EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title Generalized harmonic analysis of functions of two variables
Sub Title
Author ¥ARE, B 5B (Matsuoka, Katsuo)
Publisher BRRBAXFIFH
Publication year |1980
Jtitle Keio engineering reports Vol.33, No.6 (1980. 5) ,p.67- 81
JaLC DOI
Abstract On the basis of the Wiener formula of functions of two variables under a restricted limit process, a
new approach to the generalized harmonic analysis of functions of two variables is shown.
Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00330006-

0067

BRESFBAZZMERVARD NU(KOARA)IZEBEHEATVWAR OV TUY OEEER., ThThOEESE, ZLFTLFHRLWRTECREL. TOEIEEEEEICELLT
RBEETNTVET, SIACHLE>TR., EFELZZEFLTIRASEZL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

KEIO ENGINEERING REPORTS
VOL. 33, NO. 6, pp. 67-81, 1980

GENERALIZED HARMONIC ANALYSIS OF
FUNCTIONS OF TWO VARIABLES

KAaTsuo MATSUOKA

Dept. of Mathematics, Keio University, Yokohama 223, Japan

(Received January, 24, 1980)

ABSTRACT

On the basis of the Wiener formula of functions of two variables under a restricted
limit process, a new approach to the generalized harmonic analysis of functions of two
variables is shown.

§1. Introduction

Wiener [10] established the generalized harmonic analysis for the analysis of
paths of the Brownian motion. Wiener and A.C. Berry also proved the case of
functions of two variables (Wiener [10]). As is well-known, it is based on the so-
called Wiener formula. They use the circular mean concerning the double limit
process. It seems to be something restricted.

Now, it is worthwhile to consider a possibility of approaching this problem
by a more relaxed limit process. Recently, Anzai, Koizumi and Matsuoka [1]
proved the two-dimensional Wiener formula under a restricted rectangular mean
concerning the double limit process. In this paper, we shall establish the generalized
harmonic analysis of functions of two variables under this restricted limit process.

The proofs can be done along the similar lines as in Wiener [11].

§ 2. Definitions and theorems

First, we introduce the following class of functions.

DeriniTION 1. By W(R?), we denote the class of functions such that f(x;, ;)€
Li.(R*) and

1 T S
o7 S_T S It tdsat @1
is bounded in S, T>0.
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KaTtsuo MATsuoKA
Then we shall prove
TueoreMm 1. If flx), x;) belongs to the class W(R?), then

SO0 PR,
g S-w(1+sz)(l+t2) dsdt<co. 22

—o0

Next, we introduce the double generalized Fourier transform due to Wiener
[10, 11]. This is defined by
ius vt
] S J s e—~ dsdt
—1s

i L
+ ]S fs, t)ewm_le—ﬁdsdt
+)

+Lim i[g
)
~ms vt __
] fis, % L st

im o [
o’ 21

1 tus _ -
+LS S fis, 14— et 1ddt (2.3)
271' —1J-1 Z

0

B

If f(x,, x,) belongs to the class W(R?), then by Theorem 1 and the Plancherel
theorem, the double generalized Fourier transform s(u, v; f) is defined and we have

A s, v; fl=s(ute,v+y; f)—s(u—ev+y; f)—sw+e,v—n; f)+s(u—ev—2y; f)

A

=lim. _I_S S fs, 0 2sines M ~icus w0 gt (2.4)

A-oo 27T t

and
1 Sm Sw A, s, v F)|*dudy
167%7 ) el

_ 21 S“’ S s, B sm2 es sm_ 77td dr (2.5)

Ft> 7 N I s

On the other hand, Anzai, Koizumi and Matsuoka [1] proved the following two-
dimensional Wiener formula in the first quadrant R.? of the plane.

