
Title An interactive debugging system composed of a minicomputer and a microprocessor
Sub Title
Author Okada, Kenichi(Matsuo, Taiki)

松尾, 泰樹(Kitagawa, Misao)
北川, 節

Publisher 慶応義塾大学工学部
Publication year 1980

Jtitle Keio engineering reports Vol.33, No.10 (1980. 12) ,p.131- 150
JaLC DOI
Abstract This paper describes a debugging system which has been developed on such a combined system

of a minicomputer and a microprocessor that is microprogrammable for the user, and aims at an
effective debugging of the errors that will be detected during the execution of the program written in
a low-level language. The multiprocessor organization, adoption of firmware monitor and special
hardwares yield such advantageous features as bilateral tracing, procedure extraction, eight kinds
of event monitors, etc., which come to be effective for debugging. Debugging is performed in art
interactive mode so that the program can be tested and modified easily by various kinds of editing
and debugging commands. This system has four modes, that is, assemble, edit, debug, and test,
which allow it to perform the debug processing consistently.

Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00330010-

0131

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

KEIO ENGINEERING REPORTS
VOL. 33, NO. 10, I>I>· 131-150, 1980

AN INTERACTIVE UEBUGGING SYSTEM
COMPOSED OF A MINICOMPUTER

AND A MICROPROCESSOR

KEN'ICHI OKADA, T AIKI MA Tsuo and M1sAo KITAGAWA
't

Dept. of Instrumentation E.ngineering, Keio University,
Yokohama 223, Japan

(Received July 15, 1980)

ABSTRACT

This paper describes a debugging system which has been developed on such a combined
system of a minicomputer and a microprocessor that is microprogrammable for the user,
and aims at an effective debugging of the errors that will be detected during the execution
of the program written ii) a low-level language. The multiprocessor organizatidn, adoption
of firmware monitor and special hardwares yield such advantageous features as bilateral
tracing, procedure extraction, eight kinds of event monitors, etc., which come to be effective
for debugging. be bugging is performed in art interactive mode so that the· program can
be tested and modified easily by various kinds. of editing and debugging commands. This
system has four modes, that is, assemble, edit, debug, and test, which allow it to perform
the debug processing consistently.

1. Introduction

In contrast to the drastic reduction Of the recent hardware prices, software
cost in the computer system tends to rather increase its rate, since the software
productivity will not largely be improved. [l] One of the factors that suppress the
improvement of software productivity lies in the difficulty of program debugging.;
[9] especially, debugging the errors detected in the execution of programs is an
urgent problem, and thus many researches for the debuggers have been studied
up to the present. [2] [3] [4] [5] [6] [8].

It can be considered that the requirements for such a .debugger include (1) an
interactive processing, (2) time-sharing processing, (3) high-performance efficiency,
(4) ··acquisition of high-level information, (5) feasible ·usage, and so ··forth. At the
time of developing the currently proposed debugging system that can satisfy the
above requirements, the. following principles are established:

131

KEN'1cm OKADA, TAIKI MATSUO and M1sAo KITAGAWA

(1) Its object is laid in the assembly language, and is to debug the errors
detected in the execution of user program.

(2) It is realized on the multiprocessors to distribute their functions and also
to suppress the occurrence of secondary errors which might be made
through debugging.

(3) It should employ a firmware monitor.
(4) The debugging is proceeded in an interactive mode, and thus the time­

sharing system is not taken into account because the object is limited to
a minicomputer only.

Following the above statement, a debugging system which is realized on the
combined system composed of a HITAC-10 minicomputer and a mCOM-16 micro­
processor is described, which is shown in Figure 1, where the console for debugging
use and various 1/0 units are also illustrated. [7]

mCOM-16

Control Memory

Ring Stack

Main Memory

1/0 Bus

1/0 Buffer

U-Bus

Mapping
Memory

Figure 1. Hardware configuration.

2. Debugger

Disk

HITAC-10

The debugger's software is composed of the processing programs of both the
minicomputer side (nearly 4500 steps of the HITAC-10 assembly language) and the
microprocessor side (about 2500 steps of the mCOM-16 microprogram), and collects
and displays the debugging information obtained in the execution of the program
in accordance with the commands delivered from the user. The user program is
stored in the main memory of the mCOM-16 and carried out through the firmware
monitor (three kinds of firmware monitors are registered in the disk and trans­
ferred to the mCOM-16 control memory). Since the mCOM-16 is controlled and
managed by the HIT AC-10, the user needs not be conscious of the existence of
the mCOM-16. On the other hand, the processing progJ'.am in the HITAC-10 is

132

An Interactive Debugging System Composed of a Minicomputer

divided into three; namely, (1) the command processing part which processes and
analyzes the user's commands, (2) the debugging information part which arranges
and displays the information obtained from the firmware monitor, and (3) the 1/0
service part which is prepared for the mCOM-16 providing no 1/0 units.

