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ABSTRACT 

In the former report, under the same title as the present one, the author has made 
analytical study about vibratory motion of two circular cylinders, which are immersed in 
fluid region of infinite extent. The fluid was taken to be an ideal fluid, and we treated the 
problem as a case of two-dimensional motion, two circular cylinders being of different 
radii. In the present Report IV, we examined the case in which one circular cylinder is 
of infinite radius, as a special case to previous study. Thus, we could show here, the case 
of motion of a circular cylinder, which is immersed in a fluid region which is bounded by 
a straight rigid wall of infinite extent. And, hereby, for the case of two-dimensional poten
tial flow of an ideal fluid, amount of hydrodynamical force (Fx, Fy) acting on the circular 
cylinder was obtained. Some numerical examples about this hydrodynamical force, are 
also given. 

1. Statement of the Problem 

As shown in Fig. 2, we assume that at initial state (t=O), the center 01 of 
circular cylinder (of radius R1) is situated at a point (D10, 0). There exist a rigid 
plane wall of infinite extent, which coincide with the y-axis. This plane wall will 
be assumed to be kept immobile. At time t (O<t), the circular cylinder has moved 
by a distance a1 in angular direction /31· Regarding a1 to be a given function of 
time t, we wish to obtain analytical expressions for fluid flow generated in the 
surrounding fluid. The fluid is regarded to be an ideal fluid (non-viscous, incom
pressible), and flow to be a two-dimensional potential flow (no vorticity). 

In the author's previous paper (Reports II, III), we studied about the case of two 
circular cylinders of different radii (Ri, R2). Therefore, it may seem that we may 
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y 

Fig. 1. Configuration of two Circular Cylinders represented by Bipolar 
Coordinates. 

instantly arrive at the desired result, merely by putting R2-+0 therein. But, in 
order to avoid ambiguity, we shall state in what follows, some detailed account 
about the process of deduction. 

2. Notation 

We shall use same notations, as we made in previous reports, namely; x, y= 
rectangular coordinates of a point in x, y plane; z=x+iy a complex variable; C= 
distance from origin 0, of radical centers of bi-polar coordinates; h=coefficient of 
linear element for the case of bi-polar coordinates (~, 11) ! ~' 11=a system of bi-polar 
coordinates, representig any point on the x, y plane; Ri=radius of circular cylinder 
(i=l, 2); Ei=position of center of ditto; P=fluid pressure; p=density of the fluid; 
~=velocity potential of fluid motion, giving absolute velocity of flow. 

Several coefficients Ai, Bi, Ci, etc., are used for giving the solution in form of 
infinite series. These coefficients are independent of variables (x, y; also of ~' 11), 
but they may be functions of time t. 

3. Main Results obtained in the Previous Paper 

We shall extract from the previous paper, the analytical solution for a special 
case in which the No. 1 circular cylinder moves, while the No. 2 circular cylinder 
is kept at stand still (a2=0). The analytical study was based on the use of bi-polar 
coordinates, as shown in Fig. 1. Referring to this Fig~ 1, two points ( +c, 0) and 
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Fig. 2. Positions of a Circular Cylinder, which is immersed in a 
Water Region. 

( -c, 0) lying on the real axis are taken as radical centers, and we define a system 
of bi-polar coordinates (~, r;) by means of the relation 

r . 1 c+z 
~=~+z7i= og-c-z 

wherein we put Z=x+iy. From this eq. (1), we have 

c sh~ 
x= ' ch ~+cos r; 

c sin r; 
y= ch~+ cos r; 

The linear element ds is given by 

in which we have put 

(ds) 2 = (dx) 2 + (dx) 2 =h2[(d~)2 + (dr;)2] 

h= c 
ch~+ cos r; 

The two-dimensional Laplacian iJ<jJ of a function <jJ is given by 

- (P<jJ a2rp 1 ( a2rp a2rp ) 
ilrp= ax2 + ay2 = 7i2 ae + ar;2 

General solution of the eq. iJ<jJ=O may be written in the following form; 

<P= f: [An sin n11+Bn cos n11J[sh n~+Cn ch n~] 
n=1 

For a given set of two circles ~=~1 and ~=~2. we have 

119 

(1) 

(2) 

(3) 

(4) 

(5) 



FuMIKI KITO 

(6) 

When the circle ei is moving with linear velocity li1 (in angular direction /31), while 
the circle ~2 is kept at rest, we have for the value of velocity potential <fa, (by re
sults of Reports II, III), 

(7) 

in which the coefficients A;N, R;,i; have following values; 

4. Limiting Case of e2-+0(R2-+oo) 

Now, let us turn ourselves to the case of Fig. 2, which is the main object of 
present report. In order to deduce to this case of Fig. 2, from the preceeding 
result, we have to put r=/31i e2=0. Thus we obtain 

