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OSCILLATORY FLOW OF A FLUID WITH 
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Department of Mechanical Engineering, Keio University, 
Hiyoshi, Yokohama 223, Japan 

(Received, June 13, 1981) 

ABSTRACT 

Applications of couple stress and micropolar theories to the problems of oscillatory 
flow in a circular tube are discussed. Couple stress and spin angular momentum are con­
sidered in this approach. The exact solutions for velocity, micro-rotation, vorticity, shearing 
stress, flow rate and energy dissipation are obtained mathematically. And the energy 
dissipation over the cross section are calculated numerically. These solutions are charac­
terized by three parameters. One is dimensionless frequency Wwhich is called Womersley 
number. The others are the ratios of viscosities s and the size effect parameter A. which 
do not appear in Newtonian fluid. s is the ratio of vortex viscosity to shearing viscosity. 
A. gives the relation of the size between the corpuscle and the tube radius. The solutions 
are compared with those for Newtonian fluid and investigated with variations of s and A.. 

Nomenclature 

A: amplitude of sinusoidal pressure gradient 
b : body force 

D : deformation rate tensor 
e : antisymmetric tensor of the third order 
I : idemfactor 
i : imaginary unit 

fn(x): 
k: 
l: 
l: 

M: 

Bessel function of the first ·kind, of order n 
= {4µµifr(µ+ µi)} 112 

body moment 
volume averaged radius of gyration 
couple stress tensor 
couple stress vector 

* Graduate Student 
** Associate Professor 

*** Professor 
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n: exterior unit normal 
p: pressure 
Q: volume flow rate 
R : radius of tude 
s : spin angular momentum 
T : stress tensor 

ten) : stress vector 
v : velocity vector 

W: vorticity tensor 
W: dimensionless frequency 
o: =W/(l+c)-,<2}112 

c: =11i/11 
,<: =kR 
11: shear viscosity 

vortex viscosity 
=r/R 

p: mass density 
r : shearing stress 

</J : dissipation function 
</>: 
!J: 
Cl) : 

=iWa12 

micro-rotation vector 
vorticity vector 

Wo: angular frequency of sinusoidal pressure gradient 

Subscripts 

a : refers to antisymmetric part 
s : refers to symmetric part 
t: refers to transpose 

reduced to dimensionless form 

I. Introduction 

In general fluid dynamics the stress tensor is symmetric. The argument is 
based on conservation of angular momentum and makes no allowance for possible 
internal angular momentum. When neutrally buoyant corpuscles are contained in 
fluid, corpuscles rotate if velocity gradients exist, due to the shearing stresses. 
Corpuscles have spin angular momentum in addition to orbital angular momentum. 
The symmetry of stress tensor is not held in the fluid which has spin angular 
momentum. The fluid containing neutrally buoyant corpuscles, if observed macro­
scopically, is considered to be a non-Newtonian fluid which has a constitutive 
equation expressed by the stress tensor different from that of Newtonian fluid. 
Since the corpuscle is much larger than a fluid particle, i.e., the radius of gyration 
of the corpuscle is different from that of the fluid particle, the angular velocity of 
the corpuscle is not equal to that of the fluid particle. This difference produces a 
couple stress in the fluid. The fluid which has couple stress and spin angular 
momentum is called polar fluid. 
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Oscillatory Flow of A Fluid with Couple Stress 

The theory of polar fluid was developed by Eringen (1964)6
) and Allen and 

DeSilva (1966). 1
) The behaviors of such a fluid have been studied from various 

viewpoints. Stokes (1966, 1971)11
)·

12
) discussed a number of fundamental steady 

flows in order to determine material constants of the fluid which has couple stresses 
and investigated effects of couple stresses in fluids on the creeping flow past a 
sphere. However he did not consider spin angular momentum. Ramkissoon and 
Majumdar (1976)9

) proposed to consider the Stokes' law problem for axially sym­
metric bodies in micropolar fluids. They derived a simple formula for the drag 
in terms of the stream function. Ariman et al. (197 4)3

) reported that the theoretical 
results of polar fluid agrees with the experimental steady and pulsatile blood flow 
data by Bugliarello and Sevilla (1970)4

). Sawada and Tanahashi (1981)10
) analyzed 

a few flow patterns and discussed with apparent viscosity. Condiff and Dahler 
(1964)5

) argued with several alternative boundary conditions and examined the special 
case of a rapidly rotating electric field. 