THEOREM 2. Suppose that f(z, 2)=0 in (xy, z2)€R. 2, f(1, 23) €L} (R,2) and

SlTS S s, Odsdt 2.6)

is bounded in S, 7>0. Then the limit relations

1 C,T pOIT
lim = CICZTZS S far, w)dodzy=A  (YCi, Cy>0) @7
and
in2 -1
tim S0 {7 e, g ST ST g s mn (VL G0 (28)
e 0 2

68



Generalized Harmonic Analysis of Functions of Two Variables
are equivalent in the sense that if either of the limits (2.7) or (2.8) exists, then
the other limit exists and assumes the same value.

By the way, if we put S, T}¢, 5 and C instead of C,7, C.;T, ¢C, 7%, C;~* and C,/C,
respectively, then S=CT and p=Ce hold. Hence, (2.7) and (2.8) of Theorem 2 are
equivalent to the statements

“ 1
ShmeﬁS S f(s, t)dsdt

exists and has the same limit for every positive constant C whenever S and T tend
to infinity in such a way that S=CT " and

2 2
S S s, t)sm es sin ntddt

&0 7'L'

exists and has the same limit for every positive constant C whenever ¢ and 7 tend
to zero in such a way that »=Ce ” respectively.

For the sake of simplicity, we shall from now on use the notations R and
R instead of denoting the above limit processes respectively. And we shall refer
to these limits as the restricted limits. Therefore, using the notations R, and R,
Theorem 2 is rewritten as follows:

THEOREM 2'. If f(x,, x,) satisfies the hypotheses of Theorem 2, and either of
the limits

Re-lim. SITS S s, Ddsdt 2.9)

or

Re-li

2
4778 S s, t)smzes sin m‘ddt 2.10)

&,7—-0

exists, then the other limit exists and assumes the same value.
From this theorem and (2.5), we get

Tueorem 3. If f(x,, x.) belongs to the class W(R?), then we have

T
2
e fim g {7 1At oprasae

1 ©o
.1 A . 2 X
Relim 7o {0 1,05 plrauan, (211)

in the sense that if either side of (2.11) exists, the other side exists and assumes
the same value.

Now, we introduce the following two classes of functions which are due to
Wiener [10, 11].
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KaTsuo MATsuOKA

DeriNITION 2. By S(R?), we denote the class of functions such that f(z,, x2)€
W(R?) and

oz, 223 f) =.§2,-Sl'iTI£1m4%S: S:f(x', +5, 22 +f(s, Hdsdt (2.12)

exists for all (z,, z;)eR2

DeriniTION 3. By S'(R?), we denote the class of functions such that f(x,, .)€
S(R?) and ¢(x,, x2; f) is continuous on RZ

S’(R?) is a proper subclass of S(R?). In other words, there is a function
&(x1, x2; f) defined by (2.12) which is not continuous on R% For example, take
f(@, x2) =exp {i(x:*+.")}. Then

o1, 225 f) =R~ hm 4SlT ST SS @ (F1t O (a2 = i) I g
_{1 (21, 22)=(0, 0))

|0 (elsewhere).

Here, we shall consider the properties of functions of S(R?) and S’'(R?).

THeOREM 4. If f(xi, x.) belongs to the class S(R?), then
[$(z1, 225 £ =6(0,0; f) (2.13)

for all (x,, ;)€ R2.

THEOREM 5. Suppose that f(x,, x,) belongs to the class S(R?) and ¢(xi, x2; f)
is continuous at (x), x:)=(0,0). Then ¢(x,, z2; f) is continuous at every point of
R? and f(x,, xs) belongs to the class S'(R?).