Moreover, we have, referring to Fig. 2; 

in which D1 is the distance from the straight wall (y-axis), of center of circle ~= 
ei (radius R1), D10 being value at initial state (t=O). Next, from the relation Ei/R1 
=ch ei. c=E1(sh ei/ch e1) we obtain; 

J.1=ch~1=Di/R1' she1=-v'(Di/R1)2-l 

D/R1 =(D10/R1)+(ai/R1) cos /31, 

CJ= l/[ch ~I+ Jsh e1 IJ' 

c=E1(sh ei/ch e1)=D1(sh ei/ch e1) 

It is convenient to use following numerical coefficients (non-dimensional) 
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Their actnal values are as given below ; 

Although A~1{, B~1i and a~1{, b~1i are constants with regard to(~, r;), they are functions 
of time t. So that we have 

It may be noted here, that we have used following coefficients 

5. Estimation of Hydrodynamic Force (Fx, Fv) 

Value of hydrodynamic force, exerted by surrounding fluid upon circular cylin
der of radius Rl (Fig. 2) is given by. 

Fx=2 ~:~: (-p) cos Ods 

=2r~="(-P)[ sh2.;1 -che1] cdr; ' 
J~=o ch ~1 +cos r; ch ~1 +cos r; 

Fv=2 r~=" (-p) sin Ods 
)71=0 

= 2 r~="(-P)[ sh~1sinr; J cdr; .. 
J~=O Ch el +COS Yj Ch el+ COS Yj 

The hydrodynamic pressure p in these expressions, is given by, 
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_ J_P= a<jJ + __!__[( a<jJ )
2 

+(~)
2

J+(cx-Qy) a<jJ 
p at 2 ax ay ax 

-(cv+!.?x) ~~ +c 

where (c:r., cy) is the linear velocity of origin of our moving axis, Q being instantane
ous angular velocity of rotation of frame of axes. In the present instance we have 
Cx=O, D=O. Also, we have 

( ~~ ) 2+ ( ~~ r = l2 [ ( ~~) 2+ ( ~~ YJ 
The task of estimating the value of Fx, Fy may conveniently be carried out, 

by making it in three steps, th us ; 
(a) Part contributed by the term in a<jJ/at. For this part, we have, 

+Fx= ~:Tr ! (A~1() sin m;+l' :t (B~I{) cos nr;] 

x [ sh2 ~1 -ch ~iJ cdr; 
ch ~ 1 + cos r; ch ~ l + cos r; 

- ,, _!!:___ (B<1i). v<o -_, dt nt nt 

where we have put, for shortness, 

J_ F = l
2

~ [ y __!}__(A (I)) sin nYI+ )' __!}__ (B(l)) cos nYIJ P y Jo _, dt nl ., _, dt nt ., 

[ 
sh ~1 sin r; J cdr; 

. ch ~l +cos r; che~ +cos r; 

=l' !!:__(A <1l) · u<0 
dt nl n1 

where we have put, for shortness, 

(b) Contribution by term ; [(a<jJ/ar;)2]. 

1 In passing, it is to be noted that the term in Z [(a<jJ/a~)2] has no effect on Fx, 

Fy, as was stated in the previous paper. As for contribution by term ; [(a<jJ/ar;)2], 

we have, 
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i r2" . ]2 
PFx= Jo [2.'nA~1t cos nr;-2.' nB~1t sin nr; 

[ 
sh

2 
e1 he J 1 [ch e1 +cos r; ]

2 
cdr; 

. Ch e I + COS 1) - C I • 2 C • Ch e I+ COS 1) 

r2" i . 
=Jo [l'nA~1{cosnr;-l'nB~1{sinnr;]2 

• 2c[-l-che1cosr;]dr; 

=l, 

say. Then we have 

I= irM[l' {nA~1{} 2 + l' {nB~1{} 2]- irN[l' {nA~'i'}{(n + l)A~1i 11 } J 
-irN[l'{nB~l{}{(n + l)B~1i 11 }] 

in which, we put, 

1 
M=--, 

2c 

Similarly, for the force component Fy, we have, 

J_Fy= l
2

" [2,'nA~V cos nr;-l'nB~1{ sin nr;] 2 

p Jo 

c sin r; 1 [ch e1 +cos r;J2 cdr; 
R1(ch e1 +cos r;) . 2 c . . ch e1 +cos r; 

= ~:" 2~1 [SnA~1{ cos nr;-l'nB~1{ sin nr;] 2 ·sin r;dr; 

=J_J 
2 

say. Then, we have, 

with M'=l/R,. 

(c) Effect of term with Cy. 

For the values of <fa, o<fa/or;, o<fa/oe along the circumference ~=~,, of our circular 
cylinder, we have, 

~~ =l'[nA~V sin m;+nB~i cos nr;J tanh ne, 

~~ =l'[nA~V cos nr;-nB~1{ sin nr;] 

Also, we have, for e=ei. 

