EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title An interactive debugging system composed of a minicomputer and a microprocessor
Sub Title
Author Okada, Kenichi(Matsuo, Taiki)
W, =8l (Kitagawa, Misao)
ie)ll, &3
Publisher BISRBARFETIEE
Publication year |1980
Jtitle Keio engineering reports Vol.33, No.10 (1980. 12) ,p.131- 150
JaLC DOI
Abstract This paper describes a debugging system which has been developed on such a combined system
of a minicomputer and a microprocessor that is microprogrammable for the user, and aims at an
effective debugging of the errors that will be detected during the execution of the program written in
a low-level language. The multiprocessor organization, adoption of firmware monitor and special
hardwares yield such advantageous features as bilateral tracing, procedure extraction, eight kinds
of event monitors, etc., which come to be effective for debugging. Debugging is performed in art
interactive mode so that the program can be tested and modified easily by various kinds of editing
and debugging commands. This system has four modes, that is, assemble, edit, debug, and test,
which allow it to perform the debug processing consistently.
Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=K050001004-00330010-

0131

BEREZBAZFZMERI AT N U(KOARA)ICEBHENTWA IV TUY NEEER, ThThOEEE, FLFLEHRLRTECREL., TOEINGEFEEECE ST
RFEEITVET, BIALCHL>TRH, EEEEEZETLTTRAEE L,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

http://www.tcpdf.org

KEIO ENGINEERING REPORTS
VOL. 33, NO. 10, pp. 131-150, 1980

AN INTERACTIVE DEBUGGING SYSTEM
COMPOSED OF A MINICOMPUTER
AND A MICROPROCESSOR

KeN’icH1 OkapaA, Talkl MAaTsuo and Misao KiTacawa
. 1

Dept. of Instrumentation Engineering, Keio Universify,
Yokohama 223, Japan

(Received July 15, 1980)

ABSTRACT

This paper describes a debugging system which has been developed on such a combined
system of a minicomputer and a microprocessor that is microprogrammable for the user,
and aims at an effective debugging of the errors that will be detected during the execution
of the program written in a low-level language. The multiprocessor organization, -adoption
of firmware monitor and special hardwares yield such advantageous features as bilateral
tracing, procedure extraction, eight kinds of event monitors, etc., which come to be effective
for debugging. Debugging is performed in an interactive mode so that the program can
be tested and modified easily by various kinds of editing and debugging commands. This
system has four modes, that is, assemble, edlt debug, and test, which allow it to perform
the debug processing consistently. :

i

1. Introduction

In contrast to the drastic reduction of the recent hardware prices, software
cost in the computer system tends to rather increase its rate, since the software
productivity will not largely be improved: [1] One of the factors that suppress the
improvement of software productivity lies in the difficulty of program debugging;
[9] especially, debugging the errors detected in the ‘execution. of programs is an
urgent problem, and thus many researches for the debuggers have been studred
up to the present. [2] [3] [4] [5] [6] [8].

It can be considered that the requlrefnents for such a. debugger include (1):an
interactive processing, (2) time-sharing processing, (3) high-performance efficiency,
(4) ‘acquisition of high-level information, (5) feasible usage, and so :forth. 'At the
time of developing the currently proposed debugging system that can satlsfy the
above requirements, the following principles are established :

131

KEeN’IcHI OkaDpA, Taiki MaTsuo and Misao Kitacawa

(1) Its object is laid in the assembly language, and is to debug the errors
detected in the execution of user program.

(2) It is realized on the multiprocessors to distribute their functions and also
to suppress the occurrence of secondary errors which might be made
through debugging.

(3) It should employ a firmware monitor.

(4) The debugging is proceeded in an interactive mode, and thus the time-
sharing system is not taken into account because the object is limited to
a minicomputer only.

Following the above statement, a debugging system which is realized on the
combined system composed of a HITAC-10 minicomputer and a mCOM-16 micro-
processor is described, which is shown in Figure 1, where the console for debugging
use and various I/O units are also illustrated. [7]

Floppy / Disk
(5 TTY PTR
I 10 8
O Bus HITAC-10

mCOM-16 Ring Stack I/O Buffer

U-Bus
Console
Control Memory Main Memory ll\\’I/Iapping
emory

Figure 1. Hardware configuration.