2.1 Firmware Monitor

For the purpose of collecting effective and high-level information without in­
troducing any disturbances at the debug processing, the following are set as the
monitor:

(1) Execution of instructions by the specified number of steps.
(2) Execution of the specified instructions by the specified number of times.
(3) Execution of the instruction at the specified location by the specified number

of times.
(4) Execution of instructions at the specified area of the memory.
(5) Read out from the specified location or area.
(6) Write into the specified location or area.
(7) Comparison of the contents of the memory with the constants.
(8) Comparison of the contents between two different memory locations.
The multiple monitors can be designated simultaneously for those events, and

even when only one of them is specified during the execution of user program,
the execution is halted to display it to the user. Thus the user can recognize the
executing state at the time when the individual conditions have been satisfied.

Furthermore, the following are prepared as the back-up functions in order to
proceed the debug processing smoothly:

(1) Restoring function of the initial state :
Since the user program stored in the disk is transferred to the main

memory of the mCOM-16, and at the same time the initialization of the
firmware monitor is carried out, the reexecution of the user program can
be made from the initial state arbitrarily.

(2) Read and write functions for the registers and memory :
The contents of all the registers and memory of the emulated machine

can be read or written.
(3) Procedure extraction function:

A series of processes which affect a particular location are taken out
as a unit of procedure. Namely, this is such a function that since a
sequence of instructions composed of a program has a pattern that it may
start with a transfer instruction and then end at another transfer instruction
after processed by some arithmetic instruction(s), such a sequence is picked
up from the program to display as a unit of procedure. It will be a power­
ful tool for the user in a debugging operation to recognize a series of
instructions that affect the location, the value of which is found to be
inadequate.

(4) Backtrack function :
Backtracking, which proceeds the execution of user program in the

reverse direction, can be realized by stacking and monitoring the data
information, which comprises the contents of memory and registers that

133

KEN'IcHI OKADA, T AIKI MA Tsuo and MisAo KIT AGA w A

will be destroyed during the forward execution of the program and the
address information concerning the program flow at the Jump, Call, Return
instructions and the like in the ring stack. The number of steps that
can be backtracked amounts to. approximately 1000 steps at present, which
will be determined by the ring stack capacity.

(5) Trace function :
This function provides a means of displaying the contents of the re­

spective registers and effective addresses everytime when the specified
operations, specified operands, or the instructions in the specified area are
carried out, and consequently can catch the consecutive state transitions
of user program. During the trace, both collection of the trace informa­
tion due to the firmware monitor on the mCOM-16 and its display to
the user through the HIT AC-10 are performed in parallel.

(6) I/O change function :
This permits the change of the I/0 units used in the user's program

without altering its construction. Presently the TTY and PTR are provided.
(7) Disk dump function :

This allows the user program to be saved in the disk at any time
and to return to that point, and comes to be effective to realize a check
point and restart function.

These functions as well as the designation of events to be monitored are
carried out using the commands, and the HIT AC-1.0 generates the Reference Table
which will be mentioned later in accordance with the given commands. The firm­
ware monitor refers to the Reference Table and proceeds the execution of user
program, collecting the useful information only. Events are checked at the follow­
ing three processing parts :

(1) Fetch part, where the execution address, the number of steps, and the
kind of instructions are checked.

(2) Address computation part, where the memory access is checked.
(3) Execution part, where the executed results are checked.
The result of individual checking, if an event specified by the user comes into

existence, will be informed to the HIT AC-10, which then displays the generated
event, the contents of individual registers, and the contents of consecutively seven
locations of the program placing the approved location in the center of them.

The following three kinds of runs are registered in the firmware monitor:
(1) Emulation run, which proceeds the execution of user program while monitoring
the event specified by the user's commands; (2) preparation run, where the stacking
operation for backtrack use is added to the emulation run ; and (3) back run, which
executes the program in the reverse direction while monitoring the event. Those
are stored in the disk and transferred to the control memory of the mCOM-16
through user commands, and also the mapping memory is rewritten. Figures 2
and 3 depict these three kinds of monitor flows.

2.2 Commands and Reference Table

For the purpose of easy input and of getting abundant, useful information,
the commands listed in Table 1 are prepared. As the operand of command, one

134

An Interactive Debugging System Composed of a Minicomputer

can freely use the symbolic names in the user program, the direct address desig­
nation by decimal or hexadecimal representation, and the mnemonic names of
registers. Multiple commands input from the console for debugging use are re­
arranged and compiled to generate the Reference Table.