-pcy ~~ =(r ~Y)[~~ she,sinr;+ ~~ (l+che,cosr;)]=rV 
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say. Using these values, we obtain, 

_!_Fx= (2" u[ sh2 ~1 -Ch ~1J- - cdr; -. 
p Jo ch ~1 +cos r; ch ~1 +cos r; 

=(
2
"[-cU] l+ch~1COS7J dy 

Jo (ch ~1 +cos r;)2 

As first part of this expression, we shall take up the term in a<jJ/a~. For 
which, we have, 

~
2" . arp (1 +ch ~I COS 7)) h C • d 

- c v -ac: ( h c: )2 • s .,, 1 sm r; r; 
o .,, c <>1+cosr; 

(A) 

Putting the value of arp/a~ into this expression (A), we find that it consists of sum 
of terms whose coefficients of A~1{ are, 

~
2,.[ . t h c:J (l+ch~1cosr;)she1sinr;d 

-cv n sm nr;· an n.,,1 · ( h c: )2 7J 
o c .,, 1 +cos r; 

=[ -n tonh n~1 sh ~1 ·Cy][l1n+ch ~il2n] 

while the terms which contain B~1[ are null. 
Next, as the second term, we take, 

_ (2" (c ±1!_)(1 +ch ~1 cos r;)2 
d 

Jo y ar; (Ch ~I +COS 7)) 2 7j 
(B) 

/ 
Putting the value of D<jJ/Dr; into this expression (B), we observe that it consists of 
sum of terms whose coefficients of A~1Z are, 

• ~ 2ir (1 +ch ~ i cos 7J )2 d - . [L 2 h c: I h2 f- J ] 
-nCy -( hC: )2 COSnY) Yj-nCy an+ C <,,! an+C <;;"!an 

o c .,,1 +cos r; 

while the terms which contain B~1[ are null. Summarizing these inferences, we 
obtain; 

+(Lan +2 ch ~ilsn+ch2 ~llan] ·A~1{ 

Finally, by repeating similar process of evaluation, we obtain; 

_!__ .F'y = ( 2
" U sh ~1 sin r; . cdr; 

p Jo ch ~1 +cos r; ch ~1 +cos r; 

= (
2
" sh ~1 sin r; [cU]d 

Jo (ch ~1 +cos r;)2 7J 

=.l'(ncv)[sh2 ~1 · tanh n~il4n-sh ~1U1n +ch ~il2n)] 

In these expressions, we have used following notations (as in the previous 
report); 
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J 
_ \ 2

" sin r; cos r; sin nr; d 
2n- Jo N2 r; 

fan= dYJ ~
2" cos2 r; cos nr; 
o N 2 ., 

_ \
2

" sin2 r; cos nr; 
f4n- Jo - N 2 dr; 

I _ \ 2
" sin r; sin nr; d 

in- Jo N2 r; 

I _ \ 2"cos r; cos nr; d 
an- Jo N2 r; 

r2ir cos nr; 
Lan= Jo ~dr; 

(Lan=fan+ J4n; N=ch .;1 +cos r;) 

All of these coefficients are expressible with the factor K~2l(J..1), which we have 
introduced before. The velocity of advance Cy of our frame of reference is given 
by; 

referring to Fig. 2. 
By summing up the above mentioned three items (a), (b) and (c), we are enabled 

to obtain actual value of hydrodynamic force (Fx, F1,) acting upon the circular 
cylinder of radius Rl. 

6. Numerical Example 

In order to illustrate the results of analytical study which was mentioned above, 
let us take up three cases, as mentioned below; (A), /31 =0, (B) /31 =rr/4, (C) /31 =rr/2. 
For each case we take Ri/D1 0 =l/2, and choose five values of ai/R1=0, 1/4, 1/2, 3/4 
and 1. Values of numerical coefficients a~1{, b~1i which gives coefficients A~1{. B~1i of 

Table 1. Values of bC,U for Case A [a~?=O]. 

0 1/4 1/2 3/4 

n=l + 0. 53589820 + 0 . 527 48000 + 0. 52178046 +o .51112122 +0.51471873 

n=2 -0 .12564432 -0.11144674 -0. 09981033 -0.09102321 - 0. 08340570 

n=3 + 0 . 03334566 + 0 . 02597835 +0.02083496 +o .01109093 +0.01428612 

n=4 - 0. 00892834 - 0 . 00608822 - 0 . 00434 786 -0. 00321806 -0. 00245101 

n=5 + 0 . 00239233 +0.00142734 + 0. 000907 49 + 0 . 00060590 + 0 . 00042040 
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Table 2. Values of a';!? for Case B [b~1?=-a'J?J 