The present paper is devoted to analysing the oscillatory flow of polar fluid 
in a circular tube. We would concern ourselves with solving this problem using 
the theory developed by Eringen. Expression for velocity, micro-rotation, vorticity, 
shearing stress, flow rate and energy dissipation have been derived and they are 
compared with those of Newtonian fluid which are obtained by Womersley (1955)16

) 

and Uchida (1956)15
) et al. 

II. Fundamental Equations 

1. Cauchy's Equations of Motion 

Let v be the velocity vector. The balance principle for mass, expressing the 
conservation of mass, is 

(1) 

where p is the density of the material. The equations governing the balance of 
momentum and angular momentum are 

(2) 

(3) 

where b and l represent the body force and the body momentum, respectively. 
Stress vector t<n) and couple stress vector m<n) are given by 

(4) 

where n is the extrior unit normal to the surface on which t<n) and men) act. M 
is the couple stress. It arises in such the same way that the stress tensor T 
does. Substituting Eq. (4) into Eqs. (2) and (3) leads the first and second Cauchy's 
equations of motion 
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2. Constitutive Equations 

dv 
p- =fi'·T+pb 

dt 
(5) 

(6) 

The rate of deformation tensor D and the vorticity tensor W are given by 

D= ~ (vP +f7v) f 
1 ,.. ~ 

W= -(vv -flv) 
2 

(7) 

They are the symmetric and antisymmetric parts of the velocity gradient, respec­
tively. The vorticity vector m is defined as the curl of the velocity vector, so 
that 

m=curl v (8) 

The vorticity vector and the vorticity tensor are related by following equations, 

1 W= - -e·m m=-e: W 
2 ' 

(9) 

where e is the antisymmetric tensor of the third order. 
The linear constitutive equations of stress tensor T and couple stress tensor 

M are necessary to solve Cauchy's equations of motion. The stress tensor is 
divided into two components, 

Eringen-Allen suggested, 

Ts= -pJ+J.(tr D)l+2µD 

Ta=-2µ1( W+e·JJ)= -µ11X(m-2JJ) 

(10) 

(11) 

(12) 

It is explicit that the symmetric part of the stress tensor depends only upon the 
symmetric velocity gradient tensor. In general the micro-rotation is not equal to 
one-half of the vorticity which the velocity gradient produces. This difference 
makes the antisymmetric part of T. The dimensions of material constants J., 11 
and µ1 are those of viscosity (namely, [M/LT]). µ1 is called vortex viscosity by 
Kline et al. (1972)8

). If vortex viscosity µ1 is set equal to zero, the constitutive 
equation of the stress tensor reduces to the usual viscosity law. 

The constitutive equation of couple stress tensor M is as follows: 

M=a tr (JJP)I + (3(JJP)+r(JJPY (13) 

These coefficients a, f3 and r are material constants. The dimensions of a, j3 and 
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r are those of momentum (namely, [ML/TJ). They are called spin viscosity by 
Kline et al. The ratio r/tt has a dimension of length square. Allen and Kline 
(1970)2

) denoted this material constant by the volume averaged radius of gyration 
l, i.e., 

l2=r/11 (14) 

It was shown by Eringen (1966)7
) that /11 and r must be rearl and positive from 

the thermodynamical considerations, but a and f3 may be negative if they satisfy 
some inequalities. 

The relation between the spin angular momentum s and the micro-rotation !J 
is given by 

(15) 

3. Fundamental Equations 

Eq. (1), which means the conservation of mass, is rewritten as the continuity 
equation: 

dt +pdivv=O (16) 

When material constauts p, µi, A, a, f3 and r are assumed to be spatially constant and 
from Eqs. (11), (12), (13), (14) and (15), the following equations are obtained; 

dv 
p-

1
- = - flP+ (A+2p)flfl· v-(µ+ p1)flx flx v+2p1flX !J+ pb 

ct 

Pr d!J - -d =(a+f3+r)flfl.!J-rflx flx!J+2µ1flxv-4µ1!J+pl 
µ t 

III. Oscillatory Flow in Circular Tube 

(17) 

(18) 

Oscillatory flow of incompressible fluid axial symmetry through a rectilinear 
tube of circular section is considered. It will be convenient to take the cylindrical 
coordinates whose x axis is identified with the center line of the tube. We assume 
that neither body force nor body moment is present. We restrict ourselves to the 
case 

Vr=O, Vo=O, Vx=V(r, t) (19) 

(20) 

Here the continuity equation (16) is automatically satisfied. From Eqs. (19) and 
(20), Eqs. (17) and (18) in cylindrical coordinates are 

1 a ( av ) 1 a ap av (p.+µ1)-·- r- +2µ1-·-(rQ)--=p-r ar ar r ar ax at (21) 
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a { 1 a } av pr w r- -·-(rQ) -2µ1--4µ1!2=-·-
or r or or µ at 

