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KEIO ENGINEERING REPORTS 
VOL. 33, NO. 6, I>I>. 67-81. 1980 

GENERALIZED HARMONIC ANALYSIS OF 
FUNCTIONS OF TWO VARIABLES 

KA TSUO MATSUOKA 

Dept. of Mathematics, Keio University, Yokohama 223, Japan 

(Received January, 24, 1980) 

ABSTRACT 

On the basis of the Wiener formula of functions of two variables under a restricted 
limit process, a new approach to the generalized harmonic analysis of functions of two 
variables is shown. 

§ 1. Introduction 

Wiener [10] established the generalized harmonic analysis for the analysis of 
paths of the Brownian motion. Wiener and A. C. Berry also proved the case of 
functions of two variables (Wiener [10]). As is well-known, it is based on the so­
called Wiener formula. They use the circular mean concerning the double limit 
process. It seems to be something restricted. 

Now, it is worthwhile to consider a possibility of approaching this problem 
by a more relaxed limit process. Recently, Anzai, Koizumi and Matsuoka [1] 
proved the two-dimensional Wiener formula under a restricted rectangular mean 
concerning the double limit process. In this paper, we shall establish the generalized 
harmonic analysis of functions of two variables under this restricted limit process. 

The proofs can be done along the similar lines as in Wiener [11]. 

§ 2. Definitions and theorems 

First, we introduce the following class of functions. 

DEFINITION 1. By W(R2
), we denote the class of functions such that f(xi, x 2) e 

L~oc(R2) and 

1 \T rs 
45T J-T J _s l/(s, t)l2dsdt (2.1) 

is bounded in S, T> 0. 
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Then we shall prove 

THEOREM 1. If /(xi, x2) belongs to the class W(R2), then 

\oo \00 l/(s, t)i2 
J _00 J _00 (1 + s2)(1 + t2) dsdt <co . (2.2) 

Next, we introduce the double generalized Fourier transform due to Wiener 
[10, 11]. This is defined by 

. 1 [~A ~-1 J [~A ~·-1 J e-ins e-ivt s(u, v; /)=l.i.m. 
2
- + + /(s, t)~ --=-:- dsdt 

A ~00 7r 1 - A 1 - 4 ZS zt 

. 1 [~A ~-1]~1 e-ins_le-ivt +Li.m. -
2 

+ /(s, t)--. - --:--dsdt 
A ~00 7r 1 _A -1 - ZS - zt 

+ l.i.m. _21 (1 [\A+ r-1 ]!(s, t) e-i~s e-ivt ~ 1 dsdt 
A~00 7r J-1 J1 J_A -lS -zt 
1 ~ 1 ~l e-ins_ 1 e-ivt_ 1 + -
2 

/(s, t) --. - --. ~ dsdt. 
7r -1 -1 -ZS -zt 

(2.3) 

If /(xi, .xz) belongs to the class W(R 2
), then by Theorem 1 and the Plancherel 

theorem, the double generalized Fourier transform s(u, v; f) is defined and we have 

A,, ~s(u, v; /)=s(u+e, v+r; ;f)-s(u-e, v+r; ;f)-s(u+e, v-r; ;f)+s(u-e, v-r;; f) 

- l . J_ ~A ~A Ji( t) 2 sin eS 2 sin r;t -icns vt)d d - .i.m. 
2 

s, e s t 
A~oo 7r -A -A S f 

(2.4) 

and 

1 ~
00 

~
00 

-
16 2 

IA,, ~s(u, v; f)i2dudv 
n er; -oo -oo 

= -+- \00 \oo l/(s, t)i2 sin: eS sin: r;!_ dsdt. 
7r er; J _00 J _00 s t 

(2.5) 

On the other hand, Anzai, Koizumi and Matsuoka [1] proved the following two­
dimensional Wiener formula in the first quadrant R+ 2 of the plane. 

1 errs 
ST Jo J/Cs, t)dsdt (2.6) 

is bounded in S, T>O. Then the limit relations 

(2.7) 

and 

(2.8) 
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are equivalent in the sense that if either of the limits (2.7) or (2.8) exists, then 
the other limit exists and assumes the same value. 

