
Title A general-purpose experimental computer system characterized by its architecture changeability
Sub Title
Author Okada, Kenichi(Kitagawa, Misao)

北川, 節
Publisher 慶応義塾大学工学部

Publication year 1980
Jtitle Keio engineering reports Vol.33, No.5 (1980. 5) ,p.49- 66

JaLC DOI
Abstract This system is composed of both a microprocessor whose control memory is completely opened to

the user, and a minicomputer which stores the supporting software used for developing the
microprogram for the microprocessor and aims at simplifying its development, testing, and
updating. The purpose is accomplished conversationally on the disk base and the system can be
utilized as an adaptive computer system to every objective of the users.

Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00330005-

0049

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

KEIO ENGINEERING REPORTS
VOL. 33, NO. 5, pp. 49-66, 1980

A GENERAL-PURPOSE EXPERIMENTAL COMPUTER
SYSTEM CHARACTERIZED BY ITS

ARCHITECTURE CHANGEABILITY

KEN
1
ICHI OKADA AND MISAO KITAGAWA

Dept. of Instrumentation Engineering, Keio University, Yokohama 223, Japan

(Received October 4, 1979)

ABSTRACT

This system is composed of both a microprocessor whose control memory is completely
opened to the user, and a minicomputer which stores the supporting software used for
developing the microprogram for the microprocessor and aims at simplifying its develop­
ment, testing, and updating. The purpose is accomplished conversationally on the disk
base and the system can be utilized as an adaptive computer system to every objective
of the users.

1. Introduction

The microprogramming technique has such an essential feature that it gives
flexibility to the hardware construction of a processing unit, and thus is widely
utilized in various fields such as emulation, high-level language processing, special­
purpose computer, and so forth. C4

) On the other hand, the LSI technology has
recently been made a remarkable progress, and consequently various kinds of
microprocessors, low-price, high-speed ICs, and large capacity IC memories have
now been provided. Furthermore, since the microprogram control system is
extensively introduced to the mini- and micro-computers, they have taken great
strides in their progress of application. ci)

In the microprogram control computers that are on the market, there are
two types; one is such that its control memory is opened to the users, and the
other is not to them. When trying to study the utility and capability of the
microprogram system, a computer as an objective should have such characteris­
tics that its control memory is opened to the user, and is feasible to alter the
contents. In order to alter or modify the contents of the control memory, two
ways of static and dynamic alterations are considered; the former is the case
where after temporarily interrupting and halting the computer operation, they
are altered manually, and in the latter they can be changed by program during
the computer operation. Naturally, this is richer in the flexibility and adapta­
bility than that. cs) Though there are several techniques of constructing the con-

49

KEN'ICHI OKADA AND MI SAKO KIT AGA w A

trol memory, the present main current of it is such that it (1) should completely
be independent of the main memory, (2) adopts a high-speed IC memory, and (3)
comprises a combination of non-volatile ROM and volatile RAM and thus provides
us with the flexibility, adaptability, and ease of usage.

In this type of computers, a dynamic microprogramming is realized in such a
way that an elementary instruction set is stored in the unalterable ROM before­
hand after having been programmed, and by using those instructions (normally
those for input/output), the microprograms are written into the RAM.

Some supporting software of considerable amount of functions is required in
order to develop the various kinds of such microprograms to be written into the
RAM of the control memory which can dynamically alter the computer charac­
teristics according to the user's objective and also to make programming of the
elementary instruction set to be written into the ROM.

In order to develop a microprogram in a single microcomputer only, some
supporting software should be made by using the instruction set written into the
ROM that is developed beforehand by the crossassembler or the like. Consequent­
ly, for the development and checking of a microprogram, swapping the control
memory for the secondary one will become necessary for frequently changing the
contents of its own, accordingly the amount of the microprograms that should be
resident in the control memory will be increased, and thus it will be difficult to
make the control memory adaptive to the individual objectives only of the users.

On the contrary, in case where more than two persons are to use a single
computer according to their individual objectives, the number of input and output
units and their utilization will become a problem. The larger the number of
usable I/O units becomes, the better the situation will be, but owing to such
constraints as of the price, developing time, and usage, those will be a bottleneck
against the design of a general-purpose experimental computer. When data for
trial are needed during the development of such program, a higher intelligent
I/O unit will be able to make an efficient and effective checking of the program.