ER, PR

Initialize

Check PC
Check Step

Fetch

Address

Calculation

Push to Stack
(PR)

Check
Reference
Table

Halt

Figure 2. Flow of the firmware monitor (ER, PR).

135

KEN'IcHI OKADA, T AIKI MATSUO and M1sAo KIT AGAMA

BR

Check Step

Pop from Stack

Set PC

Check PC
PC=PC-1

Fetch

Check
Reference
Table

Halt

Figure 3. Flow of the firmware monitor (BR).

136

An Interactive Debugging System Composed of a Minicomputer

Table 1. Command of the debugger.

Format

DD v
DM v

SR n v -
SM av -
GR n v -
GM av -
BP av -
PC r-
ST v
OC c v -
OR av Ir -
OM av -

cc a o v -
CV a o a' -
E a

IO
CIO
RA a/ r -
T a/r/c-
UT a/r/c-
ER
PR
BR
F
(ESC)

(Control-P)

r: range
address-address

a: address

Function

Initialize
Dump to disk
Dump to memory
Set register
Set memory
Get register
Get memory
Break point

Program counter
Step
Operation code
Operand refer
Operand modify
Compare with constant
Compare with variable
Extract

I/O change
Cancel I/O change
Reverse assemble
Trace
Un trace
Emulation run
Preparation run

Back run
Finish
Go to command waiting
Cancel current command

decimal number, hexadecimal number, or label
n : register name

PC, AC, EC, CAR, or IR
v: value

decimal number, or hexadecimal number
o: operator

EQ, GT, GE, LT, LE, or NE
c : operation code
i : I/O device name

PTR or TTY
repeatable

137

KEN'IcHI OKADA, TAIKI MA Tsuo and M1sAo KITAGA w A

Step Total Step

Execution Area Top Address Last Address

Trace Area Top Address Last Address

Break Point Address Iteration
Number

Operand Address Flag Iteration
Number

Memory Access Areal Top Address Last Address

Comparison Address Operator Address/
Constant

Operation Flag Iteration
Number

Extraction Working Address

1/0 Change 1/0 Device

Figure 4. Format of the Reference Table.

The Reference Table determines the operation of the firmware monitor and
has 10 kinds of formats which keep the following information, as given in Figure
4:

(1) Number of steps to be executed.
(2) Location or area where the execution is prohibited.
(3) Location or area to be traced.
(4) Number of times of executing a location till the time of activating the

breakpoint and/or break mechanism.
(5) Specified number of accesses to a location and the necessity of tracing.
(6) Memory area where the access is to be monitored.
(7) 'Compare' operator and two locations to be compared or a location and a

constant.
(8) Specified number of times of executing macroinstructions and the necessity

of tracing.
(9) A location to be noticed by the procedure extraction function.

(10) Names of two 1/0 devices to be changed each other.
In the above stated Reference, (1), (9), and (10) include only one item each;

(8) will have the same number of items as that of the macroinstructions; and (2)

138

An Interactive Debugging System Composed of a Minicomputer

through (7) will keep the necessary number of entries for themselves. This Re­
ference Table will be transferred to the special area of the main memory of the
mCOM-16 through the execution (run) commands of the user program.

2.3 Processing of the Minicomputer Side

While the firmware monitor on the mCOM-16 executes the user's program,
the processing that the minicomputer performs in the debugger includes the follow­
ing:

(1) Input of the user commands from the console.
(2) Analysis of the commands, generation and updating of the Reference Table.
(3) Read out from and write into the registers and the memory of the mCOM-

16.
(4) Transfer of the microprogram to the control memory of the mCOM-16

and its initiation.
(5) l/O services for the mCOM-16.
(6) Rearrangement and display of the debugging information resulted from the

firmware monitoring.
(7) Mode change of the system.
Figures 5 and 6 show the flow of processing by the minicomputer of the

Reference
Table
Update

No

Memory/
Register
Access

Debug Mode

Firmware
Monitor ..
Selection

Test Mode

Figure 5. Flow of the debugger in debug mode.

139

Edit Mode

debugger.

KEN'1cm OKADA, T AIKI MA Tsuo and MisAo K1 rAGA w A

l,'O Request

1,0 Service

Test Mooe

Start
mCOM-16

Start
mCOM 16

Trace
Information

No

Debug Mode

Figure 6. Flow of the debugger in test mode.

