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VOL. 34, NO. 1, pp. 1-38, 1981 

CLASSIFICATION OF THE GENERALIZED HYPER­
GEOMETRIC FAMILY OF DISTRIBUTIONS 

MAsAAKI SrnuY A* and RYOICHI SmM1zu** 

Dept. of Mathematics, Keio University, Hiyoshi Yokohama 223, Japan 

(Received April 1, 1981) 

SUMMARY 

Univariate and Multivariate Generalized Hypergeometric distributions are formally 
defined, and under some conventional rules all possible cases are found and classified. 

Univariate distributions on the interval [O, n] or [O, oo) are clearly defined and classified 
into five types: Al and A2 on finite intervals and Bl, B2 and B3 on infinite intervals. On 
the other intervals, shifts or inversions of the distributions of the basic five types are 
essentially possible. 

Bivariate Generalized Hypergeometric distributions are possible on the non-negative or 
the negative quadrant. Possible types are rather limited irrespective of the general setup. 
The discussions on the Bivariate distributions cover classification of the Multivariate 
distributions. 

Singular Generalized Hypergeometric distributions are classified in the course of the 
discussions. Geneses of main Bivariate Generali.zed Hypergeometric distributions are 
summarized. 

1. Introduction 

Scope of the problem 

A definition of a Univariate Generalized Hypergeometric (GHg, for short) dis­
tribution is a distribution whose probability generating function (or characteristic 
function) is a hypergeometric function multiplied by a normalization factor; 

(1.1) F(a, f3; r; U)- 1F(a, (3; r; Us), 

where F is the sum of Gauss hypergeometric series, that is, 

(1.2) F(a, f3; r; z)= f; (~)(/3~n Zn' where (a)n=a(a+l) .. . (a+n-1)' and (a)o=l. 
n=O r nn • 

* Keio University (The work was completed while the author was at Tokyo Scientific 
Center, IBM Japan.) 

** The Institute of Statistical Mathematics 
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The hypergeometric series can be extended to a vf~ series with p numerator para· 
meters and q denominator parameters, then the GHg family covers a very wide 
range of distributions. See Kemp (1968), Dacey (1972) and Mathai and Saxena (1973) 
for studies in this broader scope. 

There are two statistical approaches to the GHg family. In one of them, O is 
an unknown parameter of main concern. If the other parameters are known, the 
distribution is a power series distribution (see e.g. Johnson and Kotz (1969)). In 
the other approach, 0=1 and one or more of the other parameters are unkown. 
In this paper, we are concerned with the latter case and only the 2F1 case and its 
extension to other directions. That is, we examine distributions with probabilities 

(1. 3) p(x )-___ l __ 
F(a, (3; r; 1) 

(a)x((3)x 
( ) ! ' x = 0, 1, 2, ... r xX. 

and extend these to distributions on the other domains and to multivariate distri­
butions. 

Recall that the Ordinary Hypergeometric (Hg) distribution has probabilities 

(1.4) p(x)=(~)(n~x) j (M:N) =(:)(M:/!_;n) j (M:iN) 

(M+N-n)! N! (-M)x(-n)x 
(M+N)! (N-=-n)f (N-n+l)xx! 

One can define GHg distributions by extending binomial coefficient and allow­
ing M, N and n to be real numbers. We prefer the expression (1.3) to (1.4) mainly 
because the parameters a and (3 appear symmetrically in (1.3) and this makes 
classification simpler. 

Construction of the paper 

In Section 2, we state Shimizu's classification (1968) of (1.3) as distributions on 
[0, n] or [0, oo ). As shown in Table 1, there are five types of distributions; Al and 
A2 on [0, n] and Bl, B2 and B3 on [O, oo ). Since the Ordinary Hg (1.4) can be a 
distribution on positive integers only, this restriction on the range is too severe. 
To cover even negative intervals, a GHg is redefined by the expressions (3.2) or 
(3.3) and Convention 3 is assumed. Examining all sossible cases, Theorem 2 states 
that seven types of distributions in Table 2 are all possible additional distributions. 
Except for Type C, a very special type, others are shifted or inverted distributions 
of Types in Table 1, that is, right shift or inversion of Al, or right shift of Bl 
and B3 on positive intervals; left shift or inversion of A2, or inversion of B3 on 
negative intervals. Types of distributions in Table 2 are further examined in 
Section 4 by showing some related distributions outside the table. Possible Singular 
Bivariate GHg distributions are shown in Table 3 for better understanding of Table 
2 and for later discussions. 

Bivariate GHg distributions on the nonnegative quadrant are defined by the 
expression (5.2) or (5.3) and Convention 4. Unexpectedly, there are only several types 
of distributions since marginal and some related univariate distributions must be GHg 
as summarized in Table 5. Theorem 4 states that the types of distributions in 
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Table 4 are all possible ones. Bivariate GHg distributions on the other quadrants 
are also defined by (5.5) or (5.6). There are two types of distributions on the 
negative quadrant, as shown in Table 6, which are obtained by inverting two 
types in Table 4. The types in Tables 4 and 6 are valid for Multivariate GHg 
distributions if the number of parameters is increased. Singlar Multivariate GHg 
distributions are shown in Table 7. In the final Section 6, geneses of Bivariate 
GHg distributions are discussed. These geneses cover essentially univariate and 
multivariate distributions. 

An expository summary of this report will be published separately (Sibuya and 
Shimizu (1981)). 

Previous works 

Generalization of the Hg distributions has a long history. It goes back, for 
example, to Karl Pearson's early work (1895). Studies on moments (Pearson (1924a)), 
Romanovsky (1925), Ayyangar (1934)), approximation by Pearson curves (Camp 
(1925), Davies (1934)) and bivariate extension (Pearson (1924b)) followed it. Some 
unifying efforts appeared more recently. See, for example, Ord (1967a, 1967b) for 
univariate case, Steyn (1951, 1955), Janardan and Patil (1972), and Janardan (1973) 
for multivariate case, and Kemp (1968) and Dacey (1972) for a wider scope study. 

There have been, however, less efforts to define what GHg distributions are, 
and to classify them. As the results, descriptions on GHg distributions in statistical 
literature are often vague, and duplicated works on the distributions are observed. 

Classification of Univariate GHg distributions was studied by Davies (1934) and 
Kemp and Kemp (1956) (the latter result is stated in Johnson and Kotz (1969)), 
Kemp and Kemp's classification did not cover completely distributions on general 
intervals and was criticized by Sarkadi (1957) and Shimizu (1968). Shimizu (1968) 
solved completely classification of Univariate GHg on intervals [O, n] and [0, oo), 
indicated a way to examine distributions on the other intervals and pointed out 
difficulties in studying broader class of GHg distributions, but failed to restrict 
GHg distributions within a reasonable limit. 

Janardan and Patil (1972) covered practically important Multivariate GHg dis­
tributions but they did not try to exhaust all possible cases. 

2. Univariate Distributions on [0, n] or [0, oo) 

Conventions and classification 

Let F(a, f3; r) denote a GHg distribution (1.3). To cover some distributions on 
finite interval, we assume the follwing convention. 

Convention 1. Let m and n be integers such that m~n>O. We define in (1.3) 

(2.1) 
~ (a).-c( -n)x 

F(a, -n; -m; l)=L.J ( ) 1 , 
x=o -m xx. 

and regard F(a, -n; -m) a distribution on [O, n]. Notice that this distinguishes 
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F(a, -n; -n), F(a, -1; -1) and F(a, 1; 1). 

By Gauss theorem, the factor in (1.3) is defined if r >a+ p and written as 

1 
F(a, p; r; 1) 

T'(r-a)r(r-p) 
I'(r-a-p)l'(r) ' 

and this expression holds in the case of Convention 1 if another convention is ap­
plied; 

Convention 2. Let m and n be nonnegative integers. We define formally either 

(2.2) /'(-n)=(-lt/O.l. . . n, 

or 

(2.3) I'(-n)=(-ltr(O)/n, 

and if a pair of O's or r(O)'s appears in numerator and denominator of an expres­
sion, then we cancel it. In other words, 

(2.4) r(-n) =lim _ _I'( -n+c) =(-lt-m m! . 
r(-m) e-->O r(-m+c) n! 

The value of l/T( -n) is zero by (2.2) but undefined by (2.3). A suitable one 
of them can be used in the following discussions. 

Theorem 1. (Shimizu (1968), Kemp (1968)) 

Under Conventions 1 and 2 a GHg distribution F(a, p; r) with probabilities 

(2.5) p(x) 
J'(r-a)I'(r-p) (a)x(;S)x 
I'(r-a-p)r(r) -(r)xx!-~ 

x=O, 1, 2, ... 

can be a probability distribution on [O, n] or [0, oo ), not degenerated at x =0, if and 
only if F(a, p; r) (or F(p, a; r) by symmetry) belongs to one of the five types of 
Table 1. 

Proof. Since p(O) and p(l) are positive, (a)x(p)x/(r)x >0, x =l, 2, ... This is possible 
if all of a+x-l, p+x-l and r+x-l are always positive (Type B3), two of them 
are always nonpositive and the third is always positive (Types Al and A2), or two 
of them change sign from negative to positive at the same point and the third is 
always positive (Types Bl and B2). 

Remarks on Table 1. 

We mention briefly some facts on the distributions in Table 1. In Section 6, 
geneses of Types Al, A2 and B3 are discussed. 
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Classification of the Generalized Hypergeometric Family of Distributions 

Table 1. Classification of the GHg distributions F(a, p; r) 
defined by (2.5) on [O, n] or [O, =) 

range I type I distribution 
F(a, f3: r) I restriction I name 

[O, n] Al F(-e. -n; () e>n-1 Positive Hg 

A2 F(.;, -n; -() (>n-1 Negative Hg, Markov-P6lya, P6lya-
Eggenberger, binomial beta 

[O, =) Bl F(-n+e, -n+o; () - -
B2 F(e, -n+o; -n+p) p>.s+o -

B3 F(e. 7i; () (>Hr; Inverse Markov-P6lya, inverse P6lya-
Eggenberger, generalized Waring, 
negative binomial bete 

n: positive integer, 
.;, r;, (: positive real numbers, 
e, o, p: real numbers on the open interval (0, 1). 

Type Al 

I'(~ +()T'(( +n) ( -~)x( -n)x 
T'(()I'(~ +( +n) (()xx! 

(2.6) 

= (n) (a+b-n)j(a+b) = (n) a<X)bcn-x) , 
x a-x a x (a+b)cn) 

x=O, 1, ... , n, a<X)=a(a-1) .. . (a-x+l), 

where a=~. b=(+n-1 and a, b>n-1~0. This is a Positive Hg distribution, and 
when ~ and ( are positive integers this is an Ordinary Hg distribution (1.4). 