THEOREM 6. If f(x, x:) belongs to the class S(R?), then

1 (=~
s 20; )= Rorlim g {7 |7 esomimia, st s paude. @10

Tueorem 7. If f(z, x;) belongs to the class S(R?), then it will belong to the
class S’(R?) when and only when both

oo ) —-A
lim ®R,Tm S [S +S ]IAMs(u, v; ) dudo=0 (2.15)
A-oo &,7=0 1677.' 77 —c0 —00_
and
e 1 =) —-A 0
lim Re-lim ————[S + S ] S |A., s, v; )*dudv=0 (2.16)
A-co 6,70 16?(2677 A —o0 -
are true.
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Generalized Harmonic Analysis of Functions of Two Variables

Finally, we shall show Theorem 8 below concerning the spectral representation
of the correlation function ¢(z, z2;f) of f(zi, xs). For this, we first observe the
following two well-known theorems for positive definite functions. Now, let 3,
be the Borel field in R2

Theorem (Bochner’s representation theorem).* If ¢(x,, xs) is a positive definite
function, then there exists a measure x on (R? @.) such that p(R?)=¢(0,0), and

Py, 22)= ’21;800 S Al 7 () (2.17)

—00 o —00

holds.

Theorem (Lévy’s inversion formula). The measure px of (2.17) of Bochner’s
representation theorem is represented, by ¢(x,, zs), as follows: If I=(a:, a2]X (b1, B2l
is a finite continuity interval of p, then we have

A4 A —1ax) __ p—ta1Z —182%2 __ p—if12;
L S S O e e T oy a)dmdzs . (218)
-4

#(I)—_—IAI—IE 2_7t -4 —ixl "'ixz

Thus, the positive definite function ¢(x;, z:) determines uniquely the measure p.
We second observe the following definition.

DeriNITION 4. A function A(#x,v) is called monotone increasing if
Mu+h,v+E)—A(u, v+k)—Au+h, v)+A(n, v)=0 (2.19)
for all %, £=0.

Then we can state

THEOREM 8. If f(x, x.) belongs to the class S/(R?), then ¢(x,, x2; f) is positive
definite. Thus, there exists a monotone increasing function A(w,v) such that

Sw S:‘d/’(u» )| =¢(0,0; f), and

—00 o —

&, 225 f )=21—7CSm Sw et uTvEd g (g 1) (2.20)

holds. Moreover, if (a;, a2]X (81, B:] is a finite continuity interval of the interval
function generated by A(%,v), then we have

A(“Z, .82) '—A(aly ﬁz) _A(aZ’ ﬁl) +A(al: ﬂl)
1 A A e—iaz.z'l _e—ta;.’vl e—iﬂzxz _e—iﬁx.’b‘g
~lim 5~ S S : :
—Ad-4a —1ix; — 122

¢, 32 N)dzmdr, . (2.21)

A= 21

* Here, by positive definiteness, we mean the function under consideration to be con-
tinuous.
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KaTsuo MATsuoOKA
§3. Proofs of theorems
First, we prove Theorem 1.

Proof of THEOREM 1. If we integrate by parts for each variable, then

B4 | fls,
Sm S_Jf e

B A
e L I—— 1 2 2 Fl ]52
(1+A2)(1+BZ)S_BS_,, 76 o)lfdiid

+_1_SB_4L,,
1+A% ), L+
1 4 4s? 1 (8¢ \

+1+BZSO (].-I—SZ)ZV S 92s S—Bstlf(El’ 52)‘ dédé,

BprA 452 4t2 1 t 8 . 8 7z
+, S Atsy Aoy P¥g Sdggs'f SR

4AB 8A " 8B . » » }
{(1+AZ)(1+B2) + 1+ A tan™' B+ -—— 118° tan'* A+16tan' Atan ' B

d 1 t A /= Zd d
tz—tgg [, )lMdeds,

IIA

1 T
. 0<s T<oo4ST S S | f(s, t)|2dsdt

T
2 . ——
e

Thus, (2.2) is established.

|£(s, )|*dsdt < oo .

Next, in order to prove Theorems 4, 5 and 6, we show several lemmas which
are due to Wiener [11).