By the way, if we put S, T, e, r; and C instead of C1T, C2T, eC1-1
, sC2-1 and Ci/C2 

respectively, then S=CT and r;=Ce hold. Hence, (2.7) and (2.8) of Theorem 2 are 
equivalent to the statements 

1 ~T~S " lim ST f(s, t)dsdt 
S,T-+oo o o 

exists and has the same limit for every positive constant C whenever Sand T tend 
to infinity in such a way that S=CT " and 

" lim --i- loo loo f(s, t) sin: es sin: r;t dsdt 
•, 7]-+0 n sr; J 0 J 0 s t 

exists and has the same limit for every positive constant C whenever sand r; tend 
to zero in such a way that r;=Ce " respectively. 

For the sake of simplicity, we shall from now on use the notations $1 and 
$2 instead of denoting the above limit processes respectively. And we shall refer 
to these limits as the restricted limits. Therefore, using the notations $1 and $2, 
Theorem 2 is rewritten as follows : 

THEOREM 2'. If /(xi, x 2) satisfies the hypotheses of Theorem 2, and either of 
the limits 

1 ~T ~S $1- lim ST f(s, t)dsdt 
S,T-+oo o o 

(2.9) 

or 

m 1. 4 ~
00 

~
00

/( ) sin
2 

eS sin
2 

r;t d dt ~2-1m-2 - s, t --2 ---2 - s 
•,7]-+o n er; 0 0 s t 

(2.10) 

exists, then the other limit exists and assumes the same value. 

From this theorem and (2.5), we get 

THEOREM 3. If /(xi, x2) belongs to the class W(R2), then we have 

1 lT rs 
SR1-}~~ 4ST J_T J_s lf(s, t)j

2
dsdt 

1 ~
00 

~
00 

= $2-lim -
16 2 Ill •. 'ls(u, v; f) l 2dudv, 

e,7] .... o n er; -oo -oo (2.11) 

in the sense that if either side of (2.11) exists, the other side exists and assumes 

the same value. 

Now, we introduce the following two classes of functions which are due to 
Wiener [10, 11]. 
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DEFINITION 2. By S(R2), we denote the class of functions such that /(xi, x2) E 

W(R 2
) and 

(2.12) 

exists for all (xi, x2)ER2. 

DEFINITION 3. By S'(R2), we denote the class of functions such that /(xi, x2)E 
S(R2) and ¢(xi, x2; f) is continuous on R2• 

S'(R2
) is a proper subclass of S(R2). In other words, there is a function 

¢(xi, x2; f) defined by (2.12) which is not continuous on R2• For example, take 
f(x1, x2)=exp {i(x12+x22)}. Then 

</J(Xi, X2; f)=SR1· lim _1_ ('T rs ei<Cx1+s)2+(xz+t)2Je-i<s2+t2)dsdt 
S,T-+oo4ST J_T J_s 

= {1 ((Xi, X2)=(0, 0)) 
0 (elsewhere). 

Here, we shall consider the properties of functions of S(R2
) and S'(R2

). 

THEOREM 4. If f(xi, x2) belongs to the class S(R2), then 

(2.13) 

THEOREM 5. Suppose that f(xi, x2) belongs to the class S(R2) and ¢(xi, x2; f) 
is continuous at (x1, x2) = (0, 0). Then ¢(xi, x2; f) is continuous at every point of 
R2 and /(xi, x 2) belongs to the class S'(R2). 

THEOREM 6. If f(x1, x2) belongs to the class S(R2), then 

1 ~
00 

~
00 

<fa(x x · f)=SR -lim -- ei<uxi+vxz) 1a s(u v · f)l 2dudv 
" 

2 
' 

2 
•• ,, ... o 16tr2c1J -oo -oo '• TJ ' ' • 

(2.14) 

THEOREM 7. If f(xi, x2) belongs to the class S(R2), then it will belong to the 
class S'(R2

) when and only when both 

(2.15) 

and 

_ 1 [~"° ~-A] ~
00 

lim SR2-lim -
16 2 + 1a •. 1)s(u, v; f)l 2dudv=O 

A-+oo ,,,, ... o tr €1) A -oo -oo 

(2.16) 

are true. 
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Finally, we shall show Theorem 8 below concerning the spectral representation 
of the correlation function <jJ(x1, x2; f) of f(xi, x2). For this, we first observe the 
following two well-known theorems for positive definite functions. Now, let 9.32 
be the Borel field in R2

• 

Theorem (Bochner's representation theorem).* If <jJ(x1, xz) is a positive definite 
function, then there exists a measure µ on (R2

, 9.32) such that µ(R2)=</J(O, 0), and 

(2.17) 

holds. 