Type A2 

(2. 7) rc-~-()I'(n-() (~)x(-n)x_ =(-a)( -b )/(-a-b) 
I'(-()I'(n-~-() (-()xx! x n-x n 

= (a+:-l)(b+:=:-1) / (a+b:n-1) 

= (n) (a)x(b)n-x 
x (a+b)n ' x=O, 1, ... , n' 

where a=~. b=(-n+l and a, b>O. This is a Negative Hg distribution, which is 
also called Markov-P6lya, P6lya-Eggenberger, and so on. The case b=l is included 
by Convention 1. 

Type Bl 

This has unimodal or monotone decreasing probabilities. Its mean is greater 
than variance if n ~ 2. 
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Type B2 

The distribution can be unimodal or bimodal and has not finite mean. 

Type B3 

(2.8) 
T((-~)I'((-r;) (~)x(r;)_:;_ 

T'((-~ -r;)I'(() (()xx! 
r(a+c)I'(b+c) (a)x(b)x 
I'(c)I'(a+b+c) (a+b+c)xx! ' 

where a=~, b=r;, c=(-;-r; and a, b, c>O. This is called inverse Markov-P6lya, in­
verse P6lya-Eggenberger, and so on. (See Sibuya (1979) for further discussions of 
this distribution.) 

The following table compares the Table 1 with Kemp and Kemp's classification 
(1956). 

Al IA (i), (ii) 

A2 IIA, IIIA 

Bl IB 

B2 IIB, IIIB 

B3 IV 

Their classifiation was based on the binomial coefficient expressions, so the condi­
tions on parameter values were complicated and exhaustiveness of them was not 
clear. They excluded F(a, -n; -n) of Type A2, the case where N=O and M>O 
in (1.4), or the case where b=l in (2.7). We include it applying Conventions 1 and 
2. In the last expression of (2.7), there is no reason to exclude b=l. 

Ordinary Hg distribution (1.4) has a positive probability if max (0, n-N)~x~ 
min (M, n). That is, it can be a distribution on intervals not including 0, which is 
not covered by Table 1. It is natural to ask, therefore, what the GHg disturibu­
tions on intervals other than [0, n] and [0, oo) are. Sarkadi (1957) remarked this 
fact, criticizing Kemp and Kemp's classification, but his comment was not complete. 
Shimizu (1968) discussed what GHg distributions will be obtained by shifting (i.e. 
X±P) a variable X of Table 1. The next Section 3 treats the problem more com­
pletely. 

Because of its various models and expressions Type A2 Hg, or Negative Hg, 
got many other names. Since this is obtained by P6lya's contagious urn model 
which was actually studied by Markov, Eggenberger and P6lya, it is called Markov­
P6lya, P6lya, or P6lya-Eggenberger distribution. This is also called binomial beta 
since this is a compound binomial distribution when its prob:ibility parameter is a 
beta variable. Inverse Hg is another name used by some authors. 

Type B3 Hg, or inverse Markov-P6lya, is obtained by inverse sampling (or 
waiting time) in P6lya's contagious urn model, and inverse P6lya or inverse P6lya-
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Eggenberger are used. It is also called negative binomial beta since this is a com­
pound negative binomial distribution when its probability parameter is a beta 
variable. Another name is generalized Waring since its probabilities are generali­
zation of terms of Waring inverse factorial series. 

3. Univariate Distributions on the Other Intervals 

Definition of extended probability distributions 

Let us study again Ordinary Hg (1.4) with n > N. The second expression of 
(1.4) is positive if n-N~x~min(M,n). But there is a factor (-n+N+l)x in 
denominator of the last expession, which vanishes if n-N~x, and there is another 
factor (-n+N)! which is undefined even applying Convention 1 if M>n-N. To 
cover this case and to define GHg on negative integers, we have to redefine the 
function form of GHg family of distributions. For this purpose, we extend the 
factorial function which is expressed as 

(3.1) 
I'(a+x) x 1'(1-a) 

(a)x=a(a+l) ... (a+x-1) =-r(a) -. = (-1) I'(l-a-x) ' 

at least for a nonnegative integer x and a noninteger a. Extending the domain of 
x to all integers and that of a to all real numbers in (3.1), we notice the following 
facts. 
(i) When a=n~l is a positive integer 

(n)x= {I'(n+x)/['(n)=(n+x-1)!/(n-1)!, 
(-l)37I'(l-n)/I'(l-n-x), 

where 1'(1-n) is undefined. 
(ii) When a= -n~O is a nonpositive integer 

{ 
/'(x-n)/['(-n), 

(-n)x= (-lYI'(l+n)/r(l+n-x), 

where l//'( -n) is undefied or zero. 

x~-n+l, 

x~-n, 

x~n+l, 

x~n, 

(iii) When a is not an integer, the sign of I'(a+x)/F'(a) changes for neighboring 
integer values of x in a+x<O. 

Remark that we obtain the last equality of (3.1) for negative integer arguments 
invoking Convention 2, and that if a is an integer, then (a)x is definable either for 
x>-a or for x~ -a. 

Using the first gamma expression of (3.1), we rewrite (2.5) as 

(3.2) p(x) I'(r-a)I'(r-/3) 
I'(r- a - (3)I'( a )I'((3) 

I'(x +a)r(x + (3) 
I'(x+l)I'(x+r) ' 

or using also the second gamma expression of (3.1), 

(3.3) ( )- l'(r-a)I'(r-f3)I'(l-a)r(l-(3) 
P x - I'(r-a-(3)I'(x+l)I'(x+r)F'(l-a-x)I'(l-(3-x) ' 
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The expression (3.3) is obtained if we formally rewrite (2.5) in binomial coefficient 
form; 

(3.4) 

and define 

(~) =l'(a+l)/I'(b+l)I'(a-b+l). 

Two expressions, (3.2) and (3.3), are strangely different by factor ( -1) for 
some special parameter values. For example, put x= -m in F(e, m; n+l) (see 
Table 2) of (3.2) to obtain 

I'(n+l-e)I'(n+l-m)I'(-m+e)I'(O) 
I'(n+ 1-e-m)I'(e)I'(m)I'( -m+l)I'(n+ 1-m) 

In F(e, m; n+l) of (3.3), however, we obtain 

I'(n+l-e)I'(n+l-m)I'(l-e)I'(l-m) 
I'(n+ 1-e-m)I'(l-m)I'(n+ 1-m)I'(l-e +m)I'(l) 

(n-e)cm) 
(m-e)cm) 

(n-e)cm) 
(m-er) 

To show the reason, compare factors in these expressions; starting from the latter 

I'(l-m) m I'(O) 
I'(l-m)I'(l) - ( -l) I'(l-m)I'(m) 

I'(m) 
I'(l)I'(m) · 

That is, if gamma functions with nonpositive integer argument in the factor 
r(x +a)l'(x+ {3)/I'(a)I'(p)=I'(l-a)I'(l-{3)/I'(l-a-x)I'(l-{3-x) become definable by 
applying Convention 2 within this factor, then (3.3) is equal to (3.2). But applying 
Convention 2 twice to different pairs with a common gamma function, we get 
factor ( -1). 

In classification work, (3.2) is more convenient since the gamma functions 
depending on x appear evenly in both its numerator and denominator while (3.3) 
will give wider range of distributions as will be seen later. 

Convention and classification 

Anyhow, we write the distribution defined by (3.2) or (3.3) as F(a, {3; r). and 
introduce one more convetion to classify it. 

Convention 3. (i) The probability function p(x) is defined on a finite or infinite 
integer interval which has at least two integers. 
(ii) The function p(x) is zero or undefined on the neighboring outside point(s) of 
the interval. This means that F(a, {3; r) has an integer parameter or parameters 
corresponding to the end point(s) of its interval, and some gamma functions are 
definable (possibly by invoking Convention 2) inside the interval but not outside. 
Corresponding to the factor 1/x!=l/I'(x+l), the value 1 should be regarded as a 
built-in constant parameter. 
(iii) If there are two parameters of the same integer value (including built-in 1), 
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Table 2. Classification of the Generalized Hypergeometric distributions 
F(a, f3; r) defined by (3. 2) or (3. 3) on intervals not containg 0 

type I range distribution F(a, /3; r) 
and restriction relation with Table 1 

Al 1 [m, n] F(-~. -n; -m+l) 

Bl+ [m, oo) F(-m-n+o, -m-n+s; 

B3+ [m, oo) F(~-m. r;-m; -m+l) 

right m shift of Al : 
~>n-l F(-,;+m, -n+m; l+m)on[O,n-m] 

or inversion (Y=n-X) of Al: 
F(-n, -n+m; ,;-n+l) on [O, n-m] · 

-m+l) right m shift of Bl : 
F(-n+o, -n+s; l+m) on [O, oo) 

right m shift of B3: 
m+l>i;+r; F(i;, r;; l+m) on [O, oo) 

A2- [-n, -m]* F(i;,m;n+l) 
i;>n 

left n shift of A2 : 
F(,;-n, -n+m; -n+l)on[O,n-m] 

or inversion (Y=-X-m) of A2: 
F(m, -n+m; -,;+m-t-1) on [O, n-m] 

B3- (-oo, -m]* F(-t.:+m+l, m; m+l-i;) inversion (Y=-X-m) of B3: 

(-oo,-m] 

c [m, oo) 

t.:>~+m F(i;, m; ') on [O, oo) 

F(l, 1; m) inversion (Y=-X-m) of B3: 
m=3, 5, ... F(l, 1; m) on [O, oo) 

F(s, -m+l; -k+s); k=l, 2, 3, ... ; m=k+3, k+5, ... for (3.2), m= 
k+2, k+4, ... for (3.3). The values of s=s(k, m), O<s<l. are given 
as follows: 

~I 2 3 4 5 
--~·- . -

2 .56155 .43484 

3 .5 .33333 

4 .46293 .27164 

5 .43775 .23027 

6 .41928 .20052 

7 .40499 .17803 

8 .39350 .16039 

9 .38399 .14614 

10 .37594 .13437 

11 .36901 .12447 

m, n k: positive integers, 

,;, '· r;: positive real numbers, 
o, s: real numbers on (0, 1), 

* The form of (3.3) only. 

.37228 .33406 .30784 

.25 .2 .16667 

.17843 .12568 .09297 

.13328 .08257 .05400 

.10307 .05642 .03279 

.08191 .03992 .02078 

.06655 .02911 .01370 

.05507 .02179 .00935 

.04627 .01669 .00658 

.03939 .01304 .00476 
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the expression (3.2) or (3.3) might be definable beyond the end point corresponding 
to the integer value, but we chop off the part beyond it. This overrides the rule 
(ii) and agrees with Convention 1 for F(a, -n; -n) on [0, n]. 