LEmMA 1. If ¢(xy, xo; f) defined by (2.12) exists at (xy, 22)=(0, 0), then for any
real numbers @, b,

1 (7 ,
4STS_TS_ \f(s+a, t+b)[*dsdt

=@y lim 481TST S (s, B)*dsdt . 3.1)

g%l llm

Proof. Let us notice that if S>|a|, T>1b|, then

(=5 ) () T L . 5 S

<1 SM S ps, pldsdt= o " (7 (f(sta, t4b)Pdsdt
=ET S S, S S S s S+a, S

~sia 45T
|al |5] R T+lbl pS+lal \
(1) (2 ) AT Vore ) g S

Thus, since both the first and the last of these expressions tend to ¢(0,0; f) as

T+b
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Generalized Harmonic Analysis of Functions of Two Variables
S, T—oo (R1), we have (3.1).

Now, we have

f(@its, 22 +0)f(s, 1) = %{If(xx +8, a0+ f(s, HIP— | f(wr+s, me+5)— f(5, 1)
+ilf(@+s, 1) +if(s, O =il f(@i+s, 2+ ) —if(s, O} . (3.2)

Using this, we can show

Lemma 2. If f(x,, x:) belongs to the class S(R?), then for any real numbers
a, b,

1T .
Re- lim. 4STS S Sarks+a, st t+5)7GFa, T b)dsdt

=Ry Jim 451TST S Farts, 207G, Bdsde (33)

Proof. Since f(z,, z») belongs to the class S(R?), by (3.2) and Lemma 1,
1 (7 S
R lim 4STS S F@i+5+a, zati+b)FGTFa I Bydsdt

1 T+b S+a
gzl lim S S 1 @its, 2t D)+ 1G5, )

s, T—«»4ST T+bJ-Sta
- If(xl_l—sy x2+t)_f(s: z‘)|2+1|f(x1+s, .'I?z+t)+if($, t)lz
—i| f(z1+S, L2+1)—if (s, £)|Hdsdt

1 (7 -
=@ lim 4STS S ks, ot 07, Bdsde

Thus, the lemma is established.

Furthermore, we have for any real or complex number w such as |w|=

[f @i+, ma ) +wf(s, HI*=f(@i+s, D+ f(s, 1)
+@f (@145, 2o+ OF(S, H+wf(@+s, 22+ (s, 1), (34)

from which we have

LEmMA 3. If f(x,, x;) belongs to the class S(R?), then for any real or complex
number w such as |w[=1,

Vi
R lim 4;TS S f(@rts, za+8)+10f(s, £)|*dsdt 35)
exists for all (xi, 23)€ R

On the other hand, we can obtain
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KATsuo MATSUOKA

Lemma 4. If f(x,, x;) belongs to the class W{R?), then we have for any =z€
(_OO) OO)’

1 = (e .
Rlim 7 S S 1A, 50, (8,05 f)— oA, s(, v f)|*dudy=0 3.6)

and for any x,e(—oo, co),

1 « )
seetimgeo (" {7 s u; p-evn, st s plawan=0, @)
where
4 A 1 1
By (8,0 f):l.i.m.lg S Flarts, 2SS 2SN swsingsgr  (38)
A0 271' -4 J~-4 t
and
A
Ag,ﬂszz(u,v;f)zl.i.m.—l—g S f(s, 2+t)231n SSM e-iwstgsdr - (3.9)
Ao 21 ) 4 ¢
respectively.

Before proving the lemma, we observe the following: If f(z, z.) belongs to
the class W(R?), then in a way similar to the proof of Theorem 1,

A0 el

1 (7 ]
i <(1+21)- sup ZSTS S (s, B)[2dsdt <o .

-4 14z 0<8,T <o

It follows, therefore, that

=— 1 | f (s, t)|

llengg_TdtS_w (20 08 g, <o (3.10)
Similarly,

= 1 I,f(s,xz)l

1;12“258 dsS_w (20 gy oo 3.11)

Proof. Let us notice that

2sine(t —x) _ 2sin et
E—=zx

={lél+]=] (3.12)
4e (¢l =2[x]) .

