慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	On a construction of a solution for $\partial \mathrm{u} / \partial \mathrm{t}=\varphi\left(\mathrm{u}^{\prime}\right)$－uu＇with initial and boundary conditions
Sub Title	
Author	Kikuchi，Norio
Publisher	慶応義塾大学工学部
Publication year	1980
Jtitle	Keio engineering reports Vol．33，No．4（1980．5），p．37－48
JaLC DOI	
Abstract	
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00330004－ 0037

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

ON A CONSTRUCTION OF A SOLUTION FOR $\partial u / \partial t=\phi\left(u^{\prime \prime}\right)-u u^{\prime}$
 WITH INITIAL AND BOUNDARY CONDITIONS

Norio Kikuchi

Dept. of Mathematics, Keio University, Hiyoshi, Yokohama 223, Japan
(Received January, 28, 1980)

0. Introduction

This paper is concerned with a construction of a continuous solution $\boldsymbol{u}(t, x)$ for the scalar equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\varphi\left(u^{\prime \prime}\right)-u u^{\prime}\left(\prime=\frac{\partial}{\partial x}\right) \text { for }(t, x) \in[0, T] \times[0,1] \tag{1}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{align*}
& u(0, x)=u_{0}(x) \text { for } 0 \leqq x \leqq 1 \tag{2}\\
& u(t, 0)=0, u(t, 1)=0 \text { for } 0 \leqq t \leqq T .
\end{align*}
$$

Now we assume that the function φ in (1) satisfies the following conditions:

$$
\begin{align*}
& \varphi \in C^{b}(-\infty, \infty), \varphi(0)=0, \varphi^{\prime \prime}(0)=0, \tag{3}\\
& 0<\lambda \leqq \varphi^{\prime}(u) \leqq \mu<\infty \text { for }-\infty<u<\infty .
\end{align*}
$$

The compatibility conditions for initial and boundary conditions are the following

$$
\begin{align*}
& u_{0} \in C^{5}[0,1], \tag{4}\\
& u_{0}(0)=u_{0}(1)=0, u_{0}^{\prime \prime}(0)=u_{0}^{\prime \prime}(1)=0 .
\end{align*}
$$

Under the assumptions stated above we have the following theorem.
Theorem. There exists a continuous 'solution' satisfying (1), (2) in the domain $[0, T] \times[0,1]$, where T is an arbitrary positive number.

The meaning of 'solution' will be explained later.
This paper is stimulated by M. Hukuhara's papers [2], [3] and is treated by Rothe's method. Following S. N. Bernstein's paper [1] and O. A. Oleinik and T.D. Venttsel's paper [5] we find estimates for the derivatives of approximate solutions
and we further estimate derivatives of higher order up to the boundary. To construct an approximate solution we use M. Nagumo's existence theorem of solutions for a second order differential equation with boundary conditions. Here we shall quote the following theorem ([4]):

Nagumo's Theorem. Consider a second order differential equation

$$
\begin{equation*}
y^{\prime \prime}=g\left(x, y, y^{\prime}\right) \tag{5}
\end{equation*}
$$

where $g\left(x, y, y^{\prime}\right)$ is a continuous function defined on a closed domain

$$
0 \leqq x \leqq 1, \alpha(x) \leqq y \leqq \omega(x),-\infty<y^{\prime}<\infty .
$$

$\alpha(x)$ and $\omega(x)$ is a minorant and majorant function of class $C^{2}[0,1]$ respectively satisfying

$$
\begin{gathered}
\alpha(0)=\omega(0)=0, \quad \alpha(1) \leqq 0 \leqq \omega(1), \\
\alpha^{\prime \prime}(x) \leqq g\left(x, \alpha(x), \alpha^{\prime}(x)\right), \\
\omega^{\prime \prime}(x) \leqq g\left(x, \omega(x), \omega^{\prime}(x)\right) .
\end{gathered}
$$

If $g\left(x, y, y^{\prime}\right)$ satisfies the following inequality

$$
\left|g\left(x, y, y^{\prime}\right)\right| \leqq G\left(1+\left(y^{\prime}\right)^{2}\right) \quad(G>0)
$$

then there exists a solution $y(x)$ of (5) satisfying

$$
\begin{gathered}
\alpha(x) \leqq y(x) \leqq \omega(x) \text { for } 0 \leqq x \leqq 1, \\
y(0)=0, y(1)=0 .
\end{gathered}
$$

1. Explanation of the method

Let $X=C[0,1]$ be the Banach space of real-valued functions $u(x)$ continuous on $[0,1]$ with the norm

$$
|u|=\sup \{|u(x)| ; 0 \leqq x \leqq 1\} .
$$

Let N be a positive integer sufficiently large and put

$$
h=T / N(\ll 1), t_{n}=n h(n=0,1, \cdots, N) .
$$

We define $\left\{u_{n}\right\} \subset X(n=1,2, \cdots, N)$ inductively by:

$$
\begin{gather*}
v_{n} \equiv \frac{u_{n}-u_{n-1}}{h}=\varphi\left(u_{n}^{\prime \prime}\right)-u_{n} u_{n}^{\prime}, \tag{6}\\
u_{n}(0)=u_{n}(1)=0,
\end{gather*}
$$

and define a Cauchy polygon in X by

$$
P_{N}(t)=u_{n-1}+\frac{t-t_{n-1}}{h}\left(u_{n}-u_{n-1}\right) \text { for } t_{n-1} \leq t \leq t_{n}
$$

