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STEIN-TYPE ESTIMATORS FOR PARAMETERS 
RESTRICTED BY LINEAR INEQUALITIES 

Yu AN-TsuNG CHANG 

Dept. of Administration Engineering, Keio University. 
Yokohama 223, Japan 

(June 26, 1981) 

ABSTRACT 

In simultaneous estimation of p normal means, James and Stein (1961) introduced an 
estimator, called Stein-type estimator, and showed that it has uniformly smaller risk than 
the maximum likelihood estimator (MLE) if p~ 3 under the squared error loss. Since then 
many authors have discussed the Stein-type estimator under various situations. In this 
paper we discuss the cases where constraints of linear inequalities are given on p normal 
means and give Stein-type estimator for means. We also give Stein-type estimator for 
means of Hudson class of probability distributions when constraints of simpler linear in­
equalities are given on means. 

1. Introduction 

Suppose that a p-variate random variable X is normally distributed and has a 
mean vector µ and the identity covariance matrix. This assumption is denoted 
by X,......,N(µ, I). Discussing simultaneous estimation of the mean vector µ under 
the squared error loss, James and Stein (1961) introduced an estimator 

( p-2) 
1- X'X X (1.1) 

which has uniformly smaller risk than X, a very natural estimator and the maxi­
mum likelihood estimator (MLE) of µ, if p~3. In this paper, such a shrinked 
estimator as (l.l) is called Stein-type. 

Since then, the Stein-type estimator has been extended by many authors in 
two directions. One direction is to extend the Stein-type estimator for nonnormal 
distributions. In simultaneous estimation k Poisson means, Clevenson and Zidek 
(1975) gave a Stein-type estimator which dominates the usual estimator if k > 1. 
For a sub-class of the exponential family, which we call Hudson class. Hudson 
(1978) gave some improved estimators. Another direction is to extend the Stein­
type estimator under more general loss functions. For a bibliography the reader 
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is ref erred to Berger et al. (1977). 
In this paper, we construct Stein-type estimators in cases where unknown 

population means are restricted by a set of linear inequalities, and prove that the 
MLE is not admissible in those cases also. There are many situations in which 
linear inequalities on parameters are essential in the statistical inference. The MLE 
in those situations were discussed, for example and among others, in Brunk et al. 
(1972). 

In section 2, a Stein-type estimator which shrinks towards the origin will be 
p 

discussed when X----N(µ, I) and µ=(µi. ···, µp)' satisfies linear inequalities I; tiiµ/?;. 
j=l 

0, i=l,··.,k. 
In section 3, a Stein-type estimator which shrinks towards a given point or a 

sub-space will be discussed under the same assumption on X and µ. 
In section 4, a Stein-type estimator for Hudson class will be discussed when 

simpler linear inequalities 

or 

are given on means, µ. 

2. Stein-type estimators for multivariate normal means restricted 
by linear inequalities 

In this section we shall give a Stein-type estimator of multivariate normal 
mean vector µ which satisfies linear inequalities Tµ?;-.0, where T is a known 
matrix. 

Suppose that Y,--~N(fJ, I), and partition Y and fJ in two parts, 

(2.1) 

The sizes of ye!) and (JC 1
) are k x 1 and those of Y(2) and oc2) are lx 1. Assume 

further I to have the form 

(2.2) 

namely yo),...._,N(fJ 0 ),I1), yc2),.....,N(fJC2),I2), and they are independent. 
First we shall consider the simultaneous estimation of fJ under the loss func­

tion (b-fJ)'l'- 1(b-fJ) when o0 )?;.0, where b is an estimator of fJ. For this case a 
Stein-type estimator of fJ is given by the following lemma. 

Lemma 1. Suppose that y,.....,N(fJ,I), where Y,fJ and l~ are defined as (2.1) and 
(2.2), respectively. Let 
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{(1- Y'l~ iy)Y, if Y0)~0 
<J'( Y)= -

0( Y), the MLE of 0, otherwise , 

where a is a constant. Then, in simultaneous estimation of O under oci) ~O and 
under the loss function (a-oy s- 1(a-o), ;J1

( Y) has uniformly smaller risk than the 
MLE, 0( Y), of 0, if P=k+l~3 and 0<a<2(p-2). 