Summarizing the above statements, as to the design of a general-purpose
experimental computer system adaptable to the individual objectives of the users,
it should be noted that the following must be satisfied:

(1) The control memory of the microprogram control computer is opened to
the user.

(2) The contents of the control memory can freely and easily be altered by
statical and dynamical methods of manipulation.

(3) A strong supporting software is prepared for developing a microprogram.
(4) Adaptive I/0 units can be utilized freely.
This system aims at an experimental computer that satisfies the above condi­

tions by decentralizing the functions through the combination of the HITAC-10
minicomputer and the mCOM-16 microprocessor of microprogram control. Namely,
the HIT AC-10 is used for developing the microprograms and for dynamically
controlling the I/0 services as well as the system operation and the mCOM-16 is
for the execution of the user's program.

The control memory of the mCOM-16 is completely opened to the user, and
thus is constructed according to the user's objectives only. Furthermore, its
contents can be altered by the microprogram of the mCOM-16 as well as the

50

A General-Purpose Experimental Computer System

program in the HIT AC-10.
The fundamental configuration of this system was developed in 1978. <s) Since

then an attempt has been made to improve the software for developing the firm­
ware of it and it has been utilized as an exclusive experimental machine adaptive
to the user's objectives. <7)

2. Hardware Configuration

Figure 1 illustrates the hardware configuration of the mCOM-16 microcompu­
ter system. All devices are connected through a bilateral bus of 16 bits called
the U-bus. The microprocessor mCOM-16 is of N-channel MOS, and is composed
of such two chips as CTL (control logic) and RALU (register, arithmetic and
logic unit). One microinstruction is executed in 1.4 microsec. (8) The following
are the explanation of this system :

(1) CTL (control logic). The function of the mPD756 of N-channel MOS is
partitioned into two; one is the address control of the microinstructions,
and the other the state control. Figure 2 shows the block diagram of
the chip. In the address control the outputs such as increment, uncondi­
tional jump, test jump, subroutine return by address stack register, and
mapping array composed of the PLA defined till the time of masking
are included. In the state control, there are interrupt, hold, and reset.

(2) RALU (register, arithmetic and logic unit). This is composed of the
mPD755 of N-channel MOS, whose block diagram is depicted in Figure
3. This chip comprises 15 registers, a status register, ALU, and data
manipulator.

Control Bus

I/O Controller
Stack
Pointer

Registers' Stack

and ALU

U-Bus·
Timing
Logic Control Memory

Logic (H)

Decoder· 16 bits/w

Memory

(~)
16 bits/w

HITAC-10

Control
Panel

Data Bus

Figure 1. Hardware configuration of the mCOM-16 microcomputer system.

51

KEN'ICHI OKADA AND MISAKO KIT AGA w A

U-Bus

Address
Field
Latch

Mapping
Array

Micro
Instruction
Address
Register

Address Bus

Micro
Instruction
Register

Control
Logic

Mapping
Array
Register

Save
Register

Save
Register

Internal U-Bus

Bit Status Binary
Test Register Counter

in
Control

Address
Stack
Pointer

Stack
Registers

Control Bus

Figure 2. Block diagram of the CTL.

U-Bus

Timing
Control

A-Bus

Control Bus
Figure 3. Block diagram of the RALU.

Branch
Register

Purpose
Registers

(3) Main and control memories. The main memory is a RAM of 16 kilo­
words of 16 bits/word. The control memory is composed of a RAM of
1 kiloword of 32 bits/word, and fetched to the CTL and RALU by each
one of two 16 bits read out from a 32 bits. A microaddress is usually
output from the CTL, but in case the contents of the control memory
is to be altered during the execution of a microprogram, the meinory
selector of address register is switched to use its output. Namely, two
machine cycles are needed ; the first is to fetch a microinstruction of
the microaddress put out of the CTL and write the data into the buffer
register, if it is an alter instruction of the control memory. In the next
cycle, a microinstruction is not fetched, but the contents of the buffer

52

A General-Purpose Experimental Computer System

register is written into the control memory addressed by the memory
address register. The microinstruction fetched in the first cycle desig­
nates whether they should be written into the upper or lower 16 bits of
the control memory. This way permits the alteration of the contents of
the control memory by a microprogram, although the execution cycle
of a microinstruction and the fetch cycle of the next one are normally
overlapped in order to increase the execution speed as a whole. Fur­
ther, the control memory can be extended up to 16 kilowords by the
page address system using the 4 bits of the status register in the RALU
chip.