This system has the four operation modes as follows :
(1) Assemble mode that converts the user's program to the object one.
(2) Edit mode that performs the program compilation and the file processing.
(3) Debug mode that arranges the condition for the debug processing and

displays the debug information.
(4) Test mode that the firmware monitor performs the execution of user

program.
Table 2 lists up the contents of the respective memory area in those four

modes. On the HIT AC-10, the assembler for debugging use runs in assemble
mode, the text editor runs in edit mode, and the debugger runs in either debug
or test mode ; the distinction between them depends upon whether or not the
firmware monitor in the control memory of the mCOM-16 is operating.

The role of the assembler for debugging use is to convert the user program
to the object one and it is provided as the debugging version after having modified
the macro-assembler delivered from the manufacturer. The principal modification
is in that the address designation by symbols while debugging the program can
be performed by way of saving the symbol table in a safety area at the end of
assembling.

140

An Interactive Debugging System Composed of a Minicomputer

Table 2. Contents of the specified memories for four system modes.

HITAC-10
Main Memory

Common Area

mCOM-16
Main Memory

mCOM-16
Control Memory

Edit Mode I Assemble Mode I Debug Mode

Editor

-

-

-

Debug informatio n

Assembler Debugger

Reference - Table

- Object

- -

Assemble

Mode
Macro Assembler

Obje ct

Edit Mode Editor, File Controller

~

Obj ect

Debug Mode Command Processing

~
Fi
Ref

rmware Monitor
erence Table
pping Data Ma

Test Mode Monitoring

Figure 7. Mode transition.

Test Mode

Debugger

Reference
Table

Object

Firmware
Monitor

The text editor has the function of various kinds of compilation and file proces­
sing, and is capable of linking the assembler with the debugger.

Figure 7 gives the operation and transition of these four modes, where the
transition from assemble mode to edit is initiated automatically after terminating
the assembling; the transition from test mode to debug is due to the generation
of a specified event, and the other transitions are generated by the user's commands.
In debug and test modes the following data transfer is carried out between the
HITAC-10 and the mCOM-16.

(1) From HITAC-10 to mCOM-16,
(a) object codes of the user's program (in debug mode),

141

KEN'1cm OKADA, TAIKI MATsuo and M1sAo KITAGAWA

(b) firmware monitor (in debug mode),
(c) data to the mapping memory (in debug mode),
(d) Reference Table (in debug mode), and
(e) I/0 service information (in test mode).

(2) From mCOM-16 to HITAC-10,
(a) debug information (in test mode), and
(b) I/0 service request (in test mode).

These data transfer will be performed through the two buffer registers con­
necting the I/0 Bus of the HITAC-10 with the U-Bus of the mCOM-16.

3. Examples of Debug Processing

This chapter describes some examples concerning the actual debug processing
by making use of the results obtained from the execution of a sample program
(see Appendix) through the debugger. The program is to convert a 4-digit hexa­
decimal (4 bytes) number of the character format to the decimal, using the TTY
as an I/O unit. Each input hexadecimal digit of 1 byte is converted to a 4-bit
hexadecimal digit after echobacking and stored in a word of 16 bits packed to the
lefthand side, where the most significant bit is considered to be the sign. The 4-
bit hexadecimal number thus obtained is output after converting it to the character
type decimal number. The following lists are the output results obtained from the
execution of the sample program with several kinds of commands picked out of
those in this debugger. ($$ indicates the mode change, ** gives the system mes­
sage in debug mode, mark# shows the address where the program is stopped after
the HL T instruction has been carried out or some condition has been satisfied.)

(1) From edit to debug mode by Z command. First, initialization is carried
out. (See List 1.)

List 1.

$$ TTY - EDITOR $$
>Z
$$ HITRC-10 DEBUGGER $$

#I

(2) The output results obtained from the normal execution without any input
of the commands for event monitor use. (See List 2.)

The Program Counter is set to the starting location and the user
program is executed by the ER command. Since the input routines from
the TTY (X'2005' to X'200A') is in the user program, the operation will
be at the state of queue. When 0800 is input at this point, = _02048 (_
indicates a space) is output by the user program, and the debugger informs
the user that the HL T instruction has been carried out. The indicated
information includes the following: the location and the instruction in it
at the time its execution ended, the contents of Accumulator (AC), Extended
Accumulator (EC), Carry Register (CAR), Effective Address (EA) and its
contents ((EA)) as well as the location where the instruction just finished

142

An Interactive Debugging System Composed of a Minicomputer

List 2.