[M (&} >21z])

As for detailed calculations, refer to Wiener [11].
Now, since
A‘vrls-l‘l(u: v, f)'—ewzlAc.vs(u, v, f)

4 rd . _ . .
—lim. _1_ S S £, t)[ 2sine(s—a) 2sin es] 2sinyt g-imta-a0 o0 Js it
Aow 2 —A4J-4 S—x S t
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Generalized Harmonic Analysis of Functions of Two Variables

it follows from the Plancherel theorem and (3.12) that

lim e 167z2Ce S S [Ac.ciSe,(%, 05 f)—e™ ™D, ous(u,v; f)|*dudy
@l 1 S“’ sin® Cet S Lf(s, DI
< C— d —
1‘1_1:1;1 T nCe }.o 2 t is1>212q ([S]+]@1])?

_Hi—mie_ 1 S‘” sin? Cst
e—=0 T nCe —

dtS £ (s, 8)|ds .
Isls2l2]

Consequently, using the one-sided Wiener formula of Koizumi [6], the last expres-
sion does not exceed, for every positive constant C,

s OP

jsisaizq (I8] 20 ])?

1 2
+iim 0(e)- hmZTS dtgmsmﬂ [f(s, B)l*ds

e—=0

1
ifm 0()-1iim 5 S sz

&0

which turns out to be 0 by (3.10), and (3.6) is proved. Similarly, (3.7) is proved
by (3.11).

Moreover, we can easily obtain

LeEmMmMA 5. If f(x, x;) belongs to the class W(R?), then we have for any
(271, x2)€R27

1 =
‘%}Mlez S S 1A¢. 182,050 05 f)

—e““‘”“’”‘”)A,,,]S(%, v, f)]zdudvzo , (313)

where
Al.'qsxl.xz(u; v; f)

4 ¢
=Lim. —I—-S S flx1+s, x2+t)251nes Zsingt
A

¢

e tus oD dsdt | (3.14)

- 21

Proof. First, we have

A, ;Sz1.2y(th, V5 ) —@IH0mIA, s(u, v ; f)
Z{Ae'vszx.zz(u: v, f)_eiszt.vsxl(u, v; f)
—e‘“"IA,_”sxz(u, v; f) +e““zl+”"2)A,,,7$(%, v; f)}
+He=A, 155, (u, v; f)—e@nromA, s(u, v; f)}
+{ewzlAe.vs&"2(u) v; f)—etwmrvmA, s(u, v; f))
=A,(u, v) +0s(u, v) +Dg(ns, v), say.

Here A.,,s:,(%, v; f) and A, ,s:,(u, v; f) are defined respectively by (3.8) and (3.9) of
Lemma 4. Now, since
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4 4 . _ .
Ay(x, v)=1im. LS S £Gs, t)[2s1n g(s—z:) 2sin ss]
Ao 2 4

T J-a S— N

. [2 sin p(t —xs) _ 2sin 9t ]e—ilu(s—zp+v(n—xz>)dsdt ,
t-xz t

it follows from the Plancherel theorem and (3.12) that

Sm Sw A\ (, v)*dudy

—00 J —00

(s, D)
ersatsg QST xR Tl
(s, O
wrsatey QSTH T 20

| f(s, B)°
is1sz1zy (18] +]2])? dsdt

+(de)2(dp)? 81 | S \f(s, Bl¥dsdt .