(3) External mapping memory. This memory, 256 words, 12 bits/word, is
used to generate a microaddress corresponding to the pertinent results
that are decoded from the designated bits of the macroinstructions as
well as the data on the U-bus, and behaves just the same way as the
mapping array in the CTL, although the latter is set at the time of
masking and thus impossible to alter, while the former can be altered
even during the execution of a microinstruction. The data on the U­
bus is latched to the mapping register, and its address is generated by

Table 1. Function of the flag register.

Bit Function

0 Bit 16 of the stack

Bit 17 of the stack

2 Bit 0 of the mapping selector

3 Bit 1 of the mapping selector

4 Bit 2 of the mapping selector

5 HITAC-10 interrupt

6 Interrupt mask

7 Software interrupt

8 Address error

9 Memory parity error

10 Auxiliary

11 Interrupt request

12 Underflow of the stack

13 Overflow of the stack

14 Output buffer flag

15 Input buffer flag

53

KEN'rcm OKADA AND MrsAKo KrTAGA w A

selecting the bit position of the register to be decoded through the data
selector by using the 3-bit value in the flag register. The output of the
mapping memory is fetched to the CTL and the microaddress is deter­
mined. The mapping memory is also used as usual decoders as well as
the generation of a microaddress.

(5) Stack. This is a ring stack (last-in-first-out, LIFO) of 1 kiloword, 18
bits/word, and can store 16 bits of the U-bus and 2 bits of the flag
register. The information of the stack, full or empty, is set into the
flag register.

(6) Flag register. This register contains 16 flags collectively, the function
of which is given in Table 1. Bit positions 0 to 7 can be reset or set
according to the microinstructions. Bit positions 8 to 15 are set by
hardware, while bits 8 to 11 are reset by the microinstruction and 12 to
15 reset by hardware.

The execution control of the mCOM-16 system and the data transfer can be
performed by the manual operation on the control panel, but the same function
can also be carried out by the input/output instructions of the HIT AC-10 as
shown in Table 2. Control instructions are analyzed by the decoder and the

Table 2. Control instructions out of the HITAC-10.

Instruction

SRT

HLT

RES

INT

SIO

LIB

KIB

ROB

KOB

LMA

WCH

WCL

WMM

RCH

RCL

RMM

Function

Start

Halt

Reset

Interrupt

Set I/O flag

Load input buffer

Skip on input buffer flag

Read output buffer flag

Skip on output buffer flag

Load memory address register

Write control memory (H)

Write control memory (L)

Write main memory

Read control memory (H)

Read control memory (L)

Read main memory

54

A General-Purpose Experimental Computer System

generated control signals are given to every device on the U-bus. The access
to the memory and the memory address register are only effective in case the
mCOM-16 is being halted, but since the instructions of the HITAC-10 can con­
trol the operation of the mCOM-16, the HITAC-10 can completely control the
mCOM-16 by its program. Data can be transferred through the I/0 buffer, and
two bits in the flag register are used for its control.

3. Supporting Software

The microprogram to be executed in the mCOM-16 is developed on the
HITAC-10 minicomputer and then transferred back to the former. The support­
ing software to develop the microprogram is largely partitioned into crossassem­
bler, editor, and file-controller and is under the control of the operating system,
FDOS, in the low-price floppy disk memory. Various kinds of microprogram file
developed by the individual users are stored in the floppy disk and used sepa­
rately or combined with each other.

3.1 Cross-Microassembler

Generally speaking, a microinstruction has a longer word length and is parti­
tioned in to various fields. In order to make a microprogram effectively, a cross­
microassembler has been generated to assemble the microinstructions written by
the mnemonic codes through the HIT AC-10, and to transfer them to the control
memory of the mCOM-16. The features of this assembler are as follows:

(1) The microinstruction has so many fields that such fields that are consi­
dered unnecessary for the moment may be omitted, but can be supple­
mented by the system as the most occurrable pattern of the instruction
referring to the other fields, except in case of error.