(22) 

In the general oscillating flow, an arbitrary time-dependent pressure gradient will 
be expressed by Fourier series as follows; 

(23) 

Since the total pressure gradient (23) is a superposition of sinusoidal components of 
pressure gradient, it is sufficient to investigate the fundamental wave, which is 
given by the real part of the following equation; 

- ix =A exp (iwot) (24) 

where A is the amplitude of sinusoidal pressure gradient. If wo~O. the flow be­
comes Poiseuille flow. The solutions of Eqs. (21) and (22) should be of the form 

v(r, t) = v(r) exp (iwot) 

Q(r, t) = Q(r) exp (iwot) 

(25) 

(26) 

Only the real parts of these equations have the physical meaning. Substituting 
Eqs. (25) and (26) into Eqs. (21) and (22) leads simultaneous ordinary differential 
equations for V(r) and Q(r) are: 

( ) 1 a ( dv ) 2 1 a ( r.) . A A µ+µ1 -·- r- + µ1-·- ru -ipwoV=-
r dr dr r dr 

(27) 

d { 1 d ~ } dv ~ . pwor ~ r- -·-(rQ) -2µ1--4µ1f2=z--Q 
~ r ~ ~ µ 

(28) 

Thd general solutions for this system, which are finite at the tube axis r=O, are 
expressed by 

where C1 and C2 are arbitrary constants. a, b and m are given by 

b2 = -ipwo/µ 

m2 =ipwo/(µ+ µ1) 

(29) 

(30) 

To determine the arbitrary constants C1 and C2, some kinds of boundary con-
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ditions are necessary. Though many arguments have been made for spin boundary 
conditions, a clear conclusion has not been obtained yet. The typical conditions 
are no-spin condition and constant-spin condition at the wall. The former, which 
is suggested by Eringen, corresponds to the no-slip condition of velocity. The 
latter is used by Ariman et al. and is based on the experimental results that 
corpuscles rotate at the wall. Here we use no-spin condition, which is 

v=O, .Q=O at r=R, (31) 

Applying these conditions to Eqs. (29), (30), (25) and (26) yields the desired solutions 
for v and .Q as follows ; 

where 

s=µi/µ 

¢>= Wia12 

k 2 = 4µµi/r(µ + µ1) 

o=-V </> 2/(l+s)-,{2 

~=r/R 

W=R-V pwo/µ 

-<=kR 

(32) 

(33) 

These solutions are characterized by three dimensionless parameters W, ,{ and s, 

which are called Womersley number, the size effect parameter and the viscosity 
ratio, respectively. 

1. Velocity Profiles 

Velocity profiles at n:/8 intervals during one half cycle are shown in Fig. 1. 
and Fig. 2. When W)>l and <j>~)>l, Eq. (32) becomes 

v(fr::::. - ~2[1- ) ~ exp {-(1-~) Wi 112
} J exp (iwot) (34) 
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--- .121~tonian fluid 

Wot 
rr~-------1 

7 
3rr 

6 
3rr 

1.0 

( l) W=l ( 2) W=3 ( 3) W=5 

Fig. 1. Velocity profiles (A= 1.0, .s= 1.0) 

I> 

0 

When W is large, the amplitude of the velocity decreases in proportion to 1/ W 2 

and the fluid flows with the phase lag of n/2 from the phase of pressure gradient 
because of -i of the right-hand side of Eq. (34). It will be found that in the rapid 
oscillation the velocity profile becomes flat near the center of the tube and the maxi­
mum of the velocity distributions exists in neighborhood of the wall. Whereas the 
velocity approaches exp (iwol) multiplied by the velocity of the steady flow when 
W is small. There is no phase difference between the velocity and the pressure 
gradient. 

As c becomes small, the velocity profile goes to that of Newtonian fluid. It 
corresponds to the decrease of f11 that c goes to zero with constant /1· Then the 
antisymmetric part of stress tensor is vanished. The polar effect does not appear 
in such case. The limit of c-+O in Eq. (32) is the velocity of Newtonian fluid. 