On a construction of a solution for $\partial u / \partial t=\phi\left(u^{\prime \prime}\right)-u u^{\prime}$ with initial
We have by (6) that

$$
\frac{d^{+} P_{N}(t)}{d t}=\varphi\left(P_{N}\left(t_{n}\right)^{\prime \prime}\right)-P_{N}\left(t_{n}\right) P_{N}\left(t_{n}\right)^{\prime} \text { for } t_{n-1} \leq t<t_{n}
$$

where $d^{+} / d t$ denotes right-hand derivative with respect to the topology of X. Here we define operators A and B in X by

$$
\begin{aligned}
& A: \quad \mathscr{D}(A)=\left\{u=u(x) \in C^{2}[0,1] ; u(0)=u(1)=0\right\} \rightarrow X, \\
&(A u)(x)=u^{\prime \prime}(x), \\
& B: \quad \mathscr{D}(B)=\left\{u=u(x) \in C^{1}[0,1] ; u(0)=u(1)=0\right\} \rightarrow X, \\
&(B u)(x)=u^{\prime}(x),
\end{aligned}
$$

which can be verified to be closed in X.
If we can select a subsequence $\left\{P_{N}(t)\right\} \subset X$ such that

$$
P_{N}(t) \rightarrow P(t), \frac{d^{+}}{d t} P_{N}(t) \rightarrow Q(t), A P_{N}(t) \rightarrow R(t), B P_{N}(t) \rightarrow S(t)
$$

uniformly on $[0, T]$ and $Q(t)$ is continuous on $[0, T]$, we have by noticing the closedness of A and B that

$$
P(t) \in \mathscr{D}(A), \frac{d}{d t} P(t)=Q(t), A P(t)=R(t), B P(t)=S(t)
$$

and this $P(t)$ satisfies

$$
\begin{gather*}
\frac{d}{d t} P(t)=\varphi(A P(t))-P(t) B P(t) \tag{7}\\
\left.P(t)\right|_{t=0}=u_{0}
\end{gather*}
$$

Under a solution of (1) and (2) we understand a function $P(t)$ satisfying (7).

2. Construction of $\left\{\boldsymbol{u}_{n}\right\}$

In order to construct u_{n} satisfying (6) we shall consider the following equation with 0-Dirichlet condition

$$
\begin{gather*}
\frac{u-\bar{u}}{h}=\varphi\left(u^{\prime \prime}\right)-u u^{\prime}, \tag{8}\\
u(0)=u(1)=0,
\end{gather*}
$$

where \bar{u} is a function of class $C^{2}[0,1]$ satisfying

$$
\bar{u}(0)=\bar{u}(1)=0, \quad \bar{u}^{\prime \prime}(0)=\bar{u}^{\prime \prime}(1)=0
$$

Here we shall construct $\omega(x)$ of the type

$$
\omega(x)=\left\{\begin{array}{rl}
a x-b x^{2} & 0 \leqq x \leqq \frac{a}{2 b}, \\
\frac{a^{2}}{4 b} & \frac{a}{2 b} \leqq x \leqq 1(a, b>0, a \leqq 2 b)
\end{array}\right.
$$

Norio Kikuchi

and define $\alpha(x)$ by

$$
\alpha(x)=-\omega(x) .
$$

Such $\alpha(x)$ and $\omega(x)$ can be verified to be minorant and majorant function for (8), if we take a, b suitably large. Hence, by using Nagumo's Theorem we can construct u_{n} satisfying (6). $\left(\alpha(x), \omega(x)\right.$ don't belong to $C^{2}[0,1]$ but Nagumo's Theorem is known to be applicable if $\alpha(x)$ and $\omega(x)$ are such functions.)

3. Estimates of $\left\{\boldsymbol{u}_{n}\right\},\left\{\boldsymbol{v}_{n}\right\}$ and their derivatives

Here we shall prove the following estimates: there exists positive numbers U_{k}, V_{k} independent of N such that

$$
\begin{array}{ll}
\left|u_{n}^{(k)}\right| \leqq U_{k} & (k=0,1,2,3,4), \\
\left|v_{n}^{(k)}\right| \leqq V_{k} & (k=1,2,3) . \tag{1}
\end{array}
$$

From the relation (6) we note that

$$
\begin{align*}
& u_{n}=0, \quad u_{n}^{\prime \prime}=0, \quad u_{n}^{(4)}=0 \tag{11}\\
& v_{n}=0, \tag{12}
\end{align*}
$$

at the boundary (i. e., $x=0,1$).
3.1. Estimate of $\left\{u_{n}\right\}$

By means of maximum principle for (6) we have

$$
\left|u_{n}\right| \leqq\left|u_{n-1}\right| \leqq \cdots \leqq\left|u_{0}\right| .
$$