(2) Editor is being linked with the file-controller, capable of easily develop­
ing and correcting microprograms, and can completely process them in
a disk base.

(3) When an error occurred, its source program will be corrected by the
editor and re-assembled and the program in a micro-object level can be
corrected by the error address presented by the TTY in a conversational
mode.

(4) This crossassembler can also describe and transfer simultaneously the
contents of the mapping memory that generates a microaddress.

The microinstruction of the mCOM-16 is composed of 32 bits, which is parti­
tioned into 4 kinds of instruction formats such as branch, register, data output,
and data input according to the contents of the operation field. Figure 4 shows
the formats of the individual instructions. The function of those instructions is
as follows:

(1) Branch instruction will do address jump after the bit test of the MAR
and SRC in the CTL chip or after checking the zero of BC.

(2) Register instruction has a function of operating the contents of the two
general-purpose registers and of loading the result to the one of them
after some data manipulations.

55

KEN'rcm OKADA AND MrsAKO KrT AGA w A

(1) Branch Operation

10 9 0

B R 1 F B R 2 F

(2) Register Operation

3130 29 2827 2423 20 19 16 15 14 13 12 11 10 8 7 6 5 4 0

FF
0 11

SH LB s E
BB A F SAF SBF TS SM s ALF IEF I D M F
1 0 BB BB B B

(3) Data Output Operation

31 30 29 28 27 24 23 20 19 18 16 15 14 13 12 1110 8 7 0

F F M S H L B s
BB 1 0 A F SAF s ECF T S SM s ALF LIF(K)
1 0 B BB BB B

(4) Data Input Operation

31 30 29 28 27 24 23 20 Hl 18 16 15 14 13 12 1110 8 7 6 5 4 0

F F M S H L B S DC E
BB 1 1 A F SAF s ECF TS SM S ALF I S I D M F
1 0 B BB BBB B B B

Figure 4. Format of the microinstructions.

(3) Data output instruction will put out the contents of the general-purpose
register on the U-bus and at the same time loads the result of operation
of the literal data with them to the general-purpose register.

Table 3 gives the format of the crossassembler against each microinstruction
and the correspondence between both fields of crossassembler and microinstruc­
tion. Bracketed part, [] , may be omitted. The microprogram written by the
mnemonics will be assembled by the crossassembler to transfer it to the control
memory of the mCOM-16 through the input/output instructions of the HITAC-10.

In order to decode the necessary bits of data for generating the correspond­
ing microaddress, the mCOM-16 system is provided with two mapping circuits;
one is a mapping array provided in the CTL chip, and has been set when
masking so that it could not be altered but can generate a microaddress in one
machine cycle. The other is an external mapping memory provided for giving
the flexibility to the system, and its contents can freely be altered but it takes
3 machine cycles to generate a microaddress. The crossassembler also has the
facility of stating and transferring the contents of the external mapping memory.
The generation of the microaddresses by mapping circuits is called a multiple-

56

A General-Purpose Experimental Computer System

Table 3 (a). Format of the Cross-Microassembler.

Microinstruction

Branch Operation

Register Operation

Data Output Operation

Data Input Operation

Format

[Symbol] Op-code [Bit] Operand-1 [Operand-2]

[Symbol] [Op-code] [Modify]
Register-1 Register-2 [Bus] [DM] [IN]

[Symbol] [Op-code] [Modify]
Register 1/0-code [Bus] [Literal]

[Symbol] [Op-code] [Modify]
Register 1/0-code [Bus] [DM] [IN]

Table 3 (b). Comparison between the fields of the Cross­
Microassembler and the microinstruction.