Proof: Define a convex cone S+ in the sample space of Y by 

s+ = {uiu0 ) ~o}. 

Since 0( Y)= Y for yci) ~O. the difference of risks of 0( Y) and ;J1
( Y) is given by 

..... ~ (2ay' s- 1(y-O)- a 2
) ilR:=R(O, O)-R(<J1

, O)= IJ;-1 p(y, O)dy' 
s+ Y Y 

(2.3) 

where p(y, 0) is the probability density function of Y. To show (2.3) positive, note 
that 

and 

We have 

~ 2ay' 2,'-1(y-O) p( O)d 
IJ;-1 y, y 

s+ Y Y 

(2.4) 

Integrating the first term of (2.4) by parts with respect to the ith component of 
yo), i=l, ···,k, we have 

l [ 2ak 4ay0
)' l'11y 0

) J ti- y' s-1y - (y' J;-'y)2 p(y, O)dy. 

Integrating the second term of (2.4) by parts with respect to the jth component 
of yc2

) 1 j=l,···,l, we have 

l [ 2al 4ayc2)'s21yc2) J 
J s+ y' s-1iJ - (y' s-1y)2 p(y, O)dy. 

Therefore, the difference ilR turns out to be 

ilR= ~ [ 2a(k+l)-(4a+a
2 )J ( O)d 

IJ;-1 p y, y' 
s+ Y Y 

which is positive if P=k+l~3 and 0<a<2(k+l-2). 
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Based on Lemma 1, we have the following theorem. 

Theorem 1. Suppose that X---N(µ, I) and Tµ?;_O, where T is a kxp known 
matrix of rank k. Let 

{(
1- x~x)x, if TX?;_O 

cl2(X)= 

fl(X), the MLE of µ, otherwise , 

where a is a constant. Then, in simultaneous estimation of µ under the squared 
error loss, cl2(X) has uniformly smaller risk than /).(X), the MLE of µ, if p?;_ 3 and 
0<a<2(p-2). 

Proof: There exists a (p-k)xp matrix 1'i whose rows are orthogonal to those 
of T. Define a random variable Z by 

Z=CX 

where C is a nonsingular matrix defined by 

It is clear that z,___,N(e, .:1), where e=Cµ and Ll=CC'. Now Z, e and L1 are ex­
pressed by partitioned matrices as 

[
TT' 0 l 

Ll=CC'= . 
0 T1T1' 

By applying Lemma 1 to the random variable Z, cl1(Z) defined by Lemma 1 has 
uniformly smaller risk than e(Z), the MLE of e, when constraints e< 1

) = Tµ?;_O are 
given. The difference of risks between e(Z) and cl1(Z) is given by 

where p(z, e) is the probability density function of z. 
Changing the variable z to x by the relation x=C- 1z, we have 
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LlR= l (2ax'(x-:-µ)-a2)p(x, µ)dx 
J (xi Tx~O) X X 

=~· [2ap-(4a+a
2)J ( )d , p x,µ x, 

(.rJTx~O} XX _ 

which is positive if p~3 and 0<a<2(p-2). 

Example 1. Suppose that X,.....,N(µ, /)and that linear inequalities -00<µ1;;£ .. ·;;£ 

µp< oo are given on µ. For this case, put 

t [~-1 p ----+] 
T=P~l . ·. · .. O , 

i 0 -1. 1 

then the constraints are given by Tµ~O. Applying Theorem 1 to simultaneous 
estimation of µ under the squared error loss, we see that an estimator of µ, 

{ 
(1- ;X )x, if -oo<X1~···;;£Xp<oo 
MLE of µ, otherwise, 

has uniformly smaller risk than the MLE of µ if p~3 and 0<a<2(p-2). 
Lemma 1 can be extended as follows if we change the domain of the MLE 

of 0. Suppose again that Y ,.....,N(O, 2). Let the elements of Y(I) with negative 
value be Y}{), ··., Yj~) and m be the maximum number of non-negative element of 
yci) whose covariance with Yjil), ... , Yj~1 ) are all zero, and let those non-negative 
elements be Yii1

\ ···, Yi~)· Define 

[
y.col 

Y (l)+= : i1 
(m) - • ' y;.c1) 

im 

if it exists, and 

Then a Stein-type estimator of fJ will be given by 

{ 
(1- ~*'I:-1 ~* ) Ye!) 

