp<oco are given on p. For this case, put

1A

+r—11
| . .
T=p—1 S0
| . .
) 0 -1'1
then the constraints are given by Tp=0. Applying Theorem 1 to simultaneous
estimation of g under the squared error loss, we see that an estimator of g,

(1_ Taf)X if —co<Xi= = Xp< 00

MLE of g, otherwise,
has uniformly smaller risk than the MLE of g if p=3 and 0<a<2(p—2).
Lemma 1 can be extended as follows if we change the domain of the MLE
of . Suppose again that Y~N(@,2). Let the elements of Y with negative
value be Y®,., Y and m be the maximum number of non-negative element of

Y whose covariance with Y, .., Y;* are all zero, and let those non-negative
elements be Y;, -, Y;®. Define

Yi(l)

RN I
Y(% = = ’

Y.(l)

‘m

r@*
Y(;kn) = |: ......... } .

Then a Stein-type estimator of @ will be given by

if it exists, and

a
- Soseve ) Yon
< You2tn Yo > ™ (2.5)
MLE of 9—6%,
if YeS(m), where
Sm)={Y|Y=[Yi®, -, ;0 1 (YO —-YRT) 1 YO},

6%, and 3%, are the mean vector and covariance matrix of Y&, respectively.
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Theorem 2. Suppose again Y~N(8,2), where Y,8 and X are defined as (2.1)
and (2.2), respectively. Let

- {{the estimator defined by (2.5)}, if YeS(m)
a =
MLE of 8, otherwise.

’I:hen, in simultaneous estimation of @ under #°=0 and under the loss function
(6—-0)27'(6—6), 8(Y) has uniformly smaller risk than the MLE of @ if /[+m=3
and 0<a<2(l+m—2).

Proof: Theorem 2 can be proved in a similiar way as Lemma 1 and the proof
will be omitted here.

Example 2. Let X=(X,, -, X)) ~N(g, /) and constrains =0 be given. Also
let m=3 and

S(ili ""im)E{XLXil;Oy R X’Lmzoy Xim+1<0) Yy ti<0} .

If we define

[1— o )Xij =1, m l
lz=:1 Xlg lf XGS(il, Tt im)

ﬁij' MLE Of /lij ]=m+1v "'vp

iz MLE of s, Otherwise,
and #(X)=(6,(X), ---,6,(X))’. Then 8(X), in simultaneous estimation of g=(p, ---, 1)’
under the squared error loss, has uniformly smaller risk than A(X), the MLE of

#, if p=3 and 0<a<2(m—2). In fact, the difference of risks between A&(X) and
8(X) is given by

2ma —(4a+a?)

AR=ZS px, p)dx

m
KT ) ZZ]I 2%,

where the summation is taken over all possible sets of (i, -+, im) (=3) which is
a subset of (1, .-+, ).

Remark: In Lemma 1 if the constrains is #° =¢, where ¢ is a constant vector,
then a Stein-type estimator of @ can be constructed by

a .
(i o

MLE of @, otherwise.

If we use the ‘“positive part Stein-type estimator”, then we get a better esti-
mator.
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3. Another class of estimators for multivariate normal
means restricted by linear inequalities

Let X~Mg,I), in this section we shall give a Stein-type estimators of g
which shrinks towards a given point or towards a sub-space which is determined
by data when some linear inequalities on g are given.

In order to construct a Stein-type estimator which shrinks towards the arith-
metic mean, define a pXp matrix B by

p—1. —1...-1
-1 . .
B=| - . o,
Z1ee—1 p-1
which is a projection matrix with rank p—1. Decompose X and g as
X=(I-B)X+BX
and

#=(—-B)u+Bp,

and suppose that linear inequalities ABu=0 are given. Consider an estimator

(I-B)X+ (1—17%:‘,-)31(, i ABX=0

A(X), MLE of g, otherwise.

3 X)=

Then we have the following theorem.

Theorem 3. Suppose again that X~MN(g, ), and linear inequalities ABp=0
are given on g Then, in simultaneous estimation of g under the squared error
loss, #(X) has smaller risk than the MLE of g if p=4, 0<a<2(p—3) and the
rank of AB is equal to the number of rows of the matrix A.

Proof: The matrix B can be expressed as B=QQ’, where @ consists of p—1
column vectors g,;,i=1, --,p—1, which form an orthogonal basis of range space
of B.