18152]2y1

= (16|, [)*(167] s )? S,“w | S
+(16¢|:])*(4n)* S 1¢1521.2) S

+(4e)*(167| 2] )? S|c|>21‘”2' S

Consequently, by Theorem 1,

R,-lim _—}-ng Sm 1As(t, o) Pdudy =0 .

oo

Also, by Lemma 4,

o0

QRe-lim

1 * 2 —_—
WO%S_M S_mmz(u, )P dudp =0

and

o

g'zz'lim

1 ~ 2 —
Jm mg_wg—m [A3(u, U)| dudv=0 »

respectively. Thus, (3.13) is proved.
Therefore, we have

LemMaA 6. If f(x, x») belongs to the class S(R?%), then for any real or complex
number w such as |w|=1,

T S
R, lim LS S |F (@45, 2at-8)+wf(s, )*dsdt
S.T-°°°4ST _TJ-8

oo

. 1
N 922-}.1713 1672y S_m

“|A..,s(u, v; f)*dudy . (3.15)

S {2+we—i(ux1+vz2)+wei(uz1+uzz)}

Proof. 1t follows from Lemma 3, Theorem 3 and Minkowski’s inequality
that
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1/2

T
R lim {45%"8 S frts, mtd+sG, t)]zdsdt}

(1 e
2922-111'11 {m S—wg_mlAc,yszl.rg(u; v f)

£, n~0

1/2
a0l s(, 0 f)]zdudv}

1 (e
= R»-lim {m S_w S_w |Ae.7sz1.zg(u’ v; f)

€970

1/2
— et wTIDA sy, v f )Izdudv}

+gz2.1im [w_l_._\ Sw Sm {2+we—i(uz1+vx2) +wei(uz1+v:cz)}
16727 J e ) —o

€70

1/2
'lAs.nS(u,v;f)lzdudv] .
Thus, by Lemma 5, (3.15) is proved.

Proof of THEOREM 4. By the Schwarz inequality and Lemma 1, we have

172

9@, 03 1) = R Tim {Elng S faks, xg—i—z‘)lzdsdt}

1 T 1/2

sz § s s
=¢(0,0; /).

Thus, (2.13) is proved.

Proof of TuEOREM 5. By the Schwarz inequality, we have

[¢(ws+¢e, 22+9; F)— (2, 225 1)

T 1/2
=& Tim LlsT“S S |f(x1+e-|-s,x2+77-|—t)—f(x1+s,xz+t)|2dsdt}
1 T . 1/2
{451‘8 S (s, t)|dsdt} .

If we now appeal to Lemmas 1, 3 and 4, then
1 T
R lim. 4S—TS S (s e 45, et nt-8)— s+, za+-0)|2dsdt
1 T
=@, lim 4-578 S f (@ ets, zatnt0)|*dsdt
+ Ri- lxm 4ST ST S S[f(:c1+s, z2+1)|2dsdt

T _
— Ra- 11m S S Sfxite+s, zotn+8)f(@+s, za+1)dsdt
wAST -8
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T
—Ri- lim —= S S f(x1+3, x2+t)f(x1+s+s, x2+77+t)dsdt
5,7-04ST s

=2¢0,0; f)— (e, 95 /) —¢(—e, —7; f).

Thus, we have

[p(z1+e, x2t9; f)—d(xy, 225 )
=[6(0,0; £/){26(0,0; f)—¢(s, p; /)—d(—e —p; 2, (3.16)

from which the theorem follows immediately.

Proof of THEOREM 6. If we take w in (3.15) of Lemma 6 successively to equal
+1, =i, and combine four expressions, then we obtain (2.14) by (3.2).

Finally, we prove Theorems 7 and 8.

Proof of THEOREM 7. Let f(x, x:) belong to the class S(R?). Now, let us
define

1

Bl 223 /)= g

Sw Sw e |, s(u,v; f)|*dud . 3.17)

Then, it follows at once that
|fe.o(®1, @25 [ =650, 0; 1) .

Inasmuch as ¢.,,(0,0; /) tends to ¢(0,0; f) as ¢, p—>0(Ry), b..,(x1, 2} f) is bounded
for all (z;, z:)eR? and small values of ¢ It, therefore, tends boundedly to
&(x1, 225 f) as &, p—0(Re). Thus, by the bounded convergence theorem and Fubini’s
theorem, we get

0 (=20 062, 05 ya

=@y hmlgx < '””")qse (1, 0; f)dzy

&0 l

4 sin? L3

=Re-lim

i 2
lim 2 eryS S —i |A,,,s(u, v; F)|*dudv .