0 1/4 1/2 3/4 1 

n=l - 0. 37893737 - 0 . 37 448086 -0. 37113694 - 0. 36855485 -0.36651499 

n=2 + 0 . 08884396 + 0. 08149485 + 0. 07529634 + 0 . 06998882 +o. 06538871 

n=3 - 0. 02357894 -0.01968873 -0.01671312 -0. 01436720 -0. 01248637 

n=4 + 0. 00631329 +0.00479014 + 0. 00372627 + 0. 00295901 + 0 . 00236804 

n=5 -0.00169164 -0. 00116540 - 0 . 00083099 - 0 . 00060951 - 0. 00045777 

Table 3. Values of a';!? for the Case C. (for every values of a1/R1) 

n=l n=2 n=3 n=4 n=5 

aoJ - 0 . 53589837 

I 

+ 0. 12564433 - 0 . 03334566 + 0. 00892834 - 0. 00239234 nJ 

b(l) 0 0 0 0 0 nJ 

I 

Table 4. Values of Numerical Coefficients kx, ky, fxa and fya. 

Case kx ky fxa fyb 

A1 -0.89108480 0 0.18103491 0 

A2 -0. 867 45146 0 0.15110533 0 

.:la -0. 85060578 0 0.09911495 0 

,: 14 - 0 . 83922654 0 0.07503160 0 

A5 - 0. 83085295 0 0.05282927 0 

B1 - 0. 63009250 - 0. 63009250 0.10921783 0.10921783 

B2 -0.61761916 -0.61761916 0.08222989 0.08222989 

Ba -0.60810073 -0. 60810073 0.06372090 0.06372090 

B4 - 0 ' 60064494 - 0. 60064494 0.05057822 0.05057822 

B5 - 0. 59558382 - 0 . 59558382 0.03820658 0.03820658 

c 0 -0.89108529 0 0 
--------~- -

Table 5. Values of Numerical Coefficients fxb,/yb,/xc and fyc. 

Case fxb fyb fxc fyc 

A1 - 0. 06206656 0 0 0 

.12 -0. 04014837 0 0 0 

Aa -0. 027 49631 () 0 () 

A4 -0.02109768 0 () 0 

A5 -0. 01721753 0 0 0 

B1 -0. 06194593 0 - 0. 03770697 0.02658908 

B2 - 0. 04603408 0 -0. 02029300 0.02030487 

Ba - 0. 03526371 0 -0. 01606071 0.01606076 

B4 - 0. 02770056 0 -0. 01267389 0.01267692 

B5 - 0. 02222053 0 -0.01028972 0.01028985 

c -0. 06206656 0 - 0 . 05332545 0 
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0.6 

[CJ[-ai?J 

0.5 [AJbW 

0.4 

0.3 

0.2 

[CJ CaWJ 

0.1 

[BJ C -b:};J 

Fig. 3. Coefficients am and bl,!{. 

infinite series solution of velocity potential <f>, are shown in Tables 1-3. Also, a 
rough graph is shown in Fig. 3, showing us that the mode of variation of these 
coefficients with the value of a1/R1 is comparatively slow. It will be noted from 
Fig 3, that the values of a;i'{ and b~? varies very slowly and nearly in straight 
lines, at least within the range of variation of the variable a1/R1 shown here. 

As to the values of hydrodynamical force (Fx, Fu) acting on the circular cylinder, 
we may account it in three steps, thus; 
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0.08 

ft[Case C] 

0.06 

/r[Case B] 

0.04 

0.02 

--)- (ai/R1) 

0 0.25 0.50 0.75 1.00 

Fig. 4. Contribution by term in t[(o¢/ox)Z+(o1'/oy)2], Fx= -fx[pD10(a1)ZJ. 

(a) Contribution by the term in a<jJ/at. 
This was done, by taking, approximately ila~1Uflai. in place of da~1t/da1. The 

result is given in the form, 

Fx= kx[pDioii1] + fxa[pD1o(iz1) 2
] 

Fy= ky[pDioii1] + fva[pD1o(il1) 2
] 

(b) Contribution by term in l/2[(a<j>/ax)2 +(a<j>/ay)2
]. This part was obtained in 

the form of, 
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fi:[Case C] 

0.25 0.50 

Fig. 5. Effect of term with Cy. 

Fx= -fx[pD1o(a1)2] 

Fy= -fy[pD1o(a1)2] 

0.75 

(c) Contribution by term in Cy. 

This part as obtained in the form of 

Fx= /xc[pD1o(li1)2
], Fv=fvc[pD1o(li1)2

] 

1.00 

Coefficients kx, kv; fxa,fva• etc., are numerical constants, whose values, as obtained 
by numerical calculation, are shown in Tables 4 and 5. It will be seen that, the 
effect of non-linear term in (a1)2 is rather small, in so far as we are concerned in 
the range of configurations taken up in our numerical estimations. 
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