2. Debugger

The debugger’s software is composed of the processing programs of both the
minicomputer side (nearly 4500 steps of the HITAC-10 assembly language) and the
microprocessor side (about 2500 steps of the mCOM-16 microprogram), and collects
and displays the debugging information obtained in the execution of the program
in accordance with the commands delivered from the user. The user program is
stored in the main memory of the mCOM-16 and carried out through the firmware
monitor (three kinds of firmware monitors are registered in the disk and trans-
ferred to the mCOM-16 control memory). Since the mCOM-16 is controlled and
managed by the HITAC-10, the user needs not be conscious of the existence of
the mCOM-16. On the other hand, the processing program in the HITAC-10 is

132

An Interactive Debugging System Composed of a Minicomputer

divided into three; namely, (1) the command processing part which processes and
analyzes the user’s commands, (2) the debugging information part which arranges
and displays the information obtained from the firmware monitor, and (3) the I/O
service part which is prepared for the mCOM-16 providing no I/O units.

2.1 Firmware Monitor

For the purpose of collecting effective and high-level information without in-
troducing any disturbances at the debug processing, the following are set as the
monitor :

(1) Execution of instructions by the specified number of steps.

(2) Execution of the specified instructions by the specified number of times.

(3) Execution of the instruction at the specified location by the specified number

of times.

(4) Execution of instructions at the specified area of the memory.

(5) Read out from the specified location or area.

(6) Write into the specified location or area.

(7) Comparison of the contents of the memory with the constants.

(8) Comparison of the contents between two different memory locations.

The multiple monitors can be designated simultaneously for those events, and
even when only one of them is specified during the execution of user program,
the execution is halted to display it to the user. Thus the user can recognize the
executing state at the time when the individual conditions have been satisfied.

Furthermore, the following are prepared as the back-up functions in order to
proceed the debug processing smoothly :

(1) Restoring function of the initial state:

Since the user program stored in the disk is transferred to the main
memory of the mCOM-16, and at the same time the initialization of the
firmware monitor is carried out, the reexecution of the user program can
be made from the initial state arbitrarily.

(2) Read and write functions for the registers and memory:

The contents of all the registers and memory of the emulated machine
can be read or written.

(3) Procedure extraction function:

A series of processes which affect a particular location are taken out
as a unit of procedure. Namely, this is such a function that since a
sequence of instructions composed of a program has a pattern that it may
start with a transfer instruction and then end at another transfer instruction
after processed by some arithmetic instruction(s), such a sequence is picked
up from the program to display as a unit of procedure. It will be a power-
ful tool for the user in a debugging operation to recognize a series of
instructions that affect the location, the value of which is found to be
inadequate.

(4) Backtrack function:

Backtracking, which proceeds the execution of user program in the
reverse direction, can be realized by stacking and monitoring the data
information, which comprises the contents of memory and registers that

133

KeN’icHI OkADA, TAIKI MaTsuo and Misao Kiracawa

will be destroyed during the forward execution of the program and the
address information concerning the program flow at the Jump, Call, Return
instructions and the like in the ring stack. The number of steps that
can be backtracked amounts to approximately 1000 steps at present, which
will be determined by the ring stack capacity.

(5) Trace function:

This function provides a means of displaying the contents of the re-
spective registers and effective addresses everytime when the specified
operations, specified operands, or the instructions in the specified area are
carried out, and consequently can catch the consecutive state transitions
of user program. During the trace, both collection of the trace informa-
tion due to the firmware monitor on the mCOM-16 and its display to
the user through the HITAC-10 are performed in parallel.

(6) I/O change function:

This permits the change of the I/O units used in the user’s program
without altering its construction. Presently the TTY and PTR are provided.

(7) Disk dump function :

This allows the user program to be saved in the disk at any time
and to return to that point, and comes to be effective to realize a check
point and restart function.

These functions as well as the designation of events to be monitored are
carried out using the commands, and the HITAC-10 generates the Reference Table
which will be mentioned later in accordance with the given commands. The firm-
ware monitor refers to the Reference Table and proceeds the execution of user
program, collecting the useful information only. Events are checked at the follow-
ing three processing parts:

(1) Fetch part, where the execution address, the number of steps, and the

kind of instructions are checked.

(2) Address computation part, where the memory access is checked.

(3) Execution part, where the executed results are checked.

The result of individual checking, if an event specified by the user comes into
existence, will be informed to the HITAC-10, which then displays the generated
event, the contents of individual registers, and the contents of consecutively seven
locations of the program placing the approved location in the center of them.