(m) (m) (m) 

MLE of tJ - O'&i) 

(2.5) 

if YES(m), where 

O'&i) and l:'&i) are the mean vector and covariance matrix of Yc~l• respectively. 
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Theorem 2. Suppose again Y ,..,_,N(O, 2.'), where Y, O and I are defined as (2.1) 
and (2.2), respectively. Let 

{
{the estimator defined by (2.5)}, if YES(m) 

b3
( Y)= 

MLE of 0, otherwise. 

Then, in simultaneous estimation of O under oc 1
) ~O and under the loss function 

(b-O)'X- 1(b-O), b3(Y) has uniformly smaller risk than the MLE of O if l+m~3 
and 0<a<2(l+m-2). 

Proof: Theorem 2 can be proved in a similiar way as Lemma 1 and the proof 
will be omitted here. 

Example 2. Let X=(X1, ···, Xp)' ,..,_,N(µ,l) and constrains µ~O be given. Also 
let m~3 and 

If we define 

!(1-~)xij j=l, ···,m 

l 
lz;;I x~ 

{t.ip MLE of µiJ j=m+l, ···,P 

µiJ• MLE of µiJ• otherwise, 

and b(X)=:(a1(X), ···, op(X))'. Then b(X), in simultaneous estimation of µ=:(µ1, .. ., ftp)' 
under the squared error loss, has uniformly smaller risk than {i(X), the MLE of 
µ, if p~3 and 0<a<2(m-2). In fact, the difference of risks between fi(X) and 
b(X) is given by 

where the summation is taken over all possible sets of (i1, ···, im) (m~3) which is 
a subset of (1, ···,P). 

Remark: In Lemma 1 if the constrains is oci) ~c, where c is a constant vector, 
then a Stein-type estimator of 0 can be constructed by 

{ 
(1- a ) Y "f yo)> y1x-1 y ' i ==c 

MLE of 0, otherwise. 

If we use the "positive part Stein-type estimator", then we get a better esti­
mator. 
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3. Another class of estimators for multivariate normal 
means restricted by linear inequalities 

Let X----N(µ, I), in this section we shall give a Stein-type estimators of µ 
which shrinks towards a given point or towards a sub-space which is determined 
by data when some linear inequalities on µ are given. 

In order to construct a Stein-type estimator which shrinks towards the arith­
metic mean, define a p xp matrix B by 

l
p-1. -1· .. -11 -1 . . . . : 

B - . . .. = . . . . . ' 
: .... -1 
-1· .. -1 p-1 

which is a projection matrix with rank p-1. Decompose X and µ as 

X=(l-B)X+BX 

and 

µ=(l-B)µ+Bµ, 

and suppose that linear inequalities ABµ~O are given. Consider an estimator 

<)4(X)=/ (l-B)x+(1- X'~X )Bx, if ABX~O 
{i(X), MLE of µ, otherwise. 

Then we have the following theorem. 

Theorem 3. Suppose again that X""'N(µ,l), and linear inequalities ABµ~O 
are given on µ. Then, in simultaneous estimation of µ under the squared error 
loss, b4(X) has smaller risk than the MLE of µ if p~4, 0<a<2(p-3) and the 
rank of AB is equal to the number of rows of the matrix A. 

Proof: The matrix B can be expressed as B=QQ', where Q consists of p-l 
column vectors qu i=l, ···,p-l, which form an orthogonal basis of range space 
of B. 

Let P=Q' µ and D=AQ. Then Q' X""'N(fi,l) and linear inequalities ABµ~O 
are equivalent to Dp~o. Applying Throrem 1, we see that if p~4 and O<a< 
2(p-3), then 

b*(Q' X)=j( 1- (Q' X)~(Q' X) )Q' X, if DQ' x~o 
p(Q' X), MLE of p, otherwise, 

has uniformly smaller risk than the MLE of p. Furthermore, we have 
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JR-=R(p, µ)-R(b4, µ) 

=R(fo, fi)-R(b*, fi) 

>0, 

which completes the proof. 