~tER
0800== 02048
** I; UE JUST EXECUTED !! HL T" INSTRUCT ION. **
LDC IR RC EC CRR ER cEq)
2033 6F00 000R 0000 0

2030
2031
20:s2

>!< 2033
2034
2035
2036

5266
5259
422E
6Fe0
0R68
3~{5E
4200

** CONTINUE ? **

List 3.

#CC M7+1 EQ 0

KCT
KCT

i1Di~2 •1•+054 #2066
>H-040 #2059
•1•--004 #202E

X20 •i•+~l55 #2068
nur:r *+01 .. 1 #205E
t3CN •i•··-054 #2000

** THE SPECIFIED LOCRTIGN HRS THE 'APPOINTED URLUE NOW.**

#BP BGN+1

#ER
** I;UE.JUST DONE THE SPECIFIED LOCRTION.•>1<

! t~ r"
LUl., .l R HC EC C' '1 ") ,,J-,i'(EH (Eg)
200 1. 5259 205E 0000 0 2059 FFFB = > FFFR

1FFE F1C4 STE z 472 #01C4
1 FFF. 9'156 SRR 342 #0176
2000 4R37 BGN BPL INIT >1<+055 #2037

>!< 2001 5259 KCT >1<+088 #2059
2002 525.9 KCT >1<+087 #2059
2003 5259 KCT >1<+086 #2059
2004 5266 KCT RDR2 *+098 #2066

#CC M?+1 .. -,...,
l:::.l>I 0

#ER
FFFB
*'~ THE SPECIFIED LOCRTION HRS THE APPOINTED !JRLUE N.OW11>1<>1<

LOC IR RC EC CRR ER CER)
2010 5259 FFFB 0000 0 2059 FFFF ;> 0000

20 R 8804 SLL 004 #000~
20 t:$ 3258 0 HEXR >1<+064 #2058
20 c 3R5C ST PHCK *+064 #205C

>l< 20 D 5259 KCT >1<+060 #2059
20 E 4205 B RERD >l<-025 #2005
20 F 6864 J<PR
20 0 4R51 BRL NEGT >1<+049 #2051

#GR RC
CONTENT OF fiC ;#Ft-FB

~1:GM Pf1CK
CONTENT OF LOCATION #205C IS # FFFB

143

KEN'Icm OKADA, TAIKI MATSUO and M1sAo KITAGAWA

List 4.

#T NEGT; NEGT+6

! l'.,f ...
L_Ul., I ,!°.('"''" !"·!\., EC CPI:(Erl (EH)
20;52 2n:rn 0004 0000 0 2050 FF.FF

2052 2R50 x >l•-002 #2050

! ,,, ... I R PC EC c: ~r~ E r1 (E~~) L. UL, , .. .;

205:5 :·rnsE 0004 0000 0 205C FTFB ::::: > 0004

2053 3A5C ST PRCK >1<+009 #205C

LUL IR ~'!"" :-·! Cr.:ii~ r:.·q CGD HlJ

2054 ~:) L. ~)L. 0004 0000 0 205C 0004 :::: > 0005

20'.54 525C KCT Pf~CK >1<+008 #205C

LDC .ll'(RC EC cnR rn <En)
2055 0f.l6f.i 002D 0000 0 206!l 0021.)

20~)5 0f-l6R L X2D *+021 #206R

L.OC IR r4C EC C~1f~ En (Ei1)
2056 3R~)E 002D 0000 0 205E 002e => 0021.)

2056 3R5E ST BUFF >1<+008 #=205E

LOC IR r-,... Cf-lR Ef~ (Ef:l) ::;.,., C.l,

2057 4651 002D 0000 0 202l 0f~5R

2057 4651 B NEGT >!<-006 #2051.

** I'UE JUST DONE THE SPECIFIED LOCRTION.•*

LOC IR RC EC CRR ER CER)
2021 0R5R 003D 0000 0 205R 003D

201E 4205 B
201F 6864 KPf-l
2020 4R51 BRL

>I< 2021 0R5A L
2022 4R48 Bf.iL
2023 4R3D BRL
2024 2710 N

RERD >l<-025 #2005

NEGT >1<+049 #2051
EQ >1<+057 #205R
WRTE >1<+038 #2048
CvHD ~·+026 #203D

>1<+236 #2110

its execution and the inversely assembled results of seven locations (2030-
2036). At the end of the HL T instruction, the ' CONTINUE ' message is
issued and will start the execution of program from the next location when
'C' is input from the TTY. In case where the characters except 'C' are
input, the debugger will be at the state of accepting the commands of
debug mode.

(3) List 3 is an example to confirm that the 4-byte input data are packed and
stored in the PACK location.