Theorem (Levy's inversion formula). The measure µ of (2.17) of Bochner's 
representation theorem is represented, by <jJ(xi, x2), as follows: If l=(a1, a2] X (f'1, ,82] 
is a finite continuity interval of µ, then we have 

1 ~A ~A µ(l)=Iim -
2 A-+oo 7r -A -A 

(2.18) 

Thus, the positive definite function <jJ(xi, x2) determines uniquely the measure µ. 

We second observe the following definition. 

DEFINITION 4. A function A(u, v) is called monotone increasing if 

A(u+h, v+k)-A(u, v+k)-A(u+h, v)+A(u, v)~O (2.19) 

for all h, k~O. 

Then we can state 

THEOREM 8. If /(xi, x2) belongs to the class S'(R2
), then <jJ(x1, X2; f) is positive 

definite. Thus, there exists a monotone increasing function A(u, v) such that 

~:J:00 ldA(u, v)I =<jJ(O, 0; f), and 

(2.20) 

holds. Moreover, if (ai, a 2] x (f'i, f'2] is a finite continuity interval of the interval 
function generated by A(u, v), then we have 

(2.21) 

* Here, by positive definiteness, we mean the function under consideration to be con­
tinuous. 

71 



KATSUO MATSUOKA 

§ 3. Proofs of theorems 

First, we prove Theorem 1. 

Proof of THEOREM 1. If we integrate by parts for each variable, then 

r B r A 4S2 4f2 1 r t rs 
+Jo Jo (1 +s2)2 (l +t2)2 dsdt 4st J _i J )f(~1, ~2)12d~1d~2 

< { 4AB ~ _1 B ~ -1 A 16 -1 A -1 B} = (l+A2)(l+B2) + l+A2 tan + l+B2 tan + tan tan 

1 rT rs 
. o<~~~oo4ST J _T J _s lf(s, t) 12dsdt 

1 ~T ~S ;:::: {1 +4rr +4rr2} · sup -
45

T lf(s, t)i2dsdt< CXJ. 
o<S,T<00 -T -8 

Thus, (2.2) is established. 

Next, in order to prove Theorems 4, 5 and 6, we show several lemmas which 
are due to Wiener [11]. 

LEMMA 1. If <jJ(x1, x2; f) defined by (2.12) exists at (x1, x2)=(0, 0), then for any 
real numbers a, b, 

1 rT rs 
.%·}~~004ST J_T J_s lf(s +a, t+b)l

2
dsdt 

1 ~T ~S = SRi- lim 45T lf(s, t)l2dsdt. 
S,T .... 00 -T -S 

(3.1) 

Proof. Let us notice that if S> lal, T> lbl, then 

( 
lal) ( lbl) 1 rT-lbl rs-laJ 2 

1- S 1-T 4(S-lal)(T- lbl) J-r+Jbl J-s+1a1 lf(s, t)I dsdt 

1 \T+b cs+a 1 \T rs 
;:::: 45y J-T+b J-s+a lf(s, t)l

2
dsdt= 45T J-r J_s lf(s+a, t+b)l

2
dsdt 

( 
!al) ( lbl) 1 ('T+lbl \S+Jal 2 

;:::: 1+5 l+y 4(S+lal)(T+lbl) J-r-1b1J-s-1a1lf(s,t)I dsdt. 

Thus, since both the first and the last of these expressions tend to <jJ(O, 0; f) as 

72 



Generalized Harmonic Analysis of Functions of Two Variables 

S, T ~oo (SR1), we have (3.1). 

Now, we have 

-- 1 
f(x1 +s, X2 +t)f(s, t) = 4 {!/(x1 +s, x2+t)+ f(s, t)l 2- lf(x1 +s, x2+t)- f(s, t)l 2 

+ilf(x1 +s, x2+t)+if(s, t)l 2-ilf(x1 +s, x2+t)-if(s, t)! 2
}. (3.2) 

Using this, we can show 

LEMMA 2. If f(x1, x2) belongs to the class S(R2
), then for any real numbers 

a, b, 

(3.3) 

Proof. Since f(x1, x2) belongs to the class S(R2), by (3.2) and Lemma 1, 

SRr}~1:1004:T ~:T ~:8 f(x1 +s+a, x2+t+b)f(s+a, t+b)dsdt 

1 1 ~T+b ~S+a 
= -

4 
SR1- lim 

4
ST {lf(x1 +s, x2+t)+ f(s, t)l 2 

S.T ..... 00 -T+b -s+a 

- lf(x1 +s, x2+t)- f(s, t)l 2+ilf(x1 +s, x2+t)+if(s, t)l 2 

-ilf(x1 +s, x2+t)-if(s, t)l 2}dsdt 

Thus, the lemma is established. 