1 p - 1 p 

Example 3. Suppose that X--...,N(µ, I) and defineµ=. p i~i µi, X= p i~i X, fipxi 

=.(µ, ···, µy and Xpx1=(X, ···, X)'. Suppose further that linear inequalities µi:::;µ, i= 
1, ···, k(~p-1), are given on µ. Then by applying Theorem 3, in simultaneous 
estimation of µ under the squared error loss we can see that an estimator of µ 

{ 
X + ( 1- (X-X)~(X-X) )(X-X), if X,:::;X, ···, Xk:::;X 

MLE of µ, otherwise, 

has uniformly smaller risk than the MLE of µ if p.-::;4 and 0<a<2(p-3). 

Example 4. Suppose that X-....,N(µ, I) and that linear inequalities -co<µ1~ ... ~ 
µp< co are given on µ. Then, in simultaneous estimation of µ under the squared 
error loss, we can see that an estimator, 

{ 
X +(1- (X-X)~(X-X) )(X-X), 

MLE of µ, otherwise, 

has uniformly smaller risk than the MLE of µ if p:::;4 and 0<a<2(p-3). 
Theorem 3 can be easily extended as follows. 
Let P be a projector with rank p-k, and decompose X and µ as 

X=(l-P)X+PX 

and 

µ=(l-P)µ+Pµ. 

Suppose that linear inequalities KPµ~O on µ are given. Then, in simultaneous 
estimation of µ under the squared error loss, an estimator of µ, 

{ 
(l-P)x+(1- (PX)~(PX))Px, if KPX:::;O 

MLE of µ, otherwise, 

has uniformly smaller risk than the MLE of µ if p-k::;;_3, 0<a<2(p-k-2) and 
the rank of KP is equal to the number of rows of the matrix K. 

Remark 3. Theorem 3 can be extended further. We express the p-dimensional 
real space RP as 
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where Rco), ... , Rm are orthogonal sub-spaces. Here we assume that the dimension 
of sub-space R(i) is pi, i=l, ···,land each Pi is greater than or equal to three, i= 
1, ···,!. Then we decompose X and µ as 

and 

µ=µCO)+ µCl)+ ... + µm, µ(i)ERCi), i =0, 1, ···, /. 

Suppose that linear inequalities Aiµ(i)~O are given on µ(i),i=l, ···,!. We assume 
that the rank Ai is less than or equal to pi, i=l, ···, !. Then in simultaneous esti­
mation of µ under the squared error loss, an estimator of µ. 

{

XCO) + t (1- ai )x(i) if A-X(i) ::::::.o i = 1 ... l 
i=l XCi)'XCi) , i - , , ' 

MLE of µ, otherwise, 

has uniformly smaller risk than the MLE of µ if 0 < ai < 2(Pi - 2), i = 1, · · ·, /. 

4. Stein-type estimator for means of Hudson class restricted 
by simple linear inequalities 

In this section we shall give a Stein-type estimator for means, µ:=(µ1, ···, µp)', 
of continuous distributions in Hudson class when simpler linear inequalities (i) µi~ 
Ci,i=l, ···,P or (ii) -00<µ1~···µp<oo are given onµ. 

Suppose that X is a continuous random variable with a density function /( ·, µ) 
which satisfies the equality 

E((X-µ)g(X))=E(t(X)g'(X)), 

where E(X)=µ, for some non-negative real function t( ·) and for any absolutely 
continuous function g( ·) such that Elt(X)g'(X)I < oo. 