Because of Convention 3, possible intervals for the GHg family of distributions 
are [m, n], [m, oo), [ -n, -m] and ( -oo, -m], where m and n are positive integers 
l~m<n. Intervals including [ -1, OJ are excluded. Surveying all possible values 
of parameters, we get the following conclusion. Its proof is not difficult but tedious 
and outlined in Appendix. 

Theorem 2. 

Under Convention 3, the GHg family of distributions, F(a, p; r) of (3.2) or (3.3), of 
the types in Table 2 are possible in addition to the distributions on [O, n] or [O, oo) 
of Table 1, and only the types of Tables 1 and 2 are possible. 

Table 2 shows that, except for Type C, essentially the same types as in Table 1 
are possible on positive or negative intervals under Convention 3. Type C is ex­
ceptional, it is defined only for isolated values of parameters. One might eliminate 
Type C from the GHg family because of this unnatural property. 

Binomial coefficient expressions for Types Al 1 and A2- are given as follows. 

F(-~, -n; -m+l): 

(:)(:=:) / (~+:-m) = e=:)(n~x) / (~:::m); m~x~n and m~n-1<~. 
F(~, m; n+l): 

( -~+n)( -m )/(-~-m+n) = (~+x-1)(-x-1 )/( ~-1); 
n+x -m-x n-m n+x -m-x n-m 

-n~x~ -m and n<~. 

It is rather perplexing to find the fact that the set of possible values in 
Tables 1 and 2 are not completely disjoint. A function of the form (3.2) or (3.3) 
can be a probability distribution on two intervals. One such a case is F(s, m; m 
+p), where O<s<p<l and m is a positive integer, which is of both Type B3 on 
[0, oo) and Type B3- on (-oo, -m] at the same time if the expression (3.3) is 
assumed. Another is F(l, 1; m), where mis an odd number larger than one, which 
is also of Types B3 and B3- having probabilities 

Pr[X=x]=Pr[X= -m-x]=-- --"-=(m-2) , m-2 x' /(x+m-1) 
m-1 (m)x m-2 

x=O, 1, ... 

4. Truncated, Shifted and Inverted Distributions 

Truncated distributions 

If the function p(x) of (3.2) or (3.3) is positive on an integer interval I but the 

10 



Classification of the Generalized Hypergeometric Family of Distributions 

sum of its values over I is more than one, then it can be a probability distribu­
tion on a subinterval ]cl. Two examples are shown below. Convention 3 excludes 
these cases from our family. 

F(l, -n; -n-2k), where n and k are positive integers, is a Type A2 distri­
bution on [0, n], and the p(x) of (3.2) (not (3.3)) is positive also on l=[n+2k+l, oo). 
The summation over J=[n+2k+l, 2n+2k+l] is equal to one. In fact, when a 
random variable Xis defined by F(l, -n; -n-2k) truncated on], Y=2n+2k+l-X 
has the same distribution F(l, -n; -n-2k) on [O, n]. 

F(l, n ; n + 2k) is a Type B3 distribution on [0, oo ), p(x) of (3.2) or (3.3) is 
positive on l=(-oo, -n-2k], and its summation over J=(-oo, -2n-2k+l] is one. 
In fact, when Xis defined by F(l, n; n+2k) truncated on], Y= -X-2n-2k+l has 
the same distribution F(l, n; n+2k) on [O, oo). F(l, 1; 2k+l) in Table 2 is a special 
case of this, where J =I. 

If we take any interval I on which p(x) of (3.2) or (3.3) is positive and normalize 
p(x) by its summation over I, then we get a variety of distributions. It is beyond 
the scope of this paper to discuss such a type of truncated distributions, and the 
authors do not recommend to include such distributions to the GHg family. 

Shifted distributions 

In statistical problems, GHg distributions may appear in shifted forms, which 
are not of (3.2) or (3.3). Distributions in the following examples are shifted Type 
A2 distributions and describe essentially the same problem. (cf. Sibuya (1978)). 

We sample balls, from an urn with b black and w white balls, without replace­
ment until k black balls are found. The number X of sampled white balls, has a 
Type A2 distribution, F(k, -w; k-w-b). The number Y=X+k of total sampled 
balls, has the distribution on [k, k+w], 

(4.1) Pr[ Y=y]= (y-1) b(b-1) ... (b-k+l)w(w-1) .. . (w+k-y+l) 
k-1 (b+w)(b+w-1) ... (b+w-y+l) ' 

which cannot be reduced generally to the form (3.2) or (3.3). Johnson and Kotz 
(1978, Section 2.5) call this form a negative hypergeometric distribution. 

Get a random sample of size n without replacement from a set of positive in­
tegers, {1, 2, ... ,N}, and let X(j) be its j-th smallest order statistics. Then, X(j)-j 
has a Type A2 distribution, F(j, n-N; j-N). But 

(4.2) Pr[X(i)=xJ=e=~)(~=;)/(~), j~x~N-n+j, 
cannot be reduced to the form (3.2) or (3.3). 

The "discrete beta" distribution 

(4.3) 
1 

Pr[X=x]= B(a, b)Nca+b-1) (x-1r-1)(N-x)Cb-1) 

is a distribution on [a, N-b+l] and cannot be reduced to the form (3.2) or (3.3). 
But Y=X-a has a Type A2 distribution, F(a, a+b-N-1; a-N). 

Although shifted distributions are natural in some situations, the standard from 

11 
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(2.5) makes a unified approach possible. 

Inverted or shifted distributions and Singular Bivariate GHg distributions 

An inversion Y= ±n-X and a shift Y= ±n+X can be regarded as the defini­
tion of a singular bivariate distribution of (X, Y) such that X± Y= ±n, and the 
components are GHg variables. In later discussions, Singular Bivariate GHg de­
generated on x+y=1.1, where 1.1 is a positive or negative integer, will play an im­
portant role. This family of distributions is defined by 

(4.4) 

Al 1 

A2 

Al 

4 

A2 

B3 

7 

I'(a+ /3)I'(1.1+ l)I'(a+x)r(f3+y) 
p(x, y)= I'(a+ f3+1.1)I'(a)I'(f3)I'(x + l)T'(y+ 1) ' 

Al 

A2 

5 

Figure 1. Domains of Singular Bivariate GHg distributions (4.4) or (1.5) 
of Types in Table 3 
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or by 

(
4

.
5
) ( ) /'(l-a-p-J.1)I'(l+J.1)I'(l-a)I'(l-p) 

p .x, Y - /'(1-a-p)r(l-a-x)I'(l+x)I'(l-p-y)I'(l+y) 

and its marginal distributions are GHg: 

(4.6) X: F(a, -J.1; -p-J.1+1), and Y: F(p, -J.1; -a-J.1+1). 

It will be denoted by SF(a, p; -J.1). All possible Singular Bivariate Hg's in Table 
2 are reclassified in Table 3 to show more clearly their domains of distributions. 

The expressions ( 4.4) and ( 4.5) can be different from each other by the factor 
( -1) as the difference between (3.2) and (3.3). In either expression, the marginal 
distributions (4.6) can be expressed in the form (3.2) or (3.3) formally equivalently. 

Case numbers 4-6 of Table 3 involving A2 and A2- should be remarked further 
in relation to Table 2. Let X be an A2 variable F(m, -n+m; -n-k+m+l) on 
[0, n-m]. An inversion W=n-m-X is also A2, F(k, -n+m; -n+l) on [0, n-m]. 
Another inversion Y= -m-X is an A2- variable on [ -n, -m], and obtained also 
by left shift of W; Y= W-n. Z= -k- W-n-k-Y=X-n-k+m give an A2-
on another interval [ -n-k+m, -k]. This situation is well shown by the follow­
ing 2 x 2 like table. 

X: [O,n-m] Y=-X-m: [-n, -m] -m 

W=n-m-X: [O, n-m] Z=X-n-k+m: [ -n-k+m, -k] -k 

n-m -n-k -m-k 

The pairs (X, W), (X, Y) (or ( W, Z)) and ( Y, Z) are Cases 4-6 of Table 3 respectively. 

Finally, we state a remark relating to the discussions of this section. 

Theorem 3. 

If X is a GHg random variable of Table 1, and if ±X±m has a probability function 
of the form (3.2) or (3.3), then ±X±m is one of the shifted or the inverted cases 
of Table 2. 
Proof. The variable -X +m for positive m cannot be in our family since it takes 
both positive and negative values. The shifted cases are checked within the proof 
of Theorem 2 in Appendix. The inverted cases are checked in preparing Table 3. 
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Table 3. Possible Singular Bivariate GHg distributions SF( a, {3; - 1.1) 
((4.4) or (4.5)). Distribution of (X, Y), X+Y=1.1. 

SF(a, {3; -1.1) X: F(a, -1.1; -(3-1.1+1) 

SF(-e, -1); -n) F(-e, -n; 1)-n+l) 
e. r;>n-l [O, n] Al 

SF( - k, - r;; - n) F(-k, -n; r;-n+ 1) 
n?;.k, r;>n-l [O, k] Al 

SF(-k, -l; -n) F(-k, -n; -n+l+ 1) 
n>k,l [n-l, n] Al+ 

SF(e, r;; -n) F(e, -n; -r;-n+l) 
e, r;>O [O, n] A2 

SF(--k, r;; n) F( -k, n; -r;+n+ 1) 
r;>k+n [O, k] A2 

SF(k, r;; n) F(k, n; --r;+n+l) 
n>l+k [ -n+l, -k] A2-

SF(e. -1); n) F(e, n; r;+n+ 1) 
~<r;+l [O, co) B3 

SF(e-n, k; k-n) F(e-n, k-n; -n+l) 
e<l+n-k [n, co) B3+ 

e, r;: positive numbers, 
k, l, n: positive integers, 

Y: F(/3, -1.1; -a-1.1+1) 

F(-1), -n; e-n+l) 
[O, n] Al 

F(-r;, -n; -n+k+l) 
[n-k, n] Al+ 

F(-l, -n; -n+k+l) 
[n-k, n] Al+ 

F(r;, -n; -e-n+ 1) 
[O, n] A2 

F(1J, n; k+n+l) 
[-n-k, -n] A2-

F(1J, n; -k+n+l) 
[-n+k, -l] A2-

F(-r;, n; -~+n+l) 
(-co, -n] B3-

F(k, k-n; -r;+k+l) 
(-co, -k] B3-

Al, A2, B3, ... : types of distributions in tables 1 and 2. 

5. Bivariate GHg Familyof Distributions 

Distribution on the nonnegative quadrant 

Some statistical models which will be discussed in Section 6 suggest that a 
natural extension of (2.4) is a family of distributions with probabilities 

(5.1) 
( ) I'(w-a-{3)I'(w-J.) (J.)x+y(a)x({3)y 

p x, y = I'(w-a-(3-J.)I'(w) (w)x+yX ! Y ! ' x, y=O, 1, 2, ... 