Since location M7+1 is a counter of the input characters, the command
to halt is input when the contents of location M7+1 has come to be zero

144

An Interactive Debugging System Composed of a Minicomputer

List 5.

i'i'Ui"' X"202D"

#Ef~

** I 1 UE JUST DONE THE SPECIFIED LOCnTION.88

LDC IR· RC EC
2020 4iff? 00:55 eea0

nw 00;;rn
202£3 4n:sD
202C 0001

>i< 202D 4P3?
2e2E eE66
202F 4(.~48

2030 5266

Hl:Ji'1 t3 UF F ' BUFF+5
CONTEN T OF LOC~1T I ON
CON TEN T er-.Jf" LOC[~ T I CJN
CO;~TENT LH- LCCR T I DN
CONTCN T CF L oc~~T I DN
CCNTEN T nr.:· Locr.:~ i J CJN
CDNTENT :''"!:-··

L.DCr:~ .i. (J N ur-

cn1~
:-··r'\
C:i· .. i

0 203?

E5PL

UH' ..

!..-

dr~L
J<CT

#205!:: .L

'if205F~ ...

'i:t.206 3 .T
1:1:206 1 I
;:!:2062 .i

#206 :s .:.

s
~)

.:)
s
,,,

~)

(Ef..i)
2031 ... -> 202E:

1:F
.u ..
1-r

:j:F

N ,,, :· 0 1. a ;;: 2 e 3 ?
i!Di~2 >1<+056 #2066
W!~TC: >:<+025 #2240
[.;()!~2 >!<+054 ii2066

002[)
ee:.sa
ee:rn
0033
ae:.rn
ea:.55

(input of 4 characters finished). The message that the conditions have
already been satisfied is issued (which will be checked before executing
the CC and CV commands), so that the program is executed to the location
where the initialization of it completed. Here again the command to halt
is input when the contents of location M7+1 come to be zero and then
the program is executed. As the the result, such a message is output that
the conditions are satisfied after the input of hexadecimal date 'FFFB' of
4-byte form. It can be confirmed that the input data in the character
format are stored in the form of hexadecimal numbers after reading the
contents of the AC and PACK locations.

(4) List 4 gives an example to confirm the state transition that the minus
datuin FFFB stored in the PACK location is converted to a form of 2's
complement.

While the program is executed to location X'2021', the command to
trace locations NEGT to NEGT +6 (conversion subroutine to the 2's com­
plement) is input. It can be confirmed below that the contents 'FFFB'
of the PACK location comes to be 0005 and the minus code X'2D' is em­
bedded in the BUFF location.

(4) List 5 is an example to confirm that the converted data to the decimal
numbers are stored in locations BUFF to BUFF +5 in the character format.

Such a command is input that executes the program till the time when
embedding the character type decimal data to the BUFF is completed. It
can be confirmed that the contents of locations BUFF to BUFF +5 are
read and '-00005' is embedded.

(6) Examples of the re-initialization setting, modify, step, and extract.
By making use of the I command, it is possible to execute the program

again from its initial state at any arbitrary point of it. The program can

145

KEN'IcHI OKADA, TAIKI MATsuo and MisAo KITAGAWA

be executed by the input of the command to halt and by proceeding the
stacking for the back trace use after the WORK location has been modified.
At the state of input queue (due to the user program), when '8' is input,
the message is output, whicn indicates that the read-in data X'38' has been
stored in the WORK location. (See List 6.)

The following shows the results after executing 4 steps of the program

List 6.1.

88 'UE MODIFIED THE SPECI IED LOCRTION.88

LUG IR RC EC CRR ER CER)
200E 3R67 0038 0088 2067 0000 => 0038

200!:3 4R4B
200C 8809
200D 1:$009

* 200E :rn67

List 6.2.

#ST 4

#PR

2001::· 1 P69
2010 6il64
2011. 4215

dPL Wi~ T E
-~;,L L
Si~L
~) i tJOf~l<
s X40
l<Pf1
f3

>i< + 06 " -1:!:204 H
00 9 i!000 ~
009 ii=000 9

* +08 9 :j:j:206 ?
>1<+0 90 #2 06 9

>i<+ 00 4 ii:2 0 l 5

** I'UE DONE THE NUMBER OF STEPS YOU ORDERED. **
LOC IR RC EC CRR ER CER)
2015 0R67 0038 0088 2067 0038

2012 0R67 L
2013 1268 "' 1-i

2014 4216 8

* 2015 ·0R6? L
2016 880C ~>LL

201? 800C SRL
20rn 3R58 ST

List 6.3.