Furthermore, we have for any real or complex number w such as lwl =l, 

lf(x1 +s, x2+t)+wf(s, t)l 2 = lf(x1 +s, x2+t)l 2+ lf(s, t)l 2 

+wf(x1+s, x2+t)f(s, t)+wf(x1+s, x2+t)f(s, t), (3.4) 

from which we have 

LEMMA 3. If /(xi, x2) belongs to the class S(R2), then for any real or complex 
number w such as lwl =l, 

(3.5) 

On the other hand, we can obtain 
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LEMMA 4. If f(xi, x2) belongs to the class W(R2
), then we have for any x1 E 

(-co, co), 

(3.6) 

and for any x2E(-co, co), 

(3.7) 

where 

A ( • /)-l" 1 ~A ~A f( ) 2 sin cS 2 sin r;t -i<us+vt)d d Ll.,1)sx1 u, v, - .1.m. -
2 

x1 +s, t t e s t 
A->00 7r -A -A S 

(3.8) 

and 

A ( • f)-l. 1 ~A ~A f( ) 2 sin cS 2 sin r;t -i<us+vt)d d Ll,,1)SX2 u, v' - .1.m. -2 s, X2 +t --- --t- e s t' 
A->00 7r -A -A S 

(3.9) 

respectively. 

Before proving the lemma, we observe the following: If f (xi, x2) belongs to 
the class W(R 2

), then in a way similar to the proof of Theorem 1, 

1 ~T ~A lf(xi, t)12 < 1 ~T ~s 2 
2T dt 

1 2 dx1=(1+2tr)· sup 45T lf(s, t)I dsdt<co. 
-T -A +x1 o<S.T<00 -T -s 

It follows, therefore, that 

Similarly, 

Proof. Let us notice that 

{ 

l6clxl 

12sinc(e-x) _ 2since I~ l~l+lxl 
e-x e 

4c 

As for detailed calculations, refer to Wiener [11]. 

Now, since 

A.,,,sx
1
(u, v; f)-eiuxiA,,1Js(u, v; f) 

Ciel >2lxl) 

c1e1 ~2lxl). 

(3.10) 

(3.11) 

(3.12) 

=1.i.m. _!_\A \A f(s, t)[ 2 sin c(s-x,) _ 2 sin cS J 2 sin r;t e-icucs-xiHvtidsdt, 
A-.oo 2tr J_A J-A S-X1 S f 

74 



Generalized Harmonic Analysis of Functions of Two Variables 

it follows from the Plancherel theorem and (3.12) that 

- 1 ('X) roo 
I~~ 16rr2Cs2 J_

00 

J_
00 

JLl,,o,Sx 1(u, V; f)-eiuxiLl,,o.s(u, V; f)J 2dudv 

-1. (8Jx11)2 1 ~ 00 sin2 Cd d ~ lf(s, t) /2 d :::;:; 1m c. -- t s 
- •--+o 7r n-Cs -oo t 2 

1s1>21x11 (/sl + /x1 /) 2 

-.- 4 1 ~
00 

sin2 Cct ~ +hm-s·-c 2 dt lf(s,t)J 2ds. 
<--+0 7r 7r c -oo f jsj;;>2IX1f 

Consequently, using the one-sided Wiener formula of Koizumi [6], the last expres­
sion does not exceed, for every positive constant C, 

lim O(s)-lim l_ rT dt r l/(s, t)l
2 

ds 
•--+O T--+ 00 2T J-T J1s1>21x 11 (JsJ +JxiJ)2 

- - 1 ~T ~ +lim O(s)-lim
2

T dt lf(s, t)j 2ds, 
•--+O T--+ 00 -T js[&2IX1i 

which turns out to be 0 by (3.10), and (3.6) is proved. Similarly, (3.7) is proved 
by (3.11). 