They suggest also that the condition p(O, 0) >0 is too restrictive. Even in Bivariate 
Ordinary Hg distributions, this limits unnecessarily the range of parameters. From 
the beginning, therefore, we extend the form (5.1) and introduce a convention 
similar to the one in Section 3. We define the form of probability function by 

(5.2) 
re (J) - a - {3)I'( (J) - J.)I'(x + y + J.)I'(x +a )F(x + (3) 

p(x, y) 
I'(w-a-{3-J.)I'(J.)I'(a)I'({3)I'(x +y+w)I'(x + l)I'(y+l) ' 

or by 
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(5.3) 

( ) J'(w-a-f3)1'(w-J..)J'(l-J..)J'(l-a)l'(l-(3) 
p x, y - l'(w-a-(3-J..)J'(x+y+w)J'(x+l)r(y+l)I'(l-J..-x-y)r(l-a-x)J'(l-(3-y)' 

which shall be denoted by F(a, f3; J..; w). We assume the distribution range to be 
within the nonnegative quadrant at first, and then within the other quadrants in 
the following subsection. 

Convention 4. (i) p(x, y) is positive on a connected region in {(x, y); x, y=O, 1, 2, ... }, 
and is zero or undefined on the region's outside neighboring points because of the 
corresponding parameter values. Two or more parameters of the same value are 
treated as Convention 3-(iii). 
(ii) p(x, y) is defined for at least two adjacent values of x +y, and for at least two 
adjacent values (x, y) and (x+l, y-1) on one of the x+y values. 

The statement (i) means that the distribution range is possibly limited by the 
condition x;£mx, y;£my, x+y;£m, or mo;£x+y. The statement (ii) means p(x, y) 
not to degenerate into one-dimensional distribution. 

Theorem:4. 

Under Convention 4, a Bivariate GHg distribution, F(a, f3; J..; w) defined by (5.2) or 
(5.3), can be a probability distribution on the nonnegative quadrant if and only if 
F(a, f3; J..; w) (or F(/3, a; J..; w)) belongs to one of the ten types of Table 4. The 
distribution of S=X+ Y, the conditional distributions XIS=s, YIX=x, etc., are GHg 
distributions as summarized in Table 5. 

Table 5. Distribution of sum, conditional distributions and marginal distributions 
of Bivariate Generalized Hypergeometric distributions 

(X, Y) 

S=X+Y 

XIS=s 

XIY=y 

YJX=x 
x 
y 

F(a,fi;A;w) 

F(a+fi, A; w) 

F(a, -s; -fi-s+ 1) 

F(a, A+Y; w+y) 

F(fi, A+x; w+x) 

F(a, A; w-fi) 

F(fi, A; w-a) 

(5. 2) or (5. 3) 

(Only the case where S is a type C variate is exceptional.) 

Proof. Firstly, we prove the following statements which hold under Convention 4. 
Statement 1. If Pr[X + Y ==s] >0, then the conditional probability of (X, Y) givens 
is 
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which must be a Singular Bivariate GHg of Cases 1-4 in Table 3. 
In fact, if Pr[X+ Y=s]>O, then the factor (a)x(p)y must be always positive or 

negative on an integer interval where p(x, y)>O and x+y=s. If the interval-is 
[O, s], then it is shown that (i) a and f3 are positive or (ii) a and f3 are negative 
and a, /3< -s+l. If the interval is such that O<m~x and/or x~n<s, then Con­
vention 4 requires that (3= -s+m and/or a= -n, and a+/3<-s+l must hold. In 
all of these cases 

I; (a); (/3)~ =~~+,e1_=(-lY(-rr-19), 
.r+y=S X • Y . S • S , 

and the conditional distribution is a Singular Bivariate GHg on the nonnegative 
quadrant, namely Cases 1-4 in Table 3. 
Statement 2. The distribution of S=X+ Y is F(a+/3, ,{; w) which must be one of 
Types in Table 1 or Al+, Bl+ or B3+ in Table 2. 

Because of Statement 1, 

p [X Y= ]= I'(w-a-(3)I'(w-A) (A)s(a+f3)s 
r + s l'(w-a-(3-,{)/'((J)) (w)ss ! ' 

which is F(a+f3, A; w). Since Convention 4 reduces to Convention 3 with regard 
to the distribution of S=X+ Y, and since s~O. this must be a distribution ih Table 
1 or 2 on a nonnegative interval. 

If the distribution region of F(a, f3; ,{; w) is infinite, then Sis distributed on an 
infinite interval. Then, a and f3 must be positive since otherwise a+ft< -s+l 
must hold for s-+cxi. Thus, in the infinite case, the distribution of S is either B2, 
B3, B3+ or C, and the conditional distribution of (X, Y) given S=s is Case 4 of 
Table 3. If the distribution region is finite, then S is distributed as type Al, Al+ 
or A2. The conditional distribution of (X, Y) given X+ Y=s must be one of Cases 
1-4 in Table 3. - , · 
Statement 3. If p(x, 0)>0, then the conditional distribution of Y given X=x is 
F(f3, A+x; w+x) which must be one of distribution types in Table 1. 

From the assumption of the statement, Pr[X=x]>O and the conditional distri­
bution must have a range [O, n] or [0, oo ). Since (5.1) can be written as 

(A+x)y(p)y 
p(x,y)=C(a,(3,A,w,x) ( ) 1 , 

w+x yY. 

the conditional distribution is F(A+w, f3; w+x) which 'must be one of Types in Table 1. 
We cannot extend Statement 3 to the case where Pr[X=x]>O but p(x, 0)=0 

using Table 2 instead of Table 1. Because, in constructing Table 2, the function 
form of the probabilities was fixed. Here, however, the normalization factor is 
undetermined. 

Now, we are ready to prove Theorem 4. For each possible type of distribu­
tion F(a+f3, A; w) of S, we examine the possibility of the bivariate distribution 
F(a, f3; ,{; w). Firstly, the case where S is finite is analyzed, that is the case where 
S is of Type Al, Type Al+ or Type A2. 
S: Type Al or Al+, F(-A, -n;r), r=' or 1-m(n>m) and ,{>n-1. (#1-#4 of 
Table 4) 
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The conditional distribution of (X, Y)JS=s should be Cases 1-3 of Table 2. 
There are two choices for the parameter of the conditional distribution, that is, 
a+p=..< or n. In the first case, the distribution of (X, Y) is F(-e, -r;; -n; r) re­
writing ..< as e +r;, which can be named as Multivariate Positive Hg distributions. 
In the second case, the distribution of (X, Y) is F(-k, -l; -..<; r), k+l=n. The 
parameters k and l must be integers, because otherwise k and l should be larger 

Table 4 [finite] 

Ill, /15 112, 116 

113, 114 

Table 4 [infinitel 

117, 118 119' 1110 

• 

Table 6 

115 /18 

• 

Figure 2. Domains of Bivariate GHg distributions (5.1), (5.5) or (5.6) 
of Types in Tables 4 and 6 
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than s-1, s=l, ... , n, which contradicts the condition k+l=n. The difference be­
tween the two cases is the shape of distribution range: a triangle in the first case 
and a rectangle in the second case assuming S to be Al. Multivariate Ordinary 
Hg distributions with all integer parameters are common to both the first and the 
second cases. 
S: Type A2, F(-,t, n; -(), (>n-1. (#5 and #6 of Table 4) 

The distribution of XIS=s can be either Negative Hg with a+p= -,{ or 
Ordinary Hg with a+ p=n. In the first case, (X, Y) is distributed as F(;, r;; -n; (), 
which is a Multivariate Negative Hg distribution, or a Multivariate P6lya­
Eggenberger distribution, and the distribution range is O~x+y~n. In the second 
case, (X, Y) is distributed as F(-k, -l; ,{,(),which is called a Multivariate Inverse 
Hg in Janardan and Patil (1972), and the distribution range is O~x~k and O~y~l. 

Secondly, the case where S is distributed on [O, oo) or [m, oo) can be analyzed 
as follows. 
S: Type B2, F((He, -n+a; -n+p), p>e:+£Ha. (#7 in Table 4) 

The distribution of (X, Y) is F(a, e:; -n+a; -n+p). The conditional distribu­
tion YIX=x is F(e:, -n+x+a; -n+x+p) which is of Type B2 if x<n and of Type 
B3 if ::c?;n. The marginal distributions are of Type B2: F(e:, -n+a; -n+p+o) 
for X. 
S: Type B3, F(;+r;,C x), x>;+r;+(. (#8 in Table 4) 

The distribution of (X, Y) is F(;, r;; (; x), the conditional distribution of YIX=x 
is F(;, ( +x; x+x) of Type B3, the marginal distribution of Xis F(;, (; x+r;) of Type 
B3. 
S: Type B3+, F(;-m,r;-m; -m+l), where ;+r;<m+l. (#9 in Table 4) 

At least one of ;-m and r;-m must be negative, and if both are negative, then 
YIX=x cannot be a GHg when x~oo. If 0<;-m, then O<e:=;-m<l-r;=l-a<l. 
The distribution of (X, Y) is F(p, a; -m+o; -m+l), p+a+o=e:+o<l. The con­
ditional distribution of YIX=x is F(a, -m+x+o; -m+x+l), which is Type B3 if 
x?;m, and Type B3+ (right shifted by m-x) if x<m. The marginal distributions 
are F(p, -m+o; -m+l-a) of X and F(a, -m+o; -m+l-p) of Y, and both are 
of Type B2. 
S: Type C, F(e:, -m+l; -k+e:). (#10 in Table 4) 

The distribution of (X, Y) is F(p, a; -m+l; -k+p+a), where p+a=e: is a 
value in Table 2. The conditional distribution of YIX=x?;m is F(a, x-m+l; 
x-k+p+a), which is a Type B3 distribution. The conditional distribution when 
x<m (or y<m) and the marginal distributions are not GHg distributions. Using 
the function introduced in Appendix, 

(5.4) 
00 1 (;)y 

/(.;, (; m)= Eo (l+Y)m (()y ' 

(m-x+a)v I (5.5) Pr[Y=ylX=x<m]=(l ) ( k ) f(m-x+a,m-k+p+a;m-x), 
+v m-x m- +p+a v 

where y=v+m-x. The marginal distribution of Xis 
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(a)m-x (m-1) ! (p+x-1) 

l (m-k-l+c) (m-k-2) ! k !- x 

(5.6) Pr[X=x]= Xf(m-x+a, m-k+p+a; m-x), x<nz, 

T'(-k)r(m-k+p-1) r(p+x)T(-m+l+x) x?;m, 
T'(m-k-l)r(-m+l)r(p) l'(-k+p+x)x ! ' 

The proof is now completed. 