#E WORK

#BR

LOC IR RC EC CRR ER (ER)
2009 70?4 205E 0088 0

2009 7074
200C BB09
200D B009
200t: 3P6?

RTI
SLL
Sf-<L
ST

146

c

WORI< >!•+08~5 206?
>!•+085 206B
·~+002 201 6

lJORi< >1•+082 2067
0 1. 2 000C
0 .L 2 000C

HE Xi~ >1<+06? 205E3

009 0009
009 0009

WGRi< •i•+0139 2067

An Interactive Debugging System Composed of a Minicomputer

while stacking.
The following gives the results obtained after extracting a series of

instructions that affect the WORK location while restoring the program
inversely from the X'2015' location.

The extract instruction halts at the time when restoring the transfer
instruction that affects the specified location. Accordingly, this example
shows that the contents of the AC, EC, and CAR were X'205E', X'OOB8',
and 0, respectively, before executing the RTI C instruction.

To edit mode by the F command that follows,

List 6.4.

#F

$$ TTY - EDITOR $$

4. Conclusion

Since the program used in the previous examples of debug processing is so
much simple and required some hand manipulation of the user that the reduction
of execution efficiency by the firmware monitor has not been found at all. There­
fore, when a program that has no 1/0 instructions to compute the factorial of 1000
is carried out under the following three conditions, the execution time is as follows:

(1) Execution by the HITAC-10-42.0 msec.
(2) Execution by the emulator-420.1 msec.
(3) Execution by the firmware monitor-2032.0 msec.
These figures indicate that the result by the firmware monitor introduced

approximately 50 times of speed reduction composed with that by the hardware,
but the principal cause of it is due to the low performance of the microprocessor
mCOM-16 and also the lack of the hardware such as multiplication, division, shifter,
or the like. The evaluation of the overhead by means of supplementing the de­
bugging function should be composed with the usual emulator, where the speed
reduction amounts to about 5 times. In fact when this system was operated, the
processing time for debugging information at the user side has come to be extremely
large, and thus the decrease in execution speed of the program in the minicom­
puter does not give much trouble to the user. The most essential factor is that
the profitable debugging information is obtained and thus the modification and
testing of the program can easily be carried out. This system provides a simple
mode change, many edit functions as well as monitor ones, which have all used
to accomplish the purpose of debugging from the standpoint of improving the
overall performance of the system.

REFERENCES

[1] BoEHM, B. W., (1976): Software engineering, IEEE Trans. on Computers, Vol. C-25,
No. 12, pp. 1226-1240.

147

KEN'1cm OKADA, TAIKI MATsuo and MisAo KITAGAWA

[2] FLANAGAM, H., (1973): Program debugging system, IBM Technical Disclosure Bulletin,
Vol. 16, No. 7, pp. 2322-2329.

[3] GoLDBERG, }., CooPERBAND, A., and GALLENsoN, L., (1978): PRIM System-A Frame­
work for emulation-based debugging tools, National Computer Conference, pp. 373-377.

[4] GRISHMAN, R., (1970): The debugging system AIDS, SJCC, pp. 59-64.
[5] OKADA, K, and KITAGAWA, M., (1978): BRAKEMAN-A debugging hardware system,

KEIO Engineering Reports, Vol. 31, No. 13, pp. 139-149.
[6] OKADA, K., YoKOHAMA, T., and KIT AGA w A, M., (1979): A dynamic debugging system

by multiple processors (in Japanese), Technical Reports of Information Processing,
IEE of Japan, IP-79-45, pp. 47-56.

[7] OKADA, K. and KITAGAWA, M., (1980): A general-purpose experimental computer
system characterized by its architecture changeability, KEIO Engineering Reports,
Vol. 33, No. 5.

[8] SAKAMURA, K., KITAFUSA, H., TAKEYARI, Y., and Aiso, H., (1977): A debugging
machine (in Japanese), Trans. IECE of Japan, Vol. J60-D, No. 9, pp. 671-678.

[9] SCHWARZ, J.T., (1970): An overview of bugs, Debugging Techniques in Large Systems,
PRENTICEHALL, INC., Englewood Cliffs, New Jersey.