Moreover, we can easily obtain 

LEMMA 5. If f(x1, x 2) belongs to the class W(R 2
), then we have for any 

(x1, x2)ER2
, 

where 

Ll,, 11Sx1,:i:2(u, V; f) 

_ 1 . 1 ~A ~A f( t) 2 sin ss 2 sin 1Jl -i<us+vt)d dt - .1.m. -
2 

x1 +s, x2+ --- t e s • 
A->00 7r -A -A S 

Proof. First, we have 

Ll •. 11S:i:1,x2(u, v; f)-ei<ux1+vx2)Ll •. 11s(u, v; f) 

= {Ll,, 11Sx1,x2(U, v; f)-eivx2Ll,, 11Sx1(u, V; f) 

-eiux1Ll,,11Sx2(u, v; f)+ei<ux1+vx2)Ll •. 11s(u, v; /)} 

+{eivx2Llqsx/u, v; f)-ei<ux1+vx2)Ll,,TJs(u, v; /)} 

+{eiux1Ll,,11Sx2(u, v; f)-ei<ux1+vx2)Ll,,11s(u, v; /)} 

=Ll1(u, v) +Ll2(u, v) +Lla(u, v), say. 

(3.13) 

(3.14) 

Here Ll,, 11Sx
1
(u, v; f) and Ll,, 11Sx2(u, v; f) are defined respectively by (3.8) and (3.9) of 

Lemma 4. Now, since 
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A ( )-l · ___!_~A ~A f( )[2 sin e(s-x1) _ 2 sin es] 
L.11 u, v - .1.m. 

2 
s, t 

A-00 7r -A -A S-Xi S 

it follows from the Plancherel theorem and (3.12) that 

~:"" ~:00 lfl1(u, v)l2dudv 

:s:;(l6elxi!)2(lfo;lx2l)2 l l l/C~, t)l
2 

2 dsdt 
- ) 1t1>21x21J1a1>21x11 (Isl+ lx1 I) Cit!+ lx21) 

+(16elxil)2(41))2 r r l/(s, t)12 2 dsdt 
) ltl::i2IX2f) l8J>21X1l (Isl+ !xii) 

+(4e)2(l61Jlx21)2 l l l/(s, t)l2 2 dsdt 
J ltl>21x2J J 1s1:;;21x 11 (It!+ lx21) 

+(4e)2(41))2 r r lf(s, t)l 2dsdt. 
J1tJ:>21x21 J1sJ:>21x1I 

Consequently, by Theorem 1, 

Also, by Lemma 4, 

and 

1 f"" ("" 
Slk~.i~~ l6rr2e1) L,, L,, llla(u, v)l

2
dudv=O, 

respectively. Thus, (3.13) is proved. 

Therefore, we have 

LEMMA 6. If f(xi, x2) belongs to the class S(R2
), then for any real or complex 

number w such as lwl =l, 

.ffi1·}~1:,1004;T ~:r ~:s lf(x1 +s, x2+t)+wf(s, t)l 2dsdt 

=$2-lim _ 1_2 _ l
00 

roo {2+we-i(UX1+VXz) + wei(Ux1+t1x2)} 
•·'1-o 16rr S1) ) _oo) _oo 

· lll.,~s(u, v; f)l 2dudv. (3.15) 

Proof. It follows from Lemma 3, Theorem 3 and Minkowski's inequality 
that 
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Thus, by Lemma 5, (3.15) is proved. 

Proof of THEOREM 4. By the Schwarz inequality and Lemma 1, we have 

Thus, (2.13) is proved. 

Proof of THEOREM 5. By the Schwarz inequality, we have 

If we now appeal to Lemmas 1, 3 and 4, then 
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Th us, we have 

l<f>(x1 +c:, x2+r,i; f)-rp(xi, X2; f)I 

~[¢(0, 0; f){2¢(0, 0; f)-rp(c:, r,i; f)-</>( - c:, -r,i; f)}J 112
, (3.16) 

from which the theorem follows immediately. 

Proof of THEOREM 6. If we take w in (3.15) of Lemma 6 successively to equal 
± 1, ± i, and combine four expressions, then we obtain (2.14) by (3.2). 

Finally, we prove Theorems 7 and 8. 

Proof of THEOREM 7. Let f(xi, x2) belong to the class S(R2). Now, let us 
define 

(3.17) 

Then, it follows at once that 

Inasmuch as ¢ •. '/(0, 0; f) tends to ¢(0, 0; f) as c:, r.i~o (SR.2), ¢ •. '/(xi, x2 ; f) is bounded 
for all (x1, x2)ER2 and small values of c:, 7.7· It, therefore, tends boundedly to 
rp(x1, x2; f) as c:, r.i~O(SR.2). Thus, by the bounded convergence theorem and Fubini's 
theorem, we get 

1 (
1 

( !xii) T J _
1 

1- -,{- rp(x1, 0; f)dx1 

4 . 2 u). 