Remarks. In Table 4, we have classified distributions into ten types, but #1 and 
#2, or #3 and #4 are not mutually exclusive, and each pair can be combined into 
one type. If we classify them by the Types of S and XIS=s (if necessary) and 
regard pairs Al and Al+, and B3 and B3 1

· essentially of the same type, we have 
six types : Al (#1-#4), A2-A2 (#5), A2-Al (#6), B2 (#7), B3 (#8, #9), C (#10). 

One might imagine that Bivariate GHg with marginai distributions of different 
types like (Al, Bl) or (A2, B2) can be defined. But the· above discussions show 
that these are impossible. Classification by marginal distribution type mixes up 
A2-A2 (#5) and A2-Al (#6). However, these two should be distinguished. 

Types #2 and #4 F(-k, -l; -,{; r) are not well studied in literature. Their 
probability functions are written as 

(k)(/) ,{(X+y)(k+l+r)(kll-X-y) 
X y (A+k+f +r)Ck-d) ' 

where r=(>O (#2) or r=l-m (#4). This expression cannot be reduced to the form 

(~)(t)(n-~-y)/(a+!+c), where n is a positive integer, unless A is a positive 

integer. An appropriate name is required. 
Bivariate Ordinary Hg (#l/'-.#2 or #3/'-.#4, the intersection of #1 and #2 or #3 

and #4) is best understood by a 2 x 3 table : 

N-x M-y L-z m 

x y z n 

N M L 

Values of any two entries determine the value of the other entries. Any two of 
x, y and z, or any two of N-x, M-y and L-z are Types #l/'-.#2 or #3/'-.#4 varia­
bles. Two entries of the different rows like (N-x, y) are not GHg variables. 
Usually some pairs are #l/'-.#2 while others are #3/'-.#4. In this case, Types #3/'-.#4 
variables are transformed to Types #l/'-.#2 by shift and inversion. If, however, 
min (m, n) >max (L, M, N), then all pairs are Types #3 /'-.#4, and p(O, 0) remains zero 
by shift or inversion, showing the necessity of our approach based on Convention 4. 

To distinguish Types #5 and #6, names negative and inverse are used by 
Janardan and Patil (1972). But they are rather confusing. 
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Distributions on the other quadrant 

The distributions of the form (5.2) or (5.3) can be those outside the nonnegative 
quadrant. Because of the "built-in parameter 1 '', the distribution range cannot 
include points with x=O and x= -1 or y=O and y= -1. Therefore, the range is 
confined in a quadrant, the axes x=O and y=O being included in the positive side. 

Theorem 5. 

A Bivariate GHg distribution, F(a, f3; A; w) defined by (5.2) or (5.3) can be a pro­
bability distribution outside the nonnegative quadrant under Convention 4 (the range 
being modified) if and only if it is one of two types of distributions on the nega­
tive quadrant of Table 6. 
Proof. On negative finite intervals, only Type A2- distributions are defined as 

Table 6. Two types of Bivariate GHg distributions (5.2) or (5.3) 
on the negative quadrant 

Two types of distributions on the 
negative quadrant 

(X, Y): F(m, k; e; n+l) 

(-m-X', -k- Y'), 
x;;,_-m, y;;,_-k, -n;;,_x+y 

S: F(m+k, e; n+l) 
-m-k-S', A2-, [ -n, -m-k] 

XJS=s: F(m, -s; -s-k+l) 

(-xm)(s-=_~)/(-~-k), A2-, [s+k, -m] 

X: F(m, e; n-k+l) 
-m-X', A2-, [-n+k, -m] 

XI Y=y: F(m, ~+Y; n+y+l) 
A2-, [-n-y, -m] 

(X, Y): F(m, k; -(+m+k+l; -e+m+k+l) 
(-m-X', -k-Y'), x;;,_-m, y;;,_-k 

S: F(m+k; -(+m+k+l; -~+m+k+l) 
-m-k-S', B3-, (-=, -m-k] 

XJS=s: F(m, -s; -s-k+l) 

(-xm)(s-=_~) / (-1:-k), A2-, [s+k, -m] 

X: F(m, -(+m+k+l; -~+m+l) 
-m-X', B3-, (-=, -m] 

XIY=y: 
F(m, -(+m+k+y+l; -;+m+k+y+l) 
B3-, (-=, -m] 

Corresponding distributions on the 
positive quadrant (cf. Table 4) 

(X' Y'): 
F(m, k; -n+m+k; -e+m+k+l) #5 
O;;,_x' +y' ;;,_n-m-k, m+k<n<= 

S': F(m+k, -n+m+k; -e+m+k+l) 
A2, [O, n-m-k] 

X'JS'=s': F(m, -s'; -s'-k+l) 

( :?1)(s,-=_ :, ) / (- ~,- k), A2, [O, s'] 

X': F(m, -n+m+k; -~+m+l) 
A2, [O, n-m-k] 

X'j Y'=y': F(m, -n-y' +k, -e-y' +k+l) 
A2, [O, n-y' -k] 

(X', Y'): F(m, k; ~; () #8 
x', y'=O, 1, 2, ... 

S': F(m+k, ~; () 
B3, [O, =) 

X'JS'=s': F(m, -s'; -s'-k+l) 

c~~xs'-=-~,) I (-~,-k). A2, [O, s'] 

X': F(m, e; (-k) 
B3, [O, =) 

X'I Y'=y': F(m, e+y'; (+y') 
B3, [O, =) 

------ ·------------'--------------~-----
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shown in Table Z. Since the distribution of S=X+ Y is a GHg, it cannot take 
both positive and negative values, and the distribution region of (X, Y) is limited 
to x+y~O or x+y<O. If S=s>O, then the conditional distribution XIS=s must 
be Type Al or Al+ and this means that both components, X and Y, are nonnega­
tive. Therefore, S must be negative and of Type either AZ- or B3-. 

As shown in Table 3, there are two cases of Singular Bivariate GHg such that 
X + Y <0 and X and Y are finite; the types of X and Y are AZ- and AZ- or AZ 
and AZ-. The first case gives Bivariate GHg distributions on the negative quad­
rant as shown in Table 6. 

Let (X, Y) be a Type AZ-A2- variable with the distribution 

If Sis a Type A2- variable with F(~, m; n+l) on [-n, -m], then we can cenceive 
formally a bivariate distribution F(-k, m+k; ~; n+l). However, in this function 
form, the original restriction s ~ -m is lost and it is replaced by x ~ k and y ~ 

-m-k. So the intended distribution has not the form of (5.5) or (5.6). Similar 
trouble occurs when S is a Type B3- variable, and the proof is completed. 

As shown in Table 6, the two types of distributions are obtained by inverting 
two types of Table 4. Each component can be inverted into different intervals. 

Janardan and Patil (197Z) discussed the case where A is an integer. (They dis­
cussed Multivariate GHg in general.) Examining Tables 4 and 6, one may find the 
case too restrictive. This restriction is weak enough for defining Singular Multi­
variate GHg, which, howevre, cannot be defined naturally from this restriction only. 

Singular Multivariate GHg distributions 

Singular Bivariate Hg distributions of (4.4) or (4.5) classified in Table 3 can be 
extended to Singular Multivariate Hg distributions. Their probabilites are ex­
pressed by 

(5.7) 

Q Q 

where a'=ao+a= I: a1 and ).I= I: Xi is a positive or a negative integer, or by 
i=O i =O 

(5.8) P(xo, X1, ••• , Xq) 
I'(l-a'-).J)I'(l+).J) n I'(l-ai) 

I'(l-a') i=ol'(l-ai-Xi)I'(l+xi)' 
Q 

and we assume the simultaneous distribution of (Xo, I: X) to be Singular Bivariate 
i=I 

GHg SF(a0 , a; -).I) and the marginal distribution (Xi, Xi) to be Bivariate GHg, 
O~i<j~q. 

The possible cases of Singular Multivariate GHg correspond to those of Singular 
Bivariate GHg and shown in Table 7. The possibility is easily checked, and the 
impossibility of the other cases are checked by inspecting the bivariate marginal 
distributions. 
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Table 7. Possible Singular Multivariate Hg distribution (5. 7) or (5.8) 

Type of 

(+XXi+·x· ·) (XI> ... , Xq, X 0): SF(ai, a 0 ; -1.J) 
q, 0 

(XI> X 2): Type in Table 4 
F(ah a2; -l.J; -a' +a1 +a2-l.J+ l) 

in Table 3 

I #HM 
I F(-ei. -e2; -n; e-.;1-;2-n+ 1) 

[
O~Xi~n. if ei>n-1, and ] 
O~Xi~ki, if ei=ki<n; 

n-C~=Xi if ei=ki is an integer and #i kj=Ci<n; 

for t-0, 1, .. ., q. 

4 SF(;i, .;0 ; -n) I #5, O~x1 +x2~n 

5 

,;i, .;o>n-1; O~xi~n, F(eh e2; -n; -,;' +e1 +e2-n+l) 

SF(-ki, .<; n) 

JJ>k+l; O~Xi~ki. 

#6 (.<=n), O~xi~ki 

F(-k1-k2; n; -JJ+k-k1-k2+n+l) 

6 SF(ki, k0 ; n) Table 6 (e=n), 
-n+k' -k1 -k2 ~x1 +x2 ~ -k1-k2 

n>k'; -n+k' -ki~Xi~ki. F(k1, k2; n; -k' +k1+k2+n+1) 

7 SF(;i, -(; n) #8 (.<=n), O~x1 <oo 

e>,+1; O~xi<oo, -oo<xo~ -n. F(.;1. ; 2; n; '-e+.;1 +~2+n+l) 

8 SF(ki, ;-n; k-n) Table 6 ('=n+l), -oo<xi~-ki 

e<l+n-k; -oo<Xi~-ki, n<xo<oo. F(kh k2; -n+k; -c;+k1+k2+l) 

ei. eo. ': positive numbers, ;' =eo+.;1 + ... +eq. 
ki, k0, n: positive integers, k' =k0+k=k0+k1 + ... +kq. 

(X1, ••• , Xq, X 0) has a Singular Multivariate Hg distribution SF(ah .. ., aq; a 0 ; -1.J), 
abbreviated as SF(ai, a 0 ; -1.J) in the second column of the table, which is a distribution 
on the discrete hyperplane x0 +x1+ ... +xq=l.J, where 1J is a positive or a negative integer. 

(X1 + ... +Xq, X 0) is a Singular Bivariate GHg distribution SF(a1 + ... +aq, a 0 ; -1.J), and 
(X1, X 2) is a Bivariate GHg distribution F(ah a2; -1.J; -a'+a1+a2-1J+l), where a'= 

ll'o+a1 + ... +aq. 