The following three kinds of runs are registered in the firmware monitor:
(1) Emulation run, which proceeds the execution of user program while monitoring
the event specified by the user’s commands; (2) preparation run, where the stacking
operation for backtrack use is added to the emulation run; and (3) back run, which
executes the program in the reverse direction while monitoring the event. Those
are stored in the disk and transferred to the control memory of the mCOM-16
through user commands, and also the mapping memory is rewritten. Figures 2
and 3 depict these three kinds of monitor flows.

2.2 Commands and Reference Table

For the purpose of easy input and of getting abundant, useful information,
the commands listed in Table 1 are prepared. As the operand of command, one

134

An Interactive Debugging System Composed of a Minicomputer

can freely use the symbolic names in the user program, the direct address desig-
nation by decimal or hexadecimal representation, and the mnemonic names of
registers. Multiple commands input from the console for debugging use are re-
arranged and compiled to generate the Reference Table.

ER, PR
Check PC
Check Step

Yes Address
Error?
No

Fetch

Address
Calculation

Push to Stack
(PR}

Check
Reference

Table

Not satisfied

Satisfied

Debug)
Information

Figure 2. Flow of the firmware monitor (ER, PR).

135

KEeN’icH1 OkADA, TAIKlI MaTsuo and Misao Kitacama

Check Step

Pop from Stack

Address
Information ?

Yes

Check PC
PC=PC-1

l

Fetch

No

Check
Reference
Table

Not satisfied

Satisfied

Debug
Information

Figure 3. Flow of the firmware monitor (BR).

136

An Interactive Debugging System Composed of a Minicomputer

Table 1. Command of the debugger.

Format Function
I Initialize
DD v Dump to disk
DM v Dump to memory
SR nv — Set register
SM av — Set memory
GR nv — Get register
GM av — Get memory
BP av — Break point
PC r — Program counter
ST v Step
OC cv— Operation code
OR av/r— Operand refer
OM av — Operand modify
CC aov— Compare with constant
CV aoa — Compare with variable
E a Extract
10 i I/O change
CIO Cancel I/O change
RA a/r — Reverse assemble
T alJr/c— Trace
UT a/r/c— Untrace
ER Emulation run
PR Preparation run
BR Back run
F Finish
(ESC) Go to command waiting
(Control-P) Cancel current command
r: range
address—address
a: address

decimal number, hexadecimal number, or label
n: register name

PC, AC, EC, CAR, or IR
v: value

decimal number, or hexadecimal number
0: operator

EQ, GT, GE, LT, LE, or NE
c: operation code
i: I/O device name

PTR or TTY
—: repeatable

137

KeN’icHI OkaADpA, Taiki MAaTsuo and Misao KitaGawa

Step Total Step
Execution Area Top Address | Last Address
Trace Area Top Address | Last Address
Break Point Address Iteration
Number
Operand Address Flag gﬁﬁgg?
Memory Access Area| Top Address Last Address
Comparison Address’ Operator ég:;;s:{
Operation Flag giﬁ%g?
Extraction Working Address
I/0 Change 1/O Device

Figure 4. Format of the Reference Table.

The Reference Table determines the operation of the firmware monitor and

4:
@)
@)
(3)
4

®)
©6)
U]
@

©)
10)

has 10 kinds of formats which keep the following information, as given in Figure

Number of steps to be executed.

Location or area where the execution is prohibited.

Location or area to be traced. :

Number of times of executing a location till the time of activating the
breakpoint and/or break mechanism.

Specified number of accesses to a location and the necessity of tracing.
Memory area where the access is to be monitored.

‘Compare’ operator and two locations to be compared or a location and a
constant.)

Specified number of times of executing macroinstructions and the necessity
of tracing.

A location to be noticed by the procedure extraction function.

Names of two I/O devices to be changed each other.

In the above stated Reference, (1), (9), and (10) include only one item each;
(8) will have the same number of items as that of the macroinstructions; and (2)

138

An Interactive Debugging System Composed of a Minicomputer

through (7) will keep the necessary number of entries for themselves. This Re-
ference Table will be transferred to the special area of the main memory of the
mCOM-16 through the execution (run) commands of the user program.

2.3 Processing of the Minicomputer Side

While the firmware monitor on the mCOM-16 executes the user’s program,
the processing that the minicomputer performs in the debugger includes the follow-
ing:

(1) Input of the user commands from the console.