Cross-Microassembler Microinstruction

Op-Code CDF ALF DIB

Bit BTF

Operand-1 BR2F

Operand-2 BRlF

Modify AF STB MSB

Register-1 Register SAF

Register-2 SBF

Bus HSB LSB BMB SSB

DM DMF

IN IEF EIB CSB

1/0-code FBl FB2 ECF

Literal LIF(K)

directional jump, and provides a means of performing the various processes due
to the bit patterns of the data. As shown in Figure 5, a symbol is attached to
the first microinstruction of each process, and corresponds to the address of the
external mapping memory which is generated by the data selector circuits.

3. 2 Editor and File-Controller

In order to make a microprogram more effective by using the crossassembler,
editor and file-controller have been simultaneously developed. Table 4 gives the

57

KEN'rcm OKADA AND MrsAKO KrTAGA w A

External Mapping Memory

Address 1
Address 2 1----•

Address 3

Address 4
Address 5 1-----~ .1

Symbol A

Symbol B

Symbol C

Symbol D

Symbol A
Symbol B

Symbol C
Symbol D

microinstruction Al

microinstruction Ah
microinstruction Bl

microinstruction Bi
microinstruction Cl

microinstruction Cj
microinstruction Dl

microinstruction Dk
MAP
Address 1
Address 2
Address 5
Address 4
Address 3

Control Memory

Process A

Process B

Process C

Process D

[Process A]

[Process B]

[Process C]

[Process D]

Figure 5. Behaviour of the external mapping circuit
and its description.

26 kinds of commands and their functions of the editor. The commands can be
partitioned into three of compiling use, input/output, and mode transition, and
put in through the data typewriter. An input character sequence is of a magic
list structure, <2

) which is inserted, added, exchanged, or retrieved through the
manipulation of the compiling commands. Input/output commands can switch the
I/0 units such as TTY, PTR, or disk used for the editor and generate a micro­
program effectively by using them when necessary. The mode transition com­
mand is used for the transition from the editor to the file-controller, and then to
the crossassembler.

58

A General-Purpose Experimental Computer System

Table 4. Commands of the Editor.

Format

A

B

c

Dh

E

F s

G cl s cl c2 s' c2

Hh

I s

J h

Ks

Lh

M

Nh

Oh

Ph

Q

Rs

s
Th

Uh

Vh

Wh

Xh

Yh

z

Function

Assembler

Bottom

Current pointer

Delete

Exit

Find string

Get and exchange string

File-controller

Insert

Disk in

Seek string

Last

Memory

Next

Disk out

Print out

Quash

Retype

Source

Top

Up

Block transfer

Write neighbour

Execute

Load disk

Cross-microassembler

s : string h : hexadecimal c : character

59

KEN'rcm OKADA AND MrsAKO KrTAGA w A

Table 5. Commands of the File-Controller.

Format Function

MAP. Print map

PUT.hf Put file

GET.hf Get file

DEFB. b fl f2 Define block

KILL. n Kill file or block

EXEC. n Make execute table

FIN. Finish

h : hexadecimal n : file or block name
f : file name b: block name

Disk

File

Figure 6. Information flow of the supporting software.

60

A General-Purpose Experimental Computer System

Table 5 gives the 7 kinds of commands of the file-controller and their func­
tions. Considering from the fact that the mCOM-16 is aimed at a general­
purpose experimental computer system, the contents of the control memory will
largely be altered according to the individual objectives of the users. The file­
controller can register a developed microprogram on the floppy disk as a file in a
form of source or object one. Floppy disk of considerably low-price can be used
exclusively for every user to develop his research program and the like effecti­
vely. Both editor and file-controller can manipulate not only the microprogram
but also all of the usual character sequences, so that it can be used for the usual
macroprograms.

3. 3 Mode Transition

In order to develop a microprogram in practice, the procedure is as follows,
the explanation of which is given in Figure 6.

(1) To make a micro-source program according to the format of the crossas­
sembler by using the editor.

(2) To register the micro-source program on a floppy disk as a file by using
the file-controller.

(3) To convert the micro-source program into a micro-object one through
the crossassembler.

(4) To register the micro-object program on the floppy disk.

Start

Edit
Processing

Figure 7. Mode transition of the supporting software.

61

KEN'ICHI OKADA AND MISAKO KITAGAWA

(5) To transfer the micro-object program to either the control memory or
the external mapping one by way of the main memory if there is a map
control instruction.