Let =@’ and D=AQ. Then Q' X~N(B,I) and linear inequalities ABp=0
are equivalent to DB=0. Applying Throrem 1, we see that if p=4 and 0<a<
2(p—3), then

a ) _ ,
FQRX)= (1— W)Q X, if DQ'X=0
B(Q'X), MLE of B, otherwise,

has uniformly smaller risk than the MLE of 8. Furthermore, we have

89



YuaNn-TsuNG CHANG

AR=R(G, p)— R(3", p)
~R(B, B)—R@*. p)
>0,

which completes the proof.

— P
Example 3. Suppose that X~N(g, ) and define = % i}l ti, X= % i;l X, Bpxi

=(g, -, gy and X,,,=(X, -, X). Suppose further that linear inequalities p;=jz, i=
1, k(=p—1), are given on g. Then by applying Theorem 3, in simultaneous
estimation of g under the squared error loss we can see that an estimator of g

' . 4 ; >X. ... >X
2+ (1- e JX-D. i X=8e X=X
MLE of g, otherwise,

has uniformly smaller risk than the MLE of g if p=4 and 0<a<2(p—3).

Example 4. Suppose that X~ N(g, I) and that linear inequalities —co<y=---=
up<oo are given on g. Then, in simultaneous estimation of g under the squared

error loss, we can see that an estimator,
- a = .
— T =9 = - - ==
2+(1- ooy JX-D, i —eo<Xi=sX,<oo
MLE of g, otherwise,

has uniformly smaller risk than the MLE of g if p=4 and 0<a<2(p—3).

Theorem 3 can be easily extended as follows.
Let P be a projector with rank p—#%, and decompose X and g as

X=(I-P)X+PX

and
p={I—P)u+Pp.

Suppose that linear inequalities KPp=0 on g are given. Then, in simultaneous

estimation of g under the squared error loss, an estimator of g,

a . —
(I-P)X+ <1—W>PX, if KPX=0

MLE of g, otherwise,

has uniformly smaller risk than the MLE of g if p—k=3, 0<a<2(p—k—2) and
the rank of KP is equal to the number of rows of the matrix K.

Remark 3. Theorem 3 can be extended further. We express the p-dimensional

real space R? as
RP=R® @ RO P--P R®,
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where R@ ... . R® are orthogonal sub-spaces. Here we assume that the dimension
of sub-space R® is p;, i=1,---,/ and each p; is greater than or equal to three, i=
1,---,/. Then we decompose X and g as

X=XOLXD4. .. XO XDeR®  i=0,1,,/
and
=g+ O b pg®, gDeR® | i=0,1, /.

Suppose that linear inequalities A;p®=0 are given on p®,i=1,---,/. We assume
that the rank A; is less than or equal to p;, i=1,---,/. Then in simultaneous esti-
mation of g under the squared error loss, an estimator of g.

4 .
X<°>+Z<1 & )Xw, i AXDZ0, i=1,-,1

=1 X' xw

MLE of p, otherwise,

has uniformly smaller risk than the MLE of g if 0<a:<2(p:—2), i=1, -,

4. Stein-type estimator for means of Hudson class restricted
by simple linear inequalities

In this section we shall give a Stein-type estimator for means, pg=(u, -+, up),
of continuous distributions in Hudson class when simpler linear inequalities (i) =
ciyi=1,-,p or (ii) —co<yyy=---p,<oo are given on .

Suppose that X is a continuous random variable with a density function f(:, p)
which satisfies the equality

E(X—pme(X)=EUX)g'"(X)),

where E(X)=p, for some non-negative real function #.) and for any absolutely
continuous function ¢(-) such that E|#(X)g’ (X)| < oo.

Let X, ---, X, be independent random variables which have the density function
(-, ps), where E(X;)=g, i=1,---,p. Then an estimator of g,

) .

Xi— 220X, i1, @)
2 (X))’

suggested by H. Hudson, has uniformly smaller risk than X=(X,, -, X,) if p=3.

In (4.1)

1
()= S Ty (4.2)

is an indefinite integral.
If there exists linear inequalities on g of the form (i), then we have the follow-
ing theorem.
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Theorem 4. Suppose that X, ---, X, are independent random variables with the
common density f(:, ) and E(X;)=p4,i=1, ---,p. Let 8%(X)=(3,°(X), ---,0,°(X))" be
an estimator of g with the ith element

Xim 2 WXy, if XiZci, i=1,-p
wX={ Ly
Ai(X), MLE of p;, otherwise,
where
* 1
h (JJ): Sc.}zx—)‘dx,
and

¢*=min {c, -+, ¢p} -

Then, in simultaneous estimation of g under p;=c¢;, i=1, -, p and the squared error
loss, 8%(X) has uniformly smaller risk than a(X)=(a(X), -, gs(X)), the MLE of
o, if p=3, 0<a<2(p—2).