(2) Analysis of the commands, generation and updating of the Reference Table.

(3) Read out from and write into the registers and the memory of the mCOM-

16.

(4) Transfer of the microprogram to the control memory of the mCOM-16

and its initiation.

(5) I/O services for the mCOM-16.

(6) Rearrangement and display of the debugging information resulted from the

firmware monitoring.

(7) Mode change of the system.

Figures 5 and 6 show the flow of processing by the minicomputer of the

Debug Mode

Command
Reference Memory/ Firmware
Table Register Monitor | . Edit Mode
Update Access Selection

Display
Request
Yes

Memory/
Register

Micro
Program

Reference
Table

Figure 5. Flow of the debugger in debug mode.

139

KEN’icHI OkaDA, Taiki MATsuo and Misao Kiracawa

Test Mode

Start
mCOM-16

é
I I
Debug
Information

I;0 Request

1,0 Service

Debug
Information

Start
mCOM-16

Trace

Information Debug Mode

Figure 6. Flow of the debugger in test mode.

debugger.

This system has the four operation modes as follows:

(1) Assemble mode that converts the user’s program to the object one.

(2) Edit mode that performs the program compilation and the file processing.

(3) Debug mode that arranges the condition for the debug processing and

displays the debug information.

(4) Test mode that the firmware monitor performs the execution of user

program.

Table 2 lists up the contents of the respective memory area in those four
modes. On the HITAC-10, the assembler for debugging use runs in assemble
mode, the text editor runs in edit mode, and the debugger runs in either debug
or test mode; the distinction between them depends upon whether or not the
firmware monitor in the control memory of the mCOM-16 is operating.

The role of the assembler for debugging use is to convert the user program
to the object one and it is provided as the debugging version after having modified
the macro-assembler delivered from the manufacturer. The principal modification
is in that the address designation by symbols while debugging the program can
be performed by way of saving the symbol table in a safety area at the end of
assembling.

140

An Interactive Debugging System Composed of a Minicomputer

Table 2. Contents of the specified memories for four system modes.

Edit Mode Assemble Mode Debug Mode Test Mode

I&E{:ﬁé& ory Editor Assembler Debugger Debugger
Common Area — — %;{;xe-ence %{)elzeme
mCOM-16 . .
Main Memory — — Object Object
mCOM-16 _ _ . Firmware
Control Memory Monitor

AssemBle " A b

Mode acro Assembler

Object
Edit Mode Editor, File Controller

The text editor has the function of various kinds of compilation and file proces-
sing, and is capable of linking the assembler with the debugger.

Figure 7 gives the operation and transition of these four modes, where the
transition from assemble mode to edit is initiated automatically after terminating
the assembling; the transition from test mode to debug is due to the generation
of a specified event, and the other transitions are generated by the user’s commands.
In debug and test modes the following data transfer is carried out between the

Object

Debug Mode

Debug Information

Test Mode

Command Processing

Firmware Monitor
Reference Table
Mapping Data

Monitoring

Figure 7. Mode transition.

HITAC-10 and the mCOM-16.
(1) From HITAC-10 to mCOM-16,

(a) object codes of the user’s program (in debug mode),

141

KEN’IcHI OkaADpA, Taiki MaTsuo and Misao Kitacawa

(b) firmware monitor (in debug mode),
(c) data to the mapping memory (in debug mode),
(d) Reference Table (in debug mode), and
(e) I/O service information (in test mode).
(2) From mCOM-16 to HITAC-10,
(a) debug information (in test mode), and
(b) I/O service request (in test mode).
These data transfer will be performed through the two buffer registers con-
necting the I/O Bus of the HITAC-10 with the U-Bus of the mCOM-16.

3. Examples of Debug Processing

This chapter describes some examples concerning the actual debug processing
by making use of the results obtained from the execution of a sample program
(see Appendix) through the debugger. The program is to convert a 4-digit hexa-
decimal (4 bytes) number of the character format to the decimal, using the TTY
as an I/O unit. Each input hexadecimal digit of 1 byte is converted to a 4-bit
hexadecimal digit after echobacking and stored in a word of 16 bits packed to the
lefthand side, where the most significant bit is considered to be the sign. The 4-
bit hexadecimal number thus obtained is output after converting it to the character
type decimal number. The following lists are the output results obtained from the
execution of the sample program with several kinds of commands picked out of
those in this debugger. ($$ indicates the mode change, ** gives the system mes-
sage in debug mode, mark ¥ shows the address where the program is stopped after
the HLT instruction has been carried out or some condition has been satisfied)

(1) From edit to debug mode by Z command. First, initialization is carried

out. (See List 1.)