148

An Interactive Debugging System Composed of a Minicomputer

Appendix

0000!
0800 0800G

/////////////////////////////////////

I' CONVERT HEXfiDECIMRL TO DECIMfil /
/////////////////////////////////////

0000.I
2000 2000G ORG X"2000 11

2000 4R37@ BGN BRL INIT
2001 5259@ KCT M?+l
2002 5259@ KCT M7+1
2003 5259@ KCT M7+1
2004 5266@ KCT RDR2
2005 6000@ RERD RIM / RERD HEXRDECIMRL NUMBER
2006 7062@ STI
2007 7061@ KTI
2008 4207@ B •-1
2009 7.074@ RTI, C
200R 6C00@ SIM
2008 4Q48@ Bf:lL WRTE / ECHO BRCK
200C 8809@ SLL 9 / REMOVE P.RRITY
200D 8009@ SRL 9
200E 3R67@ ST WORK
200F 1R69@ s X40 / R B CD E F?
2010 6864@ KPA
2011 4215@ B >1<+4
2012 0Rb?@ L WORK
201 ~~ 1268@ R WORK+·!
2014 4216@ B >1<+2
2015 0R67@ L WORK
2016 880C@ SLL 12
2017 800C@ SRL 12 / REMOvE· ZONE CODE
20.18 3R58@ ST ·HEXP
2019 0R5C@ L PP.CK
201R 8804@ SLL 4
2018 3258@ 0 HEXR
201C 3R5C@ c:.,..

~I PACK / STORE INTO ONE WORD
201D 5259@ KCT M?+l
201E 4205@ i3 RERD
201.F 6864@ KPR
2020 4R51@ BRL NEGT / WHEN NEGRTilJE
2021. 0R5R.@ L EQ
2022 4R48@ BRL WRTE / PRINT CHRR. =
2023 4R3D@ BRL CUHD
2024 2710@ DC 10000
2025 4R3DGJ BRL CUHD
2026 03E8@ DC 1000
2027 4A3D@ BRL CUHD
2028 0064@ DC 100
2029 4R3DG> BPL CUHD
202(.'.) 000R@ DC 10
2028 4R3Dal 8""'' HL CUHD
202C 0001@ DC 1
202D 4R37@ BRL INIT
202E 0E66@ L , I RDR2
202F 4f:l48@ BRL WRTE / PRINT DECIMAL NUMBER
2030 5266@ KCT RDR2
2031. 5259@ KCT M7+1
2032 422E@ 8 >!<-4
2033 6F00@ HLT
2034 0f:l6B@ L X20
2035 3RSE@ ST BUFF
2036 4200@ B BGN

149

KEN'IcHI OKADA, TAIKI MATSUO and M1sAo KITAGAWA

2037 0000@
2038 0~i58@
2039 :~P590)

203R 0R65@
20:rn 3R66@
203C 4637@

203[) 0000@
203E 8800@
203F C2~5C@

2040 EE3D@
204 1 3H5C@
2342 r.:18008
2043 125D@
2044 3E66@
2045 5266@
2046 523D@
204? 463DCJ

2048 000001
2049 6D00@
234(1 ?086~}

2048 708.1.
,.,
(!)

204C 424132
204D ?082(;)
204f:: 6C00(}
204::::- 4648@

INIT DC
L
ST
L
ST
8 , I

/
CIJHD DC

SLL
LE.
D , I

SLDL

M?
M?+1
.RDR1
.HDR2
>1<-5

PRCK
>l<-3

/ INITIPLIZE

/ CONVERT

PR Ci< / REMR I NDER ---· > PRC:/

H X30

/

ST ., I
KCT
KCT

RDR2 / QUOT-IENT --> <RDR2)
ADR2
CUHD

8 ., I CUHD

LJRTE DC / PRINT ONE CHRR.

WTC
i<TO

CTO
SIM
t3 , i tJRTE

/

DC X!:FF~FF 11

2051 0000@ NEGT DC
20::52 2P50(;}
205:5 :-rn::;c;;;
2054 52SCiiJ
2055 0ri6fi(iJ
2056 :rn:::c<D
205? 4651(i)

2059
205R
205[:3
205C
20SD
2051:::
20~5F

2064
206:5
2066
206?
206B
2069
206P
206[:3

0001!<
00:rn:0
0001.K
0000@
0030(;}
0020(;}
0005!<
000n:;;
205t::(;)
0001.i<
0001!<
0009(!}
0040@
002)@
0020(!)
F3::52I

00B9 0089G
00d9 ·JFC0@
00!'.3~1 3FC0@

"?F80I
009F 009FG
009F 0000@

0000I
2000H

/

HFXP DS
PPCf< DC.

BUFF DC

DC
PDRl DC
HDR2 DS
WORK DS

DC
X40 DC
X2D· DC
X20 DC

END

NEGT-1
PriCK
PRCK / TW0 7 5 COMPLEMENT

NEGT

···?

c ;:=:;:

X"30"
xn2e11
5

BUFF
1

9
X"43!!
X"2D"
X"22"

BGN

150

/ MINUS -
/ ::ii""'Hl,t::