In the theory of polar fluid, it must be considered that corpuscles rotate because 
of shearing stresses. These rotations produce the rotation of the cell, which is 
relative to the volume averaged radius of gyration of the cell. If the radius of 
the circular tube changes, the velocity profile in this case varies. But in Newtonian 
fluid the velocity profile does not depend on the tube radius. Such size effect 
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-- Newtonian fluid -- Newtonian fluid 

---£=0.5 --- X=l.O 

---- £=1.0 ---- X = 5.0 

7 7 lf'TT lf'TT 

_§_'TT 6 
8 

g'TT 

5 5 g'TT 3rr 

_i_ TT 
4 

8 
-3 rr 

3 3 
3rr arr 

2 2 g'TT 8'TT 

l I> 
l 

8'TT 8'TT I> 

0 0 0 0 

l.O !'; 0 1.0 ~ 0 

(l) X=l .0 (2) £=1.0 

Fig. 2. Velocity profiles (W=l.0) 

corresponds to A.. Now A.-+oo corresponds to the situation where the ratio of tube 
radius to that of a corpuscle is very large. Thus the velocity profile approaches 
that of Newtonian fluid. 

2. Micro-rotation and Vorticity 

From Eqs. (8) and (19) the nonzero component of vorticity vector m is 

av 
w=wo=--or (35) 

Substituting Eq. (32) into Eq. (35) yields 
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--- £=0.5 

--£=1.0 

WQ t 
1T --k-------,j 

---->-=1.0 

--->-=2.0 

-->.=5.0 

Wot 
1T -+.=c------=--11 

2 
lf'll' 

1 U") 1 4n _,___ ____ _____,,,_ __ o 4n U") 

..fll='------'~--
0 

1c: 

0 0 

1.0 0 1.0 0 

(1) >-=2.0 (2) £=1.0 

Fig. 3. Distributions of micro-rotation (W=l.0) 

Distributions of micro-rotation and vorticity at rr/4 intervals over a half cycle are 
shown in Fig. 3. Comparisons of micro-rotation with one-half of vorticity at n/4 
intervals over a half cycle are shown in Fig. 4. The antisymmetric part of stress 
tensor mainly consists of the difference of micro-rotation and one-half of vorticity. 
When the oscillation is extremely slow, this difference becomes 

Then, micro-rofation is smaller than one-half of vorticity in the case of w~o. With 
regard to the phase, there is no difference between the pressure gradient and micro­
rotation. For the opposite extreme the amplitude of the micro-rotation diminishes 
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l -2w 
n 

---- -tw (Newtonian fluid) 

( l) W=l 

I; 

(2) W=5 

IC: 

0 

Fig. 4. Comparisons between distributions of micro-rotation and one-half 
of vorticity (-<=1.0, e:=l.0) 

in proportion to 1/ Wand n~o in the limit of W~oo. There is little significant 
variation of micro-rotation with c. For small values of c, the vorticity becomes 
that of Newtonian fluid. 

3. Shearing Stress 

The component of shearing stress Trx will be obtained as follows: 

(38) 

Substituting Eqs. (32) and (33) into Eq. (38) leads 

- -r(~) 
-r(~)= AR/2 

(39) 
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--- >.=l .O 

--- C=Q.5 ---- >.=2.0 

--- Newtonian fluid --- Newtonian fluid 

'!T '!T 

3 3 
T'!T 4'!T 

2 2 
T'!T 4'!T 

l l 
T'!T 4'!T 

0 0 0 

1.0 0 

(1) ).=1.0 (2) C=] .0 

Fig. 5. Distributions of shearing stress (W=3.0) 

Fig. 5 shows the distributions of shearing stress. The dimensionless wall shearing 
stress is given by 

7:w= ---w+dJ _ [ l+e _ -1 
2 _e=t 

(40) 

Since we use the no-spin condition, the wall shearing stress is expressed only by 
the vorticity. In Fig. 6, distributions of the wall shearing stress shown W as a 
parameter over one cycle. 

When the shearing stress is asymptotically expanded for large values of W, 
Eq. (39) is reduced to 

_ 2(1 + e )i312 exp { - (1- ~)i 112 } • 

r(fr:::: W · -vi~ exp (zwot) (41) 

The amplitude of the shearing stress is in inverse proportion to W. In the rapid 
oscillation (W~oo), the phase of the shearing stress delays by n:/4 from the phase 
of the oscillatory pressure gradient because of the first term i 312 in Eq. (41). When 
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1.00 

0.75 

0 .50 

0.25 

~ 
lk-' 

0.00 

-0.25 

-0.50 

-0.75 

-1 .00 

Fig. 6. Variations of distributions of wall shearing stress with W (..<=1.0, 
s=l.0) 

W-+0, the shearing stress is equal to that of Newtonian fluid. This fact means 
that in the steady ft.ow there is no difference of the shearing stress between polar 
fluid and Newtonian fluid. If the boundary conditions are different at the wall, 
it may be seen that some change occurs for the wall shearing stress from Eq. (40). 
For example, if we use the constant-spin condition which Q is not zero at the wall, 
the second term of the right-hand side of Eq. (40) should influence on the wall 
shearing stress. But there is little variation with the wall shearing stress between 
no-spin and constant-spin conditions. Details about this phenomenon are discussed 
in Ref. 14). 