. 1 ~ oo ~ oo sm 2 
=SRrhm-

16 2 ILl •. '/s(u, v; f)l2dudv. 
• • 1/-+0 TC C'.7,) -oo -oo U2 

,{
2 

Hence, if f(x1, x2) belongs to the class S'(R2), then we have 

. 1 (
1 

( !xii) ¢(0, 0; f) = l}~ T J _
1 

1- -,{- rp(xi, 0; f)dx1 , 

and 

[ 
4 . 2 u,<] 

. . 1 00 00 sm 2 . 2 -
hm SR.2-hm-

16 2 l l 1- 2,<2 !Ll •. '/s(u, v ,f)I dudv-0. (3.18) 
.l-+O '"J-+0 TC C'.7,) J _00 J _oo U 
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Since, when ju..<! >rr, 

4 . 2 UA 
sm 2 4 

1- _u_2_..<_2 - > 1--rr-2 ' 

it follows from the positiveness of the integrand in (3.18) that 

- 1 ~
00 

[~
00 

~-ir/l] lim $2- lim-
16 2 + Jd •. ~s(u, v; f)l 2dudv=O 

i .... o •.'l .... o rr er; -co ir; i -co 

or simply 

_ 1 ~co [~
00 

~-A] lim $2-lim -
16 2 + Jd •. ~s(u, v; f)l 2dudv=O, 

A-+co •,'J->0 ir eYJ -oo A -oo 

and we obtain (2.15). Similarly, we obtain (2.16). 
Again, let /(xi, x2) belong to the class S(R2) and let (2.15) and (2.16) hold. Then, 

by (2.14) of Theorem 6, 

!¢(xi, x2; /)-¢(0, 0; /)I 

~2 $2- lim 
16

\ (co [T" + r-AJ Jd •. ~s(u, v; f)J 2dudv 
•.~ .... o 7r eYJ J _co J A J _co 

_ 1 [~
00 

~-A] ~
00 

+2 $.rlim-
16 2 + Jd •. ~s(u, v; f)l2dudv 

'•'l .... o rr er; A -oo -oo 

+ $2-lim _1_2 - \A \A Jei<ux1+vxz) _ ll Jd •. ~s(u, v; f)l2dudv 
'·'l .... o 16rr er; J_A J_A 

=I, +l2+Ia, say. 

Now, let us choose A, as is possible by (2.15) and (2.16), so large that I, and 
I2 do not exceed o/3. Let us then choose lxil and lx2I so small that over (-A, A) 
x(-A, A) 

l
ei(UX1+vXz) _ 11:::; 0 

- 3¢(0, 0; /) ' 

and, therefore, Ia does not exceed o/3. Thus, since we have 

1¢(x,, x2; /)-¢(0, O; /)I ~o, 

it follows from Theorem 5 that f(x,, x2) belongs to the class S'(R2). This completes 
the proof of Theorem 7. 

Proof of THEOREM 8. From Theorem 4 and Definition 3, it follows immediately 
that ¢(x1, x2 ; /) is bounded and continuous on R 2

• Also, 

for all (xi, x2)ER2. Furthermore, for any finite sequence {(a,, /31), ... , (an, /3n)} of points 
in R 2 and any finite sequence {zi, ... , Zn} of complex numbers, 
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n 

I: rp(aµ-av, {3µ-{3v)ZµZv 
µ,v=l 

Consequently, ¢(xi, x2; f) is positive definite. Thus, by Bochner's representation 
theorem and Levy's inversion formula, there exists a measure µ on (R2, 932) such 
that µ(R 2)=¢(0, 0; /), and (2.17) and (2.18) hold with ¢(x,, x2; f) instead of ¢(xi, x2). 

Now, let us put 

(3.19) 

Then, A(u, v) is monotone increasing and 

Moreover, by (2.17) and (2.18) with ¢(x,, x2; f) instead of ¢(x,, x2), we have (2.20) 
and (2.21). This completes the proof. 

Remark. The generalized harmonic analysis we established in this paper was 
based on the two-dimensional Wiener formula (Theorem 2 or 2'). Its limit process, 
therefore, also depended on the limit process of the above two-dimensional Wiener 
formula. On the other hand, the two-dimensional Wiener formula is also proved 
under the unrestricted rectangular mean concerning the double limit process. For 
details, refer to Pitt [8] and Rudin [9]. Thus, if we base the argument on this 
sort of two-dimensional Wiener formula, then the generalized harmonic analysis 
also holds under the above limit process instead of the restricted limit process. 
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