Hence, if f(x), z:) belongs to the class S’(R?), then we have

. 1 2 l.ﬁ]l
30,0, H=tim 3" (1-50) 000,05 1)z,
and
1 e (e 4 sin? z;l
11m Re- }1:_1}0 —16;5—5 S 1— e |A,,,s(w, v; f)|2dudv=0. (3.18)
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Since, when |ul| >,

4sin2ﬁz—
2 4
eyl

it follows from the positiveness of the integrand in (3.18) that

1 H 1 . ° w0 . 2 —_
gggzz-}%mg [ 40 st 05 =0

—o0 /A -0

or simply

H im 1 - < 4 . 2 —

and we obtain (2.15). Similarly, we obtain (2.16).
Again, let f(x,, x;) belong to the class S(R?) and let (2.15) and (2.16) hold. Then,
by (2.14) of Theorem 6,

g1, 225 £)— (0,05 f)

i 1 . - . 2
gzgaz-mmg |S+S ]IAe.vS(u,v,f)ldudv

-0 —oo0.

+2 Rlim L[Sw + SA] S:mg,vs(u, vs f)l*dudy

&,7—0 ].67[2877 A

—00. -

o A A

+ Rs-lim _._]'_.__. S S |ei(ua:1+vrz)_1| |A;,,S(u, v; f)lzdudv
e0 167%n J_4 )4

=L+L+1;, say.

Now, let us choose A, as is possible by (2.15) and (2.16), so large that I, and
I, do not exceed 6/3. Let us then choose |x,| and |z.] so small that over (— A, A)
X(—A, A)

Iei(u:cﬁvzz) _

[ —
340,0; f)
and, therefore, I; does not exceed 6/3. Thus, since we have

|¢($1, T2 ; f)_¢(0’ 07 f)]éa »

it follows from Theorem 5 that f(x,, x5) belongs to the class S’(R?). This completes
the proof of Theorem 7.

Proof of THEOREM 8. From Theorem 4 and Definition 3, it follows immediately
that ¢(ax:, x2; f) is bounded and continuous on R?. Also,

(—x1, — %25 f)=¢(21, T2 1)

for all (zi, xz)€ R?%. Furthermore, for any finite sequence {(a;, B1), -+, (@s, fa)} Of points
in R* and any finite sequence {2z, -+, 2,} of complex numbers,
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% 1¢(a,,_a,, brB22,

= R lim o 4ST #;1 STS Flap—arts, Bu— By +0F G, Bdsdtz,z,

T
=& shrr?w4ST S S

(a,,—l—s B.t8)z, dsdt>0

Consequently, ¢(x,, z5; f) is positive definite. Thus, by Bochner’s representation

theorem and Lévy’s inversion formula, there exists a measure x on (R?, @,) such

that p(R%)=¢(0,0; f), and (2.17) and (2.18) hold with ¢(z, x2; f) instead of ¢(x,, xs).
Now, let us put

t 0=\ | due, . (3.19)

Then, A(uw,v) is monotone increasing and

Va0 = " duten e0=u®@=p0,0; ).
Moreover, by (2.17) and (2.18) with ¢(x,, x5; f) instead of ¢(x, z2), we have (2.20)
and (2.21). This completes the proof.

Remark. The generalized harmonic analysis we established in this paper was
based on the two-dimensional Wiener formula (Theorem 2 or 2’). Its limit process,
therefore, also depended on the limit process of the above two-dimensional Wiener
formula. On the other hand, the two-dimensional Wiener formula is also proved
under the unrestricted rectangular mean concerning the double limit process. For
details, refer to Pitt [8] and Rudin [9]. Thus, if we base the argument on this
sort of two-dimensional Wiener formula, then the generalized harmonic analysis
also holds under the above limit process instead of the restricted limit process.
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