The above definition excludes the distributions like 

where x+y+z= -k, O~x+y~n. -k-n~z~ -k and ~+r;=k. The distribution of 
(X+ Y, Z) is SF(-n, '+k+l; k), Case 5 Table 3, and the marginal distribution of 
(X, Y) is F(~. r;; -n; _,),Case 5 Table 4. But the marginal distribution of (X, Z) 
is not a GHg. 
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Multivariate GHg distributions 

The discussions on Bivariate GHg distributions of this section can be extended 
to Multivariate GHg. The distributions are defined by 

(5 .10) (') = /'( w -l'ai)!'( w - J..)r(J.. + 2.'xi!_ [qJ _ l'(:x;_i_±!!j)__ 
p x /'(w- ~'rr;, -J..)/'(J..)/'(m + ~.::ci) i -1 I '(rri)/'(:r;i + 1) ' 

where .r=(:i:,, .. . , ."Cq), or 

which will be denoted by F(a; J..; w). 

Theorem 6. 

The function of (5.10) or (5.11) can be, under a modification of Convention 4, a 
probability distribution on the nonnegative orthant if the conditions of Table 4 
(with the number of parameters increased) are satisfied, and a distribution on the 
negative orthant if the conditions of Tabe 6 (with the number of parameters in­
creased) are satisfied, and only these types of distributions are possible. 
Proof. The possibility of the types is easily checked for each one. The impossi­
bility of other cases is proved by inspecting the conditional bivariate distribution 
of a pair of components when the values of other components are given, which 
must be one of the types in Table 4 or 6. 

6. Geneses of Bivariate GHg Distributions 

In this section, we list models which generate Bivariate GHg distributions of 
Types #1-#6 and #8. The authors believe several models to be new. Well known 
ones are included to show the relationship between parameter values in our nota­
tion F(a, p; J..; w) and those in alternative expressions of probability functions. 
Janardan (1973) studied many of them, and there are many publications on Uni­
variate GHg geneses (e.g. Guenther (1975) and Kemp and Kemp (1975)). 

The models cover essentially geneses of Multivariate and Univariate distribu­
tions. It should be noticed, however, that the differences between #1 and #2 or #5 
and #6 do not appear in Univariate case. Models leading to distributions of specific 
parameter values are not included. Unfortunately, no model leading to Type Bl, 
B2 or C distributions has yet been found. 

The discussions in Section 5 show a common genesis of Bivariate GHg. If a 
parameter of an Ordinary Hg or a Negative Hg distribution is a GHg variable, 
then a Bivariate GHg distribution is obtained. This Compound Hg or Negative 
Hg distribution is obvious from Tables 3 and 5, and will not be included in the 
following models. 
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In a couple of models we use the occupancy distribution of b indistinguishable 

balls allocated randomly into c cells. All possible (b+b-l) configurations are as­

sumed to be equiprobable (Bose-Einstein statistics). It should be remarked that the 
distribution is a special case of Singular c-variate Negative Hg 

n I'(ci+Xi) I T'(c+b) 
i I'(ci)Xi ! , I'(c)b ! ' 

where c1 =c2= ... =1. (S. Kunte (1977) missed to note this fact.) Thus the follow 
ing geneses based on the occupancy are related to other more popular models. 

#1 F(-~, -r;; -n; () or #3 F(-~, -r;; -n; 1-m). 

(i) P6lya's urn model (negative contagion). An urn contains b black, r red and 
w white balls. We sample at random a ball from the urn, and observing its color 
take out further c-1 balls of the same color. Repeating the procedure n times 
without replacement, we observe (at random sampling of a single ball) X black 
balls and Y red balls and therefore n--X- Y white balls with the probability 

x-1 y-1 n-x-y-1 

n! 
Pr[(X, Y)= (x, y)]= 1 1 ( . )' x.y. n-x-y. 

n (b-ic) n (r-jc) n (w-kc) 
i=O j=O k=O 

n-1 n (b+r+w-mc) 
·, 

m=O 

which is F(-bc, -re; -n; (w/c)-n+l). The model is valid if b, rand ware larger 
than (n-l)c, or are multiples of c. If w/c is an integer less than n, then this is 
of Type #3. If all b, r and w are multiples of c, then this corresponds to the case 
c=l, the Bivariate Ordinary Hg, and belongs to #l/'..#2 or #3/'..#4 according to the 
value of w. 

(ii) Positive Hg compound Ordinary Hg. Let (X, Y) be a Bivariate Ordinary Hg 
variable; 

Pr[(X, Y)=(x, y)] = (k)(' )(m-k-l) l(m). 
x y n-x-y / n 

If (k, l) is a Positive Hg variable with probabilities 

then (X, Y) is a Positive Hg variable with the probabilities 

and the conditional distribution of (k-x, l-y) given (X, Y)=(x, y) is also Positive 
Hg with the probabilities 

(a-x)(b-y)( c-a-b-n+x+y)/( c -n). 
k-x l-y m-k-l-n+x+y m-n 
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#1""#2 F(-k, -! ; -n; m) or #3""#4 F( -k, -! ; -n; 1-m). 

(i) 2 x 3 table. The Bivariate Ordinary Hg is best illustrated by a 2 x 3 table, 
which arises in many situations. 

x y n-x-y n 

b-x r-y w-n+x+y m 

b r w b+r+w=n+m 

This is a random division of b+r+w balls into two groups of sizes n and m, or a 
random division of n+m items of two kinds into three parts of size b, r and w. 
This table also arises at random matching of items of two sets of b+r+w=n+m 
items, where one is categorized in two groups and the other in three. The table 
shows F( -b, -r; -n; w-n+l). 

(ii) 2 x 3 table (contiuned). In a 2 x 3 table, let the probability of an entry (i, j) 
be rii=Piqj, where P1 +P2=q1 +qz+qa=l. Let nij be the number of observations of 
the entry (i, j) in N observations. The joint distribution of ni/s is 

where ni. =l'inij and n.j=l'inii· Then the conditional distribution of X=n11 and 
Y =n12 when all the marginal frequencies are given (n1. =n, nz. =ni; n.1 =b, n.2=r, 
n.a=w) is the same as the cases of finite sampling of (i). The following two models 
are essentially the same as this, but sampling procedures are different. 

(iii) Conditional trinomial distributions. Let (X, Vi), i=l, 2, be independent trinomial 
variables having the same probabilities: 

The conditional distribution of (X,, Y1), given X1 +X2=s and Y1 + Y2=f, is 

which is F(-s, -t; -n1; n2-s-t+l). 

(iv) Conditional three binomial distributions. Let Xi, i=l, 2, 3, be independent 
binomial variables of the same probability parameter ; 

The conditional distribution of (Xi, X2), given Xi +X2+Xa=s, is 
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(v) Exceedance. Let ( V, Ck), ••• , V~Z)) be three independent random samples of size 
nk (k=l, 2, 3) from a common continuous distribution function F(v). Mix all of them 
and rearrange them in ascending order, and let ~k+1 be the (k+l)-st smallest 
value. The numbers X and Y of V's, which are less than ~k 11 in the first and 
the second samples respectively, have the probabilities 

Pr[(X, Y)=(x,y)J=(n1)(n2)( ns )/(n1+n2+na). 
x y k-x-y . k 

#2 F( -k, -l; -,{; r;) or #4 F( -k, -l; -A; 1-m). 

(i) Urn model. An urn contains b black and w white balls. Sample a ball at 
random from the urn, observe its color and take out further c-1 balls of the same 
color. Repeat the trial k+l times, and let X and Y be the number of black balls 
in the first k and the last l trials respectively. 

x+y k+l-x-y 

k l Do (b-ic) Do (w-jc) 
Pr[(X, Y)=(x, y)]= (x) (J k+t , 

n (b+w-mc) 
m=O 

which is F( -k, -l; -b/c; (w/c)-k-l + 1). If w/c is an integer less than k+l, then 
this is of Type #4. If b/c is an integer, then this is also of Type #1. 

(ii) Two stage lottery. An urn contains g green balls and w white balls. From 
it b+r persons, one by one, sample a ball and take out further c-1 balls of the 
same color. Let S be the number of persons having taken out green balls. These 
S persons sample again a ball without replacement from another urn with b black 
and r red balls. If X persons take a black ball, and Y a red ball (X + Y = S), then 

which is F(-b, -r; -g/c; (w/c)-b-r+l). If w/c is an integer less than b+r, then 
this is of Type #4. When g is a multiple of c, this belongs to #1""'#2 or #3""'#4. 

#5 F(~. r;; -n; -0. (Sibuya, Yoshimura and Shimizu (1964) mentioned briefly the 
following models (i)-(iv), (vi) and (viii).) 

(i) P6lya's urn model (Positive contagion). From an urn with b black, r red and 
w white balls, sample a ball at random. Observing its color, replace it with c balls 
of the same color. Repeating the procedure n times, we observe X black balls and 
Y red balls (n-X-Y white balls) with the probability 

27 



MASAAKI SrnuY A and Rvo1c111 S1IIM1zu 

x-1 y-1 n-x-y-1 

x ! y !(n-x-y) ! 
n! 

n (b+ic) n (r+jc) n (w+kc) 
Pr[(X, Y)=(x, y)] 

i=O j=O k=O 

TI-1 n (b+r+w+mc) 
m~o 

which is F(b/c, r/c; -n; -(w/c)-n+l). 

(ii) Doubly inverse sampling. From an urn with b black balls and w white balls, 
sample balls at random without replacement until k+l white balls are obtained 
and let S be the number of black balls drawn out. Next, mix up the k+S drawn 
balls except for the last white ball, and repeat sampling from these without re­
placement until c ( <k) white balls are observed, and let X be the number of black 
balls taken out at the second stage. 

The distribution of S is 

and under the condition S=s, the distribution of X is 

Therefore, the joint distribution of X and Y=S-X is 

I'r[(X, Y)=(x,y)]=(-c)(-k+c-1)(-w+k )/(-w-1). 
x y b-x-y b 

which is F(c, k-c+l; -b; -w+k-b+l). 

(iii) Dirichlet compound multinomial distribution. Compound trinomial distribution 

n' ____ . ---pxqY(l-p-q)8--x--y 
x ! y !(n-x-y) ! 

by a Dirichlet distribution 

to obtain 

J'(a+c+c) 
J'(a)T'(b)I'(c) 

l '(a+x)r(b+y)/ '(c+n-x-y) 
J'(a+b+c+n-x-y) 

n! 
x ! y !(n-x-y) ! ' 

which is F(a, b; -n; -c-n+l). (Ishii and Hayakawa (1960), Mosimann (1962).) 