In case of using the microprogram that is registered as a file on the disk,
several micro-source programs are read by the file-controller first, then compiled,
altered, and supplemented by the editor, and then assembled by the crossassem­
bler. In case of using the registered micro-object program as its own state, it
should be read and transferred to the control memory. Figure 7 illustrates the
mode transition of the supporting software.

4. Behaviour of The System

When a microprogram developed on the HIT AC-10 is transferred to the
control memory of the mCOM-16, and it starts the execution through the input/
output instructions of the HITAC-10 or the manual operation, the HITAC-10
comes to play a role of general-purpose I/O units of a high intelligence. The
mCOM-16 has no I/O units of an exclusive use, but can utilize the I/O units
attached to the HITAC-10 through the program in it. This situation can be
considered that there is a buffer of the HITAC-10 between the mCOM-16 and
the I/0 units, so that there takes place either a problem that the execution time
of programs will slow down for some of their kind or a problem that not only
the program of the mCOM-16 itself but also the I/0 processing programs of the
HITAC-10 should be developed simultaneously. Nevertheless, the following are
the distinctive features of this system as an experimental tool.

(1) Already installed I/0 units can be used without any modification.
(2) Data that are exchanged between the mCOM-16 and the I/O units can

be converted in an adaptable form to the user.
(3) By the program control, the I/O units that are not attached at all can be

considered as virtual I/0 units and test data can be transferred to the
system.

On the other hand, the HITAC-10 considers the mCOM-16 as an I/0 unit
of its own and its input/output instructions can control the operation and data
transfer of the mCOM-16 system, so that when a program that controls the ope­
ration of the mCOM-16 is carried out on the HITAC-10, the contents of the
control memory as well as the main memory and the program flow of the
mCOM-16 can all be changed dynamically according to either the request from
the mCOM-16, the user's request, or the program control of the HITAC-10.

Figure 8 illustrates the operation of the two computers when the developed
microprogram starts its execution, as explained below.

(1) Microprogram, macroprogram, and map information are transferred from
the disk to the HIT AC-10.

(2) The HITAC-10 transfers the information accepted in (1) to the control,
main, and mapping memories.

(3) The control instruction from the HITAC-10 starts the execution of the
mCOM-16.

62

A General-Purpose Experimental Computer System

Stop Reset ,....,_ ___ _

Start

Control
Command

Transfer

Control

mCOM-16 HITAC-·10

Figure 8. Information flow of this system.

(4) The microprogram on the mCOM-16 is carried out sequentially and the
HITAC-10 will be set in a waiting state.

(5) According to the request from the mCOM-16 or the contents of the
user's interruption, the next turn goes to (6) or (7).

(6) In the state that the mCOM-16 requires an I/O service, it will be set in
a waiting state during the I/0 processing of the HITAC-10. When the
I/0 processing is completed, the next turn goes back to (4).

(7) At the time of changing the state of the mCOM-16, the next goes back
to (1) or (2), or goes to (8).

(8) The HITAC-10 will be set in a wait state after sending the control in­
struction to the mCOM-16, and then the next returns to (5).

The above stated is an example of the operation transitions and this system
can be utilized according to the user's objectives depending on the contents of
either the program in the HITAC-10 or the microprogram in the mCOM-16.

To estimate the functional capability of this system, an emulator as a
concrete application is implemented that considers the HIT AC-10 as the target
machine. c5) The result is that the microprogram required to emulate in the
mCOM-16 has 288 words, the external mapping memory 40 words, and I/O pro­
cessing program of the HIT AC-10 40 words. Table 6 lists the number of steps
of the fetch, addressing, and execution of every macroinstruction, and the execu­
tion time of the target machine. In order to compare the execution time of the

63

KEN'rcm OKADA AND MrsAKO KrTAGA w A

Table 6. Number of steps of the microprogram
to emulate the HITAC-10.

mCOM-16 HITAC-10

Microprogram Execution time

Fetch 5 - 7 steps 1.4 microsec.

z 6 steps 0 microsec.

M 9 0

Modify IZ 9 1.4
IM 12 1.4
IZX 11 1.4
IMX 14 1.4

L 5 steps 1.4 microsec.