Proof: The difference of risks between 4(X) and 8%X) is given by
AR=R(4, p)— R(d°, pr)
ZS‘” S°° 3 2l @)= ) } [
cp ¢y i=1 iZ (h*(xz)>z
=1

B OO AR b Ao
Scp SCI ﬁl (h*(xi»le:[1 JiCIAD))

P
T f@i, pra)

i=1

dxl‘"dxp

dzydzy, 4.3)

where f(xi, ;) is the probability density function of X;. For the first term of (4.3),
by integrating by parts with respect to x;, we have

\. 20N i, iy
cq é (h*(xz))z

_ _2at(ch*(ca)f (co, ) + S"“{ 2a __ da(hX(w:))?
20 (W) + (¥ ea)r P ;(h*(xt))z [Z (*(0))?

Jj=1 i=1
J*xi

]2 }f (@i, pa)dwi . (4.4)

Since the first term of (4.4) is non-negative, we have
o o _ 2
AR;S S {Zaf (4da+a®)
2 (B*(xa))?
i=1

>0, if 0<a<2(p—2).

{11 steu 0 |,

cp ¢y i=1

If there exists linear inequalities on g of the form (ii), then we have the
following theorem.
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Theorem 5. Suppose that X, -+, X, are independent random variables with the
common density f(-, ) and E(Xy)=ps,i=1,---,p. Let 8%(X)=(6."(X), ---,5,°(X))" be
an estimator of g with the ith element

Xi—5——NX), if —co<X = =X,<oo
3 (X)= 1g}l(/l(Xi))z

£24(X), MLE of yu;, otherwise,

where A(X;) is defined by (4.2). Then, in simultaneous estimation of g under
—oco y=-+=pp<co and under the squared error loss, 3% X) has uniformly smaller
risk than 4(X), the MLE of g, if p=3, 0<a<2(p—2).

Proof: We prove only for the three dimensional case. The proof of general
case is a complicated but straight extension of the three dimensional case. The
difference of risks between #(X) and 8% X) is given by

AR=R(@, )~ R(@", g2

8

f(xiy /«!1,) dxsdxzdxl

i=1

- Sl S,m S:o {z‘”ﬁfﬂl)}{ [T f@e ) ]dxldxzdxs
%‘—)H I s yi)]d;czdxldxs
i:ZI (A(z))?
L e
_Sig% S”z {"—ZHﬁ Fae ﬂi)}dxldxzdxs.

izZIl (A(z0)* =
RN
Zaii(xs)(xs—#s) ] ‘ ﬁ
- : (i)’ "

Ile

Integrating the first three terms, we have

(7 (7 2atle)ha)
ar=-{" \" s +( 75 F s ) e, 1) (o, )z

N : S_w Z(h(x » [ri[l f(xi,pi)]dxldxgdms

o

Zat(xl)h(xl)
o 2(A(1 ))2+(/l( s)*

+

Sy, ﬂz)f(xl, #1)f($s, {ls)dxldl‘s

—o0

)L
7 ) e 0 )
L
{0

oooo wSz §3: ) {D f(xi,pi)ldxzdx.dxg
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+ S‘:o S‘”" 2at(z)(x2)

o m S, ﬂs)f(xm #Z)f(xl, #1)d-702dx1

* So_ow S: SZZE':—(Z?;;L& S, ) }dfl’fad.’l}zd.xx

B S:, Si S: % ‘ i]i[l S (@i, 1) }dxldxzdxa )

Here if we exchange the variable xz, and z, in the first term then it is equal to
the fourth term but with opposite sign. In the same way, if we exchange the vari-
able x; and =z, in the third term then it is equal to the sixth term but with opposite
sign. Therefore we have

e[ [t

>0, if 0<a<?2.

3

[T flxi, )

i=1

dxdz.dxs

—00 J~—00

Finally we give an estimator which shrinks towards %, the mean of %(z:), -+, A(zp).

Theorem 6. Suppose again that Xj, ---, X, are independent random variables with
the common density f(-, ) and E(X;)=p, i=1, -+, p. Let 3"(X)=06,"(X), --+,6," (X))
be an estimator of g with the ith element
S —
0" (X)= ;1 (W Xs)—h))?
of

MLE

WX)—h), if —co<X S -=X,<c0

y,, Otherwise,

where 4(X;) is defined by (4.2) and BE% f}h(Xi). Then, in simultaneous estima-
i=1

tion of g under —oco<y=--=p,<co and under the squared error loss, 8°(X) has
uniformly smaller risk than the MLE of g, if p=4, 0<a<2(p—3).
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