4. Flow Rate 

The volume ft.ow rate is given by 

Q(t)= ~~ 2rcrv(r)dr (42) 

Hence the dimensionless ft.ow rate is 

- Q(t) 
Q(t)= rcAR4 /8µ 

[ 
2{ <fh, } ] 8 -;;; 1 + A2(1 + e) li(o)Ji(</J) . 

= - -2 1- o<jJ exp (imot) 

<P li(o)Jo(<P) + i2(l~s) lo(o)Ji(<P) 

(43) 
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0.6 

0.4 

Id 
0.2 

-0.2 

0.6 

0 .4 

id 
0.2 

-0.2 

7T 7T 

2 

£=0.5 

£= l .0 

Newtonian fluid 

Fig. 7. Variations of flow rate with s (W=3.0, A= 1.0) 

--- - l.=2.0 

--- A=5.0 

Newtonian fluid 

1T 1T 

? 

Fig. 8. Variations of flow rate with A (W=3.0, s= 1.0) 

Variations of the flow rate with 2 and s are shown in Fig. 7 and Fig. 8. The 
property of the flow rate is similar to that of the velocity. The influence of 2 and 
s on Q is almost analogous to that on the velocity profile. 

5. Energy Dissipations 

The dissipation of energy per unit volume due to internal friction is given by 
the dissipation function : 

(44) 

In cylindrical coordinates the dissipation function given by Eq. (44) is written by 

(av) 2 (1 av )2 (Q av) </J=µ - +4µ1 -·-+D -2/3 -·-ar 2 ar r ar 

(45) 

Both the third and forth terms of the right-hand side of this equation can be 
neglected since their effects are small in comparison with the first and second 
terms. Substituting the solutions of the velocity and the micro-rotation into Eq. 
( 45), we obtain 
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0.5 

0.4 
If€>! 

0 3 

0 2 

0. l 

1i-01 

( l) W=l 

(2) W=5 

7T 

4 

3 
2rr 

Fig. 9. Distributions of energy dissipation (A= 1.0, s= 1.0) 

(46) 

When W omersley number, W, is not large, the maximum of energy dissipations 
occurs on the wall of the tube. In the rapid oscillation, the maximum of energy 
dissipations takes place at a location slightly inside the wall, depending on the phase 
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as shown in Fig. 9. The energy dissipations over the cross section are plotted in 
Fig. 10 and Fig. 11. The analytical expression for energy dissipation over the 
cross section can not be obtained because of the difficulty of the integration of 

Newtonian fluid 

0.6 0.5 

lo. 
'd 
lo. 

~ .a. 
c.: 0 0.4 
'--:i 

0.2 

o.oL-~~~~~~_i_~~~~~--=~....,~=-~~~--1.~~~~~~--J 

0 1T 

4 
7T 

2 
7T 

WQ t 

Fig. 10. Variations of energy dissipations over the cross section (A= 1.0) 

0.6 
lo. 
'd 
lo. 
I= 
~ 
tel 

c.: 0 
c.--, 0.4 

Fig. 11. Variations of energy dissipations over the cross section (.s=l.0) 
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Bessel functions. These curves are calculated numerically by means of Simpson's 
rule. 

IV. Conclusions 

In the present paper, the oscillatory flow of a fluid with couple stress which 
is called polar fluid have been studied mathematically on the basis of the theory 
advanced by Eringen. The conclusions are summarized as follows: 

(1) Profiles of velocity and micro-rotation, distributions of vorticity and shear­
ing stress, flow rates and energy dissipations are obtained as exact solutions of 
the first and second Cauchy's equations. These solutions are characterized by three 
parameters, i.e., the dimensionless frequency W (Womersley number), the size effect 
parameter .( and the viscosity ratio z. The latter two parameters present the charac­
teristics of polar fluid. 

(2) For high frequencies, the amplitude of velocity becomes small inversely 
in proportion to the second power of Womersley number, while that of micro­
rotation becomes small ·inversely in proportion to the first power of W omersley 
number. For low frequencies, the flow of fluid becomes quasi-steady. The phase 
lag of velocity for pressure diminishes gradually. 

(3) A big value of size effect parameter makes the polar fluid get Newtonian, 
then micro-rotation becomes equal to one-half of vorticity. 

(4) When the rate of viscosity becomes small, the polarity of fluid diminishes 
and micro-rotation reduces to zero. 
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