List 1.

$$ TTY - EDITOR 4%

2

$% HITAC-12 DEBUGGER $%

#1 -

(2) The output results obtained from the normal execution without any input
of the commands for event monitor use. (See List 2.)

The Program Counter is set to the starting location and the user
program is executed by the ER command. Since the input routines from
the TTY (X’2005’ to X’200A’) is in the user program, the operation will
be at the state of queue. When 0800 is input at this point, =__02048 (_
indicates a space) is output by the user program, and the debugger informs
the user that the HLT instruction has been carried out. The indicated
information includes the following: the location and the instruction in it
at the time its execution ended, the contents of Accumulator (AC), Extended
Accumulator (EC), Carry Register (CAR), Effective Address (EA) and its
contents ((EA)) as well as the location where the instruction just finished

142

An Interactive Debugging System Composed of a Minicomputer

List 2.
#5R PC X"2e08"

2838 5266 KCT
2031 35239
2832 422E
w2033 6r22
/?‘4 f68

E 'APPOCINTED VURLUE NOW.w#x*

#BP BGN+1

LOCATION. ok

=> FFFA

472 #81C4

342 #0176

INIT *+855 #2837
*+@88 #2859
*+BB7 #2859
*+PB6 #2859

ADR2 %+898 #2066

#CO M7+1 EG @

#ER

FFFB

sk THE SPECIFIED LOCATION HAS THE APPOINTED VALUE NOW. %k

LoC ER gt EC CAR ER (ERY .

281D 5259 FFFB 2@@2 ¢ 2959 FFFF =) 002¢e
£804 SLL 024 #0084
3238 0 HEXA *«+@64 #285B
3Asc ST PACK *+864 #2835C
5259 KCT *+@68 #2859
4283 B RERD *-825 #2885
6864 KPR
4A31 BAL NEGT *»+B249 #2831
AC S#FFFB

LOCATION #288C IS # FFFB

143

®)

KeN’icHl OkADA, Talkt MaTsuo and Misao Kitacawa

List 4.
X1op21t

#7 NEGT, NEGT+6

#ER
Loc IR ac EC CAR EA (EAY
2252 2852 00e4 2eee @ 2838 FFFF

"-BR2 #2052

>
=) 9ee4

PACK #+@89 #283C

LoC IR

4] Cai CERS
2834 S25C @04 2vee @ ¢

L o=) 288Ss

PACK »+@@8 #2830

LoC IR A EC CAR ER (EAD

20355 enen 2820 2eee @ 2060 2220

2055 @n6n L K2D %4021 $206A
Loc IR AC EC AR
3856 3ASE 202D BEOR @ 28 => 282D

2056 3A5E ST BUFF #+g08 #205E
Loc IR AC EC CAR EA (EAD
2857 4651 892D 2288 @ 2021 @A50

2057 4651 B I NEGT *-g06 #2051
sk T7UE JUST DONE D LOCATION. sk

L6C IR AC EC CAR ER (EAD
2821 °ASA 983D ©OPe B 2054 283D

201E 4285 B READ *-025 #2885

201F 6864 KPa

20822 4851 BAL NEGT #+@4S #2031
* 20821 @R5A L EQ *+@57 #2850

2022 4R48 BAL WRTE *+Q38. #2848

2823 4R3D BAL CUHD %+826 #2830

2024 2718 N I *1+236 #2110

its execution and the inversely assembled results of seven locations (2030—
2036). At the end of the HLT instruction, the ‘CONTINUE’ message is
issued and will start the execution of program from the next location when
‘C’ is input from the TTY. In case where the characters except ‘C’ are
input, the debugger will be at the state of acceptmg the commands of
debug mode.
List 3 is an example to confirm that the 4-byte mput data are packed and
stored in the PACK location.

Since location M7+1 is a counter of the input characters, the command
to halt is input when the contents of location M7+1 has come to be zero

144

@)

4@

6)

An Interactive Debugging System Composed of a Minicomputer

List 5.