Let X1, .. ., Xp be independent random variables which have the density function 
f(., µi), where E(Xi)=µi, i=l, .. .,p. Then an estimator of µ, 

(4.1) 

suggested by H. Hudson, has uniformly smaller risk than X=(Xi. .. ., Xp)' if p?;.3. 
In ( 4.1) 

h(x)= ~ t(~) dx (4.2) 

is an indefinite integral. 
If there exists linear inequalities on µ of the form (i), then we have the follow­

ing theorem. 
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Theorem 4. Suppose that Xi,···, Xp are independent random variables with the 
common density f( ·, µi) and E(X)=µi, i=l, ···,p. Let b5(X)=:(o1 5 (X), ···, op5 (X))' be 
an estimator of µ with the ith element 

where 

and 

{

Xi- p a h*(X), if X-::;;ci, 

/h5 (X)= A 1:1 (h*((X))2 

µi(X), MLE of /li, otherwise, 

ex 1 
h*(x)=. Jc• t(x) dx, 

i=l, ···,P 

Then, in simultaneous estimation of µunder µi~Ci, i=l, ···,P and the squared error 
loss, b5(X) has uniformly smaller risk than fi(X)=:(µ,(X), ···, fap(X))', the MLE of 
µ, if p~3, 0<a<2(P-2). 

Proof: The difference of risks between fi(X) and b5(X) is given by 

JR=:R(fi, µ)-R(b5, µ) 

= \°Q ... \°Q t { 2a~*(xi)(xi-µi) } { Jl f(xi, /li) }dx, ···dxp 
Jcp Jc1 t=l I: (h*(xi))2 t=l 

i=l 

(4.3) 

where J(xi, µi) is the probability density function of Xi. For the first term of (4.3), 
by integrating by parts with respect to Xi, we have 

2at(ci)h*(ci)f(ci, /li) \
00 

{ 2a 4a(h*(xi))2 }ic )d (4.4) 

= ~' (h*(x,))'+(h*(c,))' + J., ,t. (h*(x,))' - Lt. (h*(x,))'T "'"/Li "''' 
j~i 

Since the first term of (4.4) is non-negative, we have 

>0, if 0<a<2(p-2). 

If there exists linear inequalities on µ of the form (ii), then we have the 
following theorem. 
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Theorem 5. Suppose that Xi,···, Xp are independent random variables with the 
common density f(·,µi) and E(X)=µd=l, ... ,p. Let b6(X)=(o16 (X), ···,o/(X))' be 
an estimator of µ with the ith element 

I
X- p a h(Xi), if -oo<X1~ .. ·~Xp<oo 

ai0 (X)= .l:(h(Xi))2 

l µ,(X;~~LE of µ,, otherwise, 

where h(Xi) is defined by (4.2). Then, in simultaneous estimation of µ under 
-00<µ1~ .. ·~µp<oo and under the squared error loss, b6(X) has uniformly smaller 
risk than P,(X), the MLE of µ, if p~3, 0<a<2(p-2). 

Proof: We prove only for the three dimensional case. The proof of general 
case is a complicated but straight extension of the three dimensional case. The 
difference of risks between P,(X) and b6(X) is given by 

!JR=R(P,, µ)-R(b 6
, µ) 

= (''° lxz lxz { 2ah~x1)(x1 - µ1)} {.IT f(xi, µi) }ax,dx2dxa 
,Loo Loo Loo E (h(xi))2 t=l 

i=l 

Integrating the first three terms, we have 
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Here if we exchange the variable x 2 and x 1 in the first term then it is equal to 
the fourth term but with opposite sign. In the same way, if we exchange the vari­
able xs and x2 in the third term then it is equal to the sixth term but with opposite 
sign. Therefore we have 

>0, if 0<a<2. 

Finally we give an estimator which shrinks towards h, the mean of h(x1), ... , h(xp). 

Theorem 6. Suppose again that Xi.···, Xp are independent random variables with 
the common density /(·,pi) and E(X)=pi, i=l, ... ,p. Let tl7(X)=(a1 7 (X), .. ·,a/(X))' 
be an estimator of µ with the ith element 

[

X- v a (h(X)-h), if 
ai 7 (X)= i~i (h(Xi)-Jz))2 

MLE of µi, otherwise, 

- 1 p 
where h(Xi) is defined by (4.2) and h=---: ~ h(X). Then, in simultaneous estima­

p i=l 

tion ofµ under -00<µ1~ .. ·~µp<oo and under the squared error loss, tl7(X) has 
uniformly smaller risk than the MLE of µ, if p;:::;4, 0<a<2(p-3). 
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