A 2 1.4

s 2 1.4

N 5 1.4
x 5 1.4

0 5 1.4

ST 2 1.4
B 2 0
BAL 5 1.4

KCT 9 2.8

SE 2 0
SC 9 - 28 2.8

roe 10 - 14 2.8

SRL 8+2*n 1.4* [n/3]
Execute SLL 5+2*n 1.4* [n/3]

SRA 8+2*n 1. 4* [n/3]

SLA 12 +4*n 1.4* [n/3]
SRDL 8+3*n 1.4* [n/3]
SLDL 5+3*n 1.4* [n/3]
SRDA 8+3*n 1.4* [n/3]

SLDA 12+5*n 1.4* [n/3]
LE 2 1.4

LD 8 2.8

AD 6 2.8

SD 6 2.8

M 137 8.4

D 156 9.8

STE 2 1.4

STD 5 2.8

64

A General-Purpose Experimental Computer System

Table 7. Mean execution time of the emulator and the target machine.

Probability Emulator Target machine

Load, Store 0.40 26.9 microsec. 3.28 microsec.

Add, Subtract 0.08 27.3 3.78

Branch 0.20 25.2 2.38

Shift 0.08 66.9 6.14

Logical 0.04 28.7 3.08

Multiply 0.02 213.5 10.08

Divide 0.02 240.1 11.48

Status control 0.10 44.1 4.34

1/0 control 0.06 38.5 4.20

1.00 40.2 microsec. 3.82 microsec.

emulator with that of the target machine, the instructions of the HITAC-10 are
classified into 9, for every one of which the occurring probability and the rate of
addressing modes are estimated from some typical software so far developed, and
the Gibson mix is calculated.

The result in Table 7 shows that the mean execution time of one macro­
instruction is 3. 82 microsec. for the target machine, and 40. 2 microsec. for the
emulator ; thus the latter takes 10. 5 times than the former. It is said that an
emulator will generally take the execution time 3 to 10 times when emulated by
a similar level of execution time. The mCOM-16 is a N-channel MOS micropro­
cessor and its machine cycle time is 1. 4 microsec., which is the same as that of
the target machine. Judging from the above mentioned, the value 10.5 can be
considered as an accepted one. It took a much less time for the development of
the emulator owing to the supporting software and this system has been demon­
strated as a useful one.

5. Conclusion

Considering from the fact that this system is not provided with the multi­
pler, shifter, and the hardware for the floating-point arithmetic, and further that
the microprogram in it is executed by the N-channel MOS microprocessor, it is
not suitable for the high-speed processing, but rather adaptable to some special­
purpose tools such as debuggers, and list processing, and also to the education
use for the microprogramming technology.

As an example of this system utilized in practice, an interractive debugger

65

KEN'ICHI OKADA AND MISAKO KITAGAWA

has been developed for the HIT AC-10 assembler programs. <7
) This is effectively

generated by the developing and supporting software, lately made its version up,
and now under operation.

REFERENCES

[1] CHu, Y., (1976): Forword and Introduction, IEEE Trans. on Computers, Vol. C-25,
No. 10, 961-962.

[2] FURUKAWA, K., (1971): Magic List (in Japanese), Johoshori (}our. of the Information
Processing Society of Japan), Vol. 12, No. 4, 248.

[3] HAGIWARA, H., (1977): Microprogramming (book in Japanese), Sangyo-tosho.
[4] HussoN, S.S., (1970): Microprogramming (book), Prentice-Hall, Inc.
[5] MALLACH, E.G., (1975): Emulator Architecture, Computer, Vol. 8, No. 8, 24-32.
[6] OKADA, K., YOKOYAMA, T., and KITAGAWA M., (1978): A Microcomputer System Hav­

ing an Alterable Control Memory Under the Control of a Minicomputer (in Japanese),
Proc. of the Annual Conference of IEE of Japan, 1474.

[7] OKADA, K., YOKOYAMA, T. and KITAGAWA, M., (1979): A Dynamic Debugging System
by Multiple processors (in Japanese), Technical Reports of Information Processing,
IEE of Japan, IP-79-45, 47-56.

[8] mCOM-16 Users Manual (1976), IEM-550, Nippon Denki, Co. Ltd.

66