(iv) Conditional distribution of negative binomials. Let Xi, i=l, 2, 3, be independent 
negative binomial variables with the same probability parameter; 
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The probability distribution of (Xi,X2) under the given X1+X2+Xa=s, is 

Pr[(X1, Y2)=(x, y)IX1 +X2+Xs=s] 

I'(k1 +x) I'(k2+Y) I'(ks+s-x-y) I I'(k1 +k2+ks+s) 
T(k1)x ! I'(k2)Y ! r(ka)(s-x-y) ! /'(k1 +k2+ka)s ! 

which is F(ki, k2; -s; -ka-s+l). 

(v) Type #5 GHg compound of Ordinary Hg. Let (X, Y) be a Bivariate Ordinary 
variable; 

Pr[(X, Y)=(x, y)J = e)(~)(:=~=~) I(~). 
If (k, l) is a Type #5 Hg variable with the probabilities 

then (X, Y) is a Type #5 Hg variable with the probabilities 

and the conditional distribution of (k-x, l-y) given (X, Y)=(x, y) is also Type #5 
Hg with the probabilities 

(
-a-x)(-b-y)(-c+a+b-n+x+y)/(-c-n). 
k-x l-y m-k-l-n+x+y m-n 

See Sarndal (1964) and Hoadley (1969). 

(vi) Exceedance. Let(Vi, V2, .. . , Vi)and(W1, W2, .. . , Wn) be random samples from 
the same population with a continuous distribution function, and Vcl) ~ Vc2) ~ ... ~ 
Vck) be order statistics of V's. Let X and Y be the number of W's which are 
smaller than Vci) and between Vci) and V(j) respectively. 

Pr[(X, Y)=(x, y)] =(x+~-1 )(y+j;i-1 )(n-:~:~:-j) I (k;n), 

which is F(i,j-i; -n; -k+j-n). (Guenther, 1975). 

(vii) Discrete order statistics. From a finite population (1, 2, ... , N), take a sample 
of size n and let Xco ~Xc2) ~ ... ~Xcn) be its order statistics. 

(x-l)(y-x-1)( N-y )/(N) Pr[(XcJ)i Xck))=(x, y)] = j-l k-j-l k-j-l n , 

and 

. . (-j)(-k+j)( -n+k-l )/(-n-1) Pr[(X(j)-J,Xck)-Xc1)-k+1)=(u,v)]= u v N-n-u-v N-n , 
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which is F(j, k-j; -N+n; -N+k). 

(viii) Occupancy. Allocate b indistinguishable balls at random into c cells (Bose­
Einstein statistics), which are grouped into three families of k1, kz and ks cells 
(k1 +k2+ks=c), and let the numbers of balls in the first and the second families be 
X and Y respectively. 

which is F(k1, k2; -b; -k3-b+l). The above two models are equivalent to this. 

(ix) Conditional distribution in occupancy. There are r red balls and w white 
balls. They are allocated into c + 1 cells as if they are indistinguishable (Bose­
Einstein statistics). Let the number of red and white balls in the cells be (Xo, X., 
... , Xe) and (Yo, Yi, ... , Ye) respectively. The joint distribution of these is 

rl (xi+Yi)/ (r+w+c) ! , 
i~~o Xi r ! w ! c ! 

and the (r+~+c) configurations of possible marginal (c+l)-tuples (Xo+ Yo, X1 + 

Y1, .. . , Xe+ Ye) are equiprobable. The conditional distribution of X's, when Yi= 
1/i, i=O, 1, .. ., c, are given, is 

and when c=2, (Xi, X2) has F(y1 +1, Y2+l; -r; -w+y1 +Yz-r). The above joint 
distribution arises in an extension of the law of succession. See Sarndal (1965) and 
Janardan (1968). 

#6 F( -k, -l; ,{; _,) (Janardan and Patil (1972) discussed the following (i)-(iii).) 

(i) Inverse sampling in P6lya's urn model (negative contagion). From an urn with 
b black, r red and w white balls, we sample a ball at random without replacement 
until k white balls are taken out. Let X and Y denote the numbers of black and 
red balls taken out respectively. Then 

(k+x+y-l) ! 
Pr[(X, Y)=(x, y)] = (k-1)' ' I .x.y. (w+b+r)<k+x+y) ' 

which is F(-b, -r; k; -w-b-r+k). If further c-1 balls of the same color as that 
of the drawn ball are deleted, and b/c and r/c are integers, then (X, Y) is F( -b/c, 
-r/c; k; -(w+b+r)/c+k). Thus, only the last parameter can be real in this ex­
tension. For white balls w~c(k-l)+l is necessary and sufficient. (Steyn (1951)). 

(ii) Beta compound of binomials. Compound a simultaneous distribution of two 
independent binomial distributions with the same probability, 
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by a beta distribution 

J'(.H(J)) pi-1 ~w-1 
I'(J.)r(w) ':f. 

to get 

(m)(n) I'().+(J)). ro+x+y)I'((J)+m+n-x-y) 
x y I'(J.)I'((J)) 1'().+w+m+n) ' 

which is F(-m, -n;).; -(J)-m-n+l). 

(iii) Conditional distribution of negative trinomials. Let (X, Yi), i=l, 2, be in­
dependent negative trinomial variables of the same probability parameter, 

The probability distribution of (X1, Y1) under the condition that X1 +X2=s and 
Y1 + Y2 = t are given, is 

Pr[(Xi, Y1)=(x, y)IX1 +X2=s, Y1 + Y2=t] 

I'(k1 +x+y) I'(k2+s+t-x-y) I'(k1 +k2)s ! t ! 
I'(k1)x ! y ! F(k2)(s-x) ! (t-y) ! T'(k1 +k2+s+t) ' 

which is F(-s, -t; k1; -k2-s-t+l). 

(iv) Type #6 GHg compound Type #6 GHg. Let (X, Y) be a Type #6 F( -s, -t; ). ; 
-w-s-t+l) variable; 

Pr[(X, Y)=(x, y)J = (s) (t) (A)x+y((J))s+t-x-y 
X Y (). +(J))s+t 

If (s, t) is also a Type #6 variable with the probabilities 

(u) (V) (~)s+hJ)u+v-s-t 
S f (~ +1))u+v ' 

where ~=J.+w, then (X, Y) is again a Type #6 variable with the probabilities 

(U) (V) (A)x+y(1)+m)u+v-x-Y , 
X Y (~+1))u+v 

and the conditional distribution of (s-x, t-y) given (X, Y)=(x, y) is also of Type #6 

(
u-x) (v-y) (m)s+t-x-y(1))u+v-s-t ' 
S-X t-y (m+1))u+v-x-y 

(v) Exceedance. Let (Vi, ... , Vi), ( Wi, ... , Wm) and (Zi, ... , Zn) be random sam­
ples from the same population with a continuous distribution function, and Vet)~ 
... ~ Vck) be order statistics of V's. Let X and Y be numbers of W's and Z's 
which are smaller than V(j) respectively. 
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Pr[(W, Z)=(x, y)] = (j-l)~ ~k-i)! (~)(;) / (j+x+y-l~~~:::~+n-x-y)! ' 

with is F(-m, -n; j; -k+}-m-n). 

(vi) Occupancy. There are c cells and b balls which consist of r red balls and w 
white balls (b=r+w). All the b balls are allocated at random indistinguishably 
into the cells (Bose-Einstein statistics), and X red balls and Y white balls are put 
into specified k cells (k<c) with the probabilities, 

where s=x+y. This is F(-r, -w; -c+k-b+l), and equivalent to the exceedance 
model (v). 

#8. F(~, r;; J; ~) (The following (i)-(iii) are discussed by Janardan and Patil, 1971.) 

(i) Inverse sampling in P6lya's urn model. From an urn with b black, r red and 
w whith balls, we sample a ball at random and replace it with c balls of the same 
color. We repeat the procedure until n white balls are observed. Let X and Y be 
the number of black and red balls observed respectively, then 

X-1 y-1 n-1 

(n+x+y-1) ! Do (b+ic) )Jo (r+jc) JJoCw+kc) 
Pr[(X, Y)=(x, y)J= 1 1 ( -l) 1 n+x+y- 1 

x. y. n . n (b+r+w+mc) 
m=O 

which is F(b/c, r/c; n; (b+r+w)/c+n). 

(ii) Dirichlet compound negative trinomial. Compound a negative multinomial dis­
tribution 

I'(k+x+y) pxqY(l-p-q)k-1 
J'(k)x ! y ! 

by a Dirichlet distribution 

to obtain 

I'(a)I'(b)I'(c) pa-tqb-I(l-p-q)c-1 
T(a+b+c) 

J'(a+b+c) 
I'(a)I'(b)I'(c) 

I'(b+x)F(a+y)I'(c+k) I'(k+x+y) 
I'(a+-b+c+k+x+y) I'(k)x ! y ! ' 

which is F(a, b; k; a+b+c+k). (Mosimann 1963) 

(iii) Beta compound of two negative binomials. Compound a simultaneous distribu­
tion of two negative binomial distributions of the same probability parameter; 

I'(a+x) pa x I'(b+y) pb y 

T(a) ! q I'(b)y ! q 
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by a beta distribution 

l'(m+J.) p"'-1 i-1 

r(m)I'(J.) q 

to obtain 

J'(a+x)F(b+y) J'(m+J.) l'(J.+x+y)l'(w+a+b) 
I'(a)x ! I'(b)y ! -I'(m)I'(J.) I'(J.+m+a+b+x+y) ' 

which is F(a, b;).; J.+m+a+b). 

(iv) Type #8 GHg compound of Type #6 GHg. Let (X, Y) be a Type #6 F( -s, -t; 
b; -c+s+t-1) variable; 

Pr[(X, Y)=(x, y)] B(b+x+y, c+s+t-x-y) (s )(t). 
B(b, c) x y 

If (s, t) is a Type #8 F(t;, r;;).; t;+r;+J.+C) variable with the probabilities 

B(~+r;+C, J.+s+t) I'(~+s) I'(r;+t) 
B(C, J.) I'(t;)s ! I'(r;)t ! ' 

where J.=b+c, then (X, Y) is a Type #8 variable with the probabilities 

B(t;+r;+C, b+x+y) I'(t;+x) T(r;+y) 
B(C, b) I'(t;)x ! I'(r;)Y ! ' 

which is of Type #8 F(~. r;; b; t;+r;+b+C), and the conditional probabilities of 
(s-x, t-y) given (X, Y)=(x, y) are 

B(t;+r;+x+y+b+C, c+s+t-x-y) 
B(b+C, c) 

f'(t; +s) rcr;+t) 
J'(t;+x)(s-x)!. I'(r;+Y)(t-y)! ' 

which is of Type #8 F(t;+x, r;+Y; c; t;+r;+x+y+c+b+C), (Janardan (1973).) 