» XE202D"

#ER

Wi 17UE

e P
[

(input of 4 characters finished). The message that the conditions have
already been satisfied is issued (which will be checked before executing
the CC and CV commands), so that the program is executed to the location
where the initialization of it completed. Here again the command to halt
is input when the contents of location M7+1 come to be zero and then
the program is executed. As the the result, such a message is output that
the conditions are satisfied after the input of hexadecimal date ‘FFFB’ of
4-byte form. It can be confirmed that the input data in the character
format are stored in the form of hexadecimal numbers after reading the
contents of the AC and PACK locations.

List 4 gives an example to confirm the state transition that the minus
datum FFFB stored in the PACK location is converted to a form of 2’s
complement. '

While the program is executed to location X’2021’, the command to
trace locations NEGT to NEGT +6 (conversion subroutine to the 2's com-
plement) is input. It can be confirmed below that the contents ‘FFFB’
of the PACK location comes to be 0005 and the minus code X’2D’ is em-
bedded in the BUFF location.

List 5 is an example to confirm that the converted data to the decimal
numbers are stored in locations BUFF to BUFF +5 in the character format.

Such a command is input that executes the program till the time when
embedding the character type decimal data to the BUFF is completed. It
can be confirmed that the contents of locations BUFF to BUFF+5 are
read and ¢ —00005° is embedded.

Examples of the re-initialization setting, modify, step, and extract.

By making use of the I command, it is possible to execute the program

again from its initial state at any arbitrary point of it. The program can

145

KEN’icH1 OkADA, TAIKI MaTsuo and Misao KiTAaGAwaA

be executed by the input of the command to halt and by proceeding the
stacking for the back trace use after the WORK location has been modified.
At the state of input queue (due to the user program), when ‘8’ is input,
the message is output, whicn indicates that the read-in data X’38’ has been
stored in the WORK location. (See List 6.)

The following shows the results after executing 4 steps of the program

List 6.1.

209
WORK #+889 #
X4@ BES 1V I

B %1004 #2081
List 6.2.
45T 4

wole [PUE DONE THE NUMBER

ROk

Lgc IR aC EC CAR EA (ERD
2815 2An67 2038 BeB8 1 2067 @038

2012 @R&7 L WORK
2013 1268 A
20814 4216 B
% 2015 ©@A67 L WORK
2016 88ec
2017 seec
2018 3A58 HEXA
List 6.3.
$E WORK
#BR

Loc IR ac EC CAR EA (ERD
2089 7274 285E 22B8 2

28@9 vav4 RTI C

220C 8889 SLL

2eeb 8ees SRL

2008 3R67 ST WORK s

146

An Interactive Debugging System Composed of a Minicomputer

while stacking.

The following gives the results obtained after extracting a series of
instructions that affect the WORK location while restoring the program
inversely from the X’2015’ location.

The extract instruction halts at the time when restoring the transfer
instruction that affects the specified location. Accordingly, this example
shows that the contents of the AC, EC, and CAR were X’205E’, X'00B8’,
and 0, respectively, before executing the RTI C instruction.

To edit mode by the F command that follows,

List 6.4.
#F
$$ TTY - EDITOR $%

4. Conclusion

Since the program used in the previous examples of debug processing is so
much simple and required some hand manipulation of the user that the reduction
of execution efficiency by the firmware monitor has not been found at all. There-
fore, when a program that has no I/O instructions to compute the factorial of 1000
is carried out under the following three conditions, the execution time is as follows:

(1) Execution by the HITAC-10—42.0 msec.

(2) Execution by the emulator—420.1 msec.

(3) Execution by the firmware monitor—2032.0 msec.

These figures indicate that the result by the firmware monitor introduced
approximately 50 times of speed reduction composed with that by the hardware,
but the principal cause of it is due to the low performance of the microprocessor
mCOM-16 and also the lack of the hardware such as multiplication, division, shifter,
or the like. The evaluation of the overhead by means of supplementing the de-
bugging function should be composed with the usual emulator, where the speed
reduction amounts to about 5 times. In fact when this system was operated, the
processing time for debugging information at the user side has come to be extremely
large, and thus the decrease in execution speed of the program in the minicom-
puter does not give much trouble to the user. The most essential factor is that
the profitable debugging information is obtained and thus the modification and
testing of the program can easily be carried out. This system provides a simple
mode change, many edit functions as well as monitor ones, which have all used
to accomplish the purpose of debugging from the standpoint of improving the
overall performance of the system.

REFERENCES

[1] BoeuMm, B.W., (1976): Software engineering, IEEE Trans. on Computers, Vol. C-25,
No. 12, pp. 1226-1240.

147

(2]
[3]

(4]
[5]

[6]

[7]

(8]
9]

KeN’icH1 Okapa, Taiki MATsuo and Misao Kirtacawa

FrLanacam, H., (1973): Program debugging system, IBM Technical Disclosure Bulletin,
Vol. 16, No. 7, pp. 2322-2329.

GOLDBERG, J., COOPERBAND, A., and GALLENSON, L., (1978): PRIM System—A Frame-
work for emulation-based debugging tools, National Computer Conference, pp. 373-377.
GrisHMAN, R., (1970): The debugging system AIDS, SJCC, pp. 59-64.

OKADA, K, and Krracawa, M., (1978): BRAKEMAN—A debugging hardware system,
KEIO Engineering Reports, Vol. 31, No. 13, pp. 139-149.

Oxapa, K., YokoHama, T., and Kitacawa, M, (1979): A dynamic debugging system
by multiple processors (in Japanese), Technical Reports of Information Processing,
IEE of Japan, IP-79-45, pp. 47-56.

Okapa, K. and Kiracawa, M., (1980): A general-purpose experimental computer
system characterized by its architecture changeability, KEIO Engineering Reports,
Vol. 33, No. 5.

Sakamura, K., Kirarusa, H., Takevari, Y., and Aiso, H. (1977): A debugging
machine (in Japanese), Trans. IECE of Japan, Vol. J60-D, No. 9, pp. 671-678.
ScHwarz, J.T., (1970): An overview of bugs, Debugging Techniques in Large Systems,
PRENTICEHALL, INC., Englewood Cliffs, New Jersey.

148

An Interactive Debugging System Composed of a Minicomputer

2822

2000
2eee
280!
2002
2083
2ee4
2085
2806
20e7
29838
2089
2een
28eB
2eec
20ep
280E
2eer
2210
2011
2812
2813
2814
2015
2816
2817
2818
2219
2818
2218
201C
281D
281E
28iF
2828
202!
2822
2823
2824
2823
2826
2827
2228
2829
zez2n
2028
2e2¢
2820
282E
282F
2030
2031
2832
2033
2034
2833
2836

aeeal
28ea6

eoeel
20006
48373
52593
52593
52598
52663
60803
78623
70613
42073
78743
6Ce8d
40483
88093
80093
38673
18693
68643
42153
8R573
12683
42163
2n673
86803
80003
30589
2asca
880432
32583
3A5C3
52598
42053
68643
48513
8A5A3
40483
40303
27108
4A3D3
@3E8D
4A3D3
20643
4A3D3
20003
4A3D3
20013
4A373
2E663
4R483
52668
52593
422EQ
6FBe3
RAGBI
3A5EQ
42083

Appendix

P17/ 70770072777 777202772720772/07722777277

CONVERT HEXADECIMAL TO DECIMAL -~
V28I VIIIII 202722000200 02020222027772777

/

BGN

READ

ORG
BAL
KCT
KCT
KCT
KCT
RIM
STI
KTI
B
RTI.C
SiM
BAL
SLL
SRL

S
ST

x'2e08"
INIT
M7+1
M7+1
M7+1
ADR2

=1

WRTE

9

9
WORK
X40

k-4
WORK
WORK+1
A+2
WORK
12
12
‘HEXA
PACK
4
HEXA
PRCK
M7+1

READ

NEGT
EQ
WRTE
CUHD
1esee
CUHD
1eee
CUHD
182
CUHD
10
CYHD
1
INIT
ADR2
WRTE
ADRZ
M7+1
w4

X20

BUFF
B&GN

149

RERD HEXADECIMAL NUMBER

N

ECHO BACK
REMOVE PARITY

NN

s ABCDEF?

¢+ REMOVE™ ZONE CODE

s STORE INTG ONE WORD

¢ WHEN NEGATIVE
7 PRINT CHRR. =

PRINT DECIMAL NUMBER

KeN’icH1 OkADA, Taiki MaTsuo and Misao Kitagawa

283C
283D 7 CONVERT
203E
283F
2848
2041
2242
2843
2844
2045 52663
2046 523D
2047 463Da

x'x52¥
XitopH

2@B9

2989
venBA F
209F
229F
20ea1
2022H END BGN

150