(v) Exceedance. In the exceedance model for F(t;, r;; -n; (), #5 (vi), let the sample 
size of W/s be indefinite and continue the observations until the number of W/s 
larger than v(j) becomes k. 

Let the number of W/s smaller than Vci) be X, and let the number between 
Vci) and V(j) be Y. Then 

Pr[(X, Y)=(x, y)] 
(k+x+y-1)! x k 

(k-1) ! X ! Y ! p qY(l-p-q) 1 

where P= F( Vci)) and q= F( Vci))-F( Vci» follows the Dirichlet distribution 

m! . . . . 
Ci-1) ! CJ-i-1) ! (m-J) ! pi-1q1-i-1c1-p-qr-1. 

The distribution of (X, Y) is 

m ! (m-j+k) ! (k-l+x+y) ! (m+k) ! (x+i-1) ! (y+j-i-1) ! 
(m-j) ! (m+k) ! (k-1) ! (m+k+x+y) ! (i-1) ! x ! (j-i-1) ! y ! ' 
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which is F(i,j; k; m+k+l). 

(vi) Compounding independent Poisson distributions by a multivariate gamma pro­
duct-ratio distribution. Let Va, Vp, V, and V., be independent gamma variables, all 
with scale parameter 1 and with shape parameters a, p, A and w respectively. The 
distribution of (~, r;)=(Va V,/V.,, Vp V,/V.,) can be named multivariate (bivariate) 
gamma product-ratio distribution MGPR(a, p; A; w). Its probability density is 

l'(A+w) «-1 ~-1r= -ce1~)1s s•-"-~- 1 

l'(a)l'(p)l'(A)l'(w) ~ r; Joe (l+s)H"' ds 

- I'(A+w) a-1 ~-1r')() -CeH)t r+~+"'-l 
l'(a)I'(p)F(A)r(w) ~ r; J0 e (1 +t)'+"' dt · 

If X and Y are independent Poisson variables with expectation~ and r; respectively, 
and if (~, r;) is a random vector following MGPR(a, p; A; w), then a compound 
Poisson (X, Y) is a F(a,p;A;a+p+A+w) variable. The models (ii) and (iii) can 
be regarded as other versions of this model. (Sibuya (1980)) 
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Appendix. Proof of Theorem 2 

Case [l]. Distributions on [m, n] or [m, oo), l~m<n. 
There must be a parameter with the value -m+l. We partition this into two cases; 

[l. l] F(a, f3; -m+ 1), and 
[l.2] F(a, -m+l; 7). 
In Case [l. l], (3. 2) becomes 

I'(-m+l-a)I'(-m+l-f3)l'(x+a)J'(x+f3) 
p(x)- I'(-m+ l-a-f3)I'(a)I'(f3)I'(x+ l)I'(x-m+ 1) 

J'(l-a)I'(l-f3)I'(y +a+m)I'(y + /3+ m) 
I'(l-a-f3-m)I'(a+m)I'(f3+m)I'(y+m+ l)l'(Y+ 1)' 

where y=x-m. This can be a probability distribution F(a+m, f3+m; l+m) of Y=X-m 
on [O, n-m] or [O, oo) if and only if one of the following three conditions holds because of 
Theorem 1. 

[l.11] F(-~+m, -n+m; l+m), .;>n-1. This is a Type Al distribution on [O, n-m]. 
[l.12] F(-n+o, -n+.s; l+m). This is a Type Bl distribution on [O, oo). 
[l.13] F(a+m, f3+m; l+m), a, f3>-m>a+f3-l. This is a Type B3 distribution on [O, oo). 

F(-e, -n; -m+l), which is obtained by right m shift ofF(-~+m, -n+m; l+m)ofCase 
[l.11], is also obtained by inversion, Y=n-X, of F(-n, -n+m; e-n+l), .;>n-1, a Type 
Al distribution on [O, n-m]. 

Case [l. 2] is partitioned further as follows. 
[l.21] F(-n, -m+l; -~)on [m, n], e>n-1. 
[l.22] F(-.;, -m+ 1; -n) on [m, n], e>n-1. 
[l.23] F(-n+o, -m+l; -n+.s) on [m, oo), O<o . .s<l. 
[l. 24] F(a, -m+ 1; r) on [m, oo), a, r>-m. 
Other parameter values do not define a distribution on these intervals because of the prop­
erty of factorial function discussed in Section 3. In Case [l.21], p(x) is definable if .; is 
an integer such that n~e~m+n-2. Then, however, 

(n-2)! n(n-1) 
1 P(m) (-Hm+n-2)! (~-n)! (n-m)! m(.;-m+l) > · 

In Case [l.22], p(x) is definable if e=n and m~2. Then, however, 

n! 
p(m)- m(m-2)! (m+l-n)! >l. 

In Case [l.23], p(x) is definable only when o=.s, and it reduces to a special case of [l.24]. 
In Case [l.24], p(x) is definable if a-r is an integer such that m-2~a-r~O and a is not 
a nonnegative integer. Then 

p(m)=(-l)a+r+m+1 1'(1 +m-1) I'(m+a) 
I'(r-a+m-l)I'(a) m(a-r)! I'(m+r) 

(a+m-k-2)Cm-k-I) (a+m-l)Ck) =( -1)"4 r+m+l _______ -----
m(m-k-2)! k! 

where k=a-r. (The first factor is (-1)" r47n if starting from (3.3).) This cannot be be­
tween 0 and 1 if a~l and k~l. 

When a=r. 
= = 1 
~ p(m+y)=(-l)m+1(m-l)(a+m-2)Cm-l) ~ ---

Y=o Y=O (l+Y)m 

(a+m-2)Cm-1) 
=(-l)'n+l ' 

(m-1)! 
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which is equal to one if a=r=-m+l or a=r=l and mis odd. The case a=r=-m+l is 
covered by Case [l. l]. F(l, -m+ 1; 1) is, except for the factor ( -l)m t-1, a right shift of 
a Tvoe B3 distribution F(l, 1; l+m) if m~2. However, this is essentially the same as 
F(l-m, 1-m; 1-m), a special case of [l.13]. The factor (-l)m+i does not appear in the 
form of the expression (3. 3). 

Now, for a>l. k=l, 2, 3, ... and m=k+3, k+5, ... (m=k+2, k+4, ... for (3.3)) 

"" (a+m-k-2ym-k-l) (a+k-l)Ck) 
-u"f/Cm+y) (m-k-2)! m· k! f(a, a-k; m)' 

where 

'" • 
00 1 ce)v 

/(r;, (' m)= -u"fo (l+Y)m (()y ' 

is equal to one for a special value of a determined by a pair (k, m). The values of such 
a, denoted by e(k, m), are numerically computed and listed in Table 2. 

The function f(a, a-k: m) is expressed as 

k kCn) 

f(a, a-k; m)=(a-k-1) L: ( l)I ( l)Cn+l)( l)<n+l) • 
n=O m-n- . m- a-

and 

f; ( ) 1 i: (a-m)m-n-1 Y=/ m+y - (m-k-2)! n=O (m-k-l)(n-k)! • 

It is shown that the value of a for which this summation is equal to one is uniquely 
determined in the interval (0, 1). It is conjectured that a does not satisfy the condition if 
a is a negative noninteger, but this is not proved. 

Case [2]. Distribution on [ -n, -m] or (-oo, -m], l~m<n. 
There must be a parameter with the value m. We partition this into two cases; 

[2.1] F(a, m; r). and 
[2. 2] F(a, (3; m). 
In Case [2. l], 

p(x)- I'(r-a)I'(r-m) I'(x+a)I'(x+m) 
I'(r-a-m)I'(a)I'(m) I'(x+l)I'(x+r) 

I'(r-a)I'(r-m) (-l)m+i I'(m-a+l) I'(w+m)I'(w+m-r+ 1) 
I'(r-a-m)I'(a)l'(m) I'(m-r+l) I'(w+l)I'(w+m-a+l) 

I'(r-a)I'(l-a) I'(w+m)I'(w+m-r+l) 
I'(r-a-m)I'(m)I'(m-r+ 1) I'(w+l)I'(w+m-a+l) 

where x=-m-w. Except for the factor (-1), this can be a distribution F(m, m-r+l; 
m-a-1- 1) of Type A2 or B3: 
[2.11] F(m, -n+m; -~+m+l), e>n>m (a=,;, r=n+l), Type A2 on [O, n-m]. 
[2.12] F(m, e; (), (>e+m (a=l+m-(, r=l+m-,;), Type B3 on [O, oo). 
The factor ( -1) does not appear if we deal with the form of the expression (3. 3). The 
inversion of [2 .11], F(i;, m; n+ 1) on [ -n, -m] is also obtained by left shift: 

Consider F(a, (3; n+ 1), which is another expression of Case [2. 2], but we are consider­
ing here the interval [ -n, -m]. 

I'(n+l-a)r(n+l-(3) I'(x+·a)I'(x+(3) 
p(x)- I'(n+l-a-(3)I'(a-n)I'((3) I'(x+l)I'(x+n+ 1) 

I'(l-a)I'(l-(3) I'(y+a-n)I'(y+f3-n) 
I'(l-a-(3-n)I'(a-n)I'((3-n) I'(y+ l)I'(y+ 1-n) 

where x=-n+y. Except for the factor (-1), this can be a distribution F(a-n, (3-n; 1-n) 
of Type A2: 
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F(.;-n, -n+m; 1-n), .;>n. n>m on [O, n-m]. 
The factor ( -1) does not appear if we deal with the expression (3. 3). 
In Case [2. 2], 

' ( ) I'(m-a)I'(m-(3) I'(a-m)I'((3-m) p -m ---------
I'(m-a-(3)I'(a)I'((3) I'(l-m)I'(O) 

This can be definable only if both a and (3 are integers. To be a distribution on ( -oo, -m], 
the condition m>a and m>(3 must be satisfied. From this, m-a-(3~1. a~l and (3~1 must 
be satisfied so that p(-m) be definable. Further, O<P(-m)<l is satisfied just by F(l, 1: m) 
with m=3, 5, 7, . . . It is interesting that this is an inversion of F(l, 1; m) itself, a Type 
B3 distribution on [O, oo), by Y= -X-m (see Section 4). 

Case [3]. There remains a possibility to get a distribution on ( - oo, -1] by the following 
sets of parameters. 
[3.1] F(a, (3; r). a, (3, r<l, 
[3.2] F(n+o, n+s; r). r<l. and 
[3.3] F(n+o, (3; n+s), (3<1. 
Checking P( -1), we see that the distribution is definable only for the parameter values 
which are covered by Cases [2 .1] and [2. 2]. 
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