3.2. Estimate of $\left\{u_{n}{ }^{\prime}\right\}$ at the boundary

We make the substitution $u_{n}=\log \left(1+p_{n}\right)$. Then we have from (6) that

$$
\begin{align*}
& \mu \frac{p_{n}^{\prime \prime}}{1+p_{n}}-\frac{1}{h}\left[\log \left(1+p_{n}\right)-\log \left(1+p_{n-1}\right)\right] \tag{13}\\
& \geqq \mu \frac{\left(p_{n}{ }^{\prime}\right)^{2}}{\left(1+p_{n}\right)^{2}}+u_{n} \frac{p_{n}^{\prime}}{\left(1+p_{n}\right)} \geqq-\frac{1}{\mu} u_{n}{ }^{2} \geqq-\frac{1}{\mu} U_{0}{ }^{2} .
\end{align*}
$$

We consider a function $q_{n}=p_{n}+k e^{-x}(k>0)$ and put

$$
\begin{equation*}
L q_{n}=\mu \frac{q_{n}^{\prime \prime}}{1+p_{n}}-\frac{1}{h}\left[\log \left(1+q_{n}\right)-\log \left(1+q_{n-1}\right)\right] . \tag{14}
\end{equation*}
$$

From (13) and (14) we have

$$
\begin{aligned}
& L q_{n} \geqq \frac{k \mu}{e\left(1+p_{n}\right)}-\frac{U_{0}^{2}}{\mu} \\
& \quad+\frac{p_{n}-p_{n-1}}{h} \int_{0}^{1}\left[\frac{1}{1+p_{n-1}+s\left(p_{n}-p_{n-1}\right)}-\frac{1}{1+p_{n-1}+k e^{-x}+s\left(p_{n}-p_{n-1}\right)}\right] d s .
\end{aligned}
$$

On a construction of a solution for $\partial u \not \partial t=\phi\left(u^{\prime \prime}\right)-u u^{\prime}$ with initial

At the point x where $p_{n}(x) \geqq p_{n-1}(x)$ we have

$$
L q_{n} \geqq \frac{k \mu}{e^{U_{0}+1}}-\frac{U_{0}^{2}}{\mu}>0
$$

if we take k sufficiently large such that

$$
k>e U_{0}^{2} e^{U_{0}} \mu^{-2}
$$

This implies that $\left\{q_{n}\right\}(n=0,1, \cdots, N)$ can have a maximum value at $x=0$ if k is chosen sufficiently large. Consequently, we have

$$
\left.\frac{\partial p_{n}}{\partial x}\right|_{x=0} \leqq k(n=0,1, \cdots, N)
$$

By considering the function $p_{n}-k e^{-x}$ we can similarly verify that

$$
\left.\frac{\partial p_{n}}{\partial x}\right|_{x=0} \geqq-k(n=0,1, \cdots, N)
$$

We can further similarly have that

$$
\left.\left|\frac{\partial p_{n}}{\partial x}\right|_{x=1} \right\rvert\, \leqq k(n=0,1, \cdots, N)
$$

Hence, we have an equi-boundedness of $\left\{u_{n}{ }^{\prime}\right\}$ at the boundary.
3.3. Estimate of $\left\{u_{n}{ }^{\prime}\right\}$ in the interior

In order to estimate $\left\{u_{n}{ }^{\prime}\right\}$ we consider the following transformation

$$
u=\phi(v), \psi^{\prime}(v)=e^{-k v^{2}(k>0)}
$$

We then have from (8) that

$$
\begin{equation*}
\frac{v-\bar{v}}{h} \int_{0}^{1} \phi^{\prime}(\bar{v}+s(v-\bar{v})) d s=\varphi\left(\psi^{\prime} v_{x x}+\phi^{\prime \prime} v_{x}^{2}\right)-\psi \psi^{\prime} v_{x} \tag{15}
\end{equation*}
$$

where $\bar{u}=\phi(\bar{v})$. Differentiating this equation with respect to x we have

$$
\begin{aligned}
& \frac{v_{x}-\bar{v}_{x}}{h} \int_{0}^{1}\left[\psi^{\prime}(\bar{v}+s(v-\bar{v}))+s(v-\bar{v}) \phi^{\prime \prime}(\bar{v}+s(v-\bar{v}))\right] d s \\
& \quad+\frac{v-\bar{v}}{h} \bar{v}_{x} \int_{0}^{1} \phi^{\prime \prime}(\bar{v}+s(v-\bar{v})) d s \\
& =\left(\psi^{\prime \prime \prime} v_{x}^{3}+3 \psi^{\prime \prime} v_{x} v_{x x}+\psi^{\prime} v_{x x x}\right) \varphi^{\prime}-\left(\psi^{\prime}\right)^{2} v_{x}^{2}-\phi \psi^{\prime \prime} v_{x}^{2}-\psi \psi^{\prime} v_{x x}
\end{aligned}
$$

where the argument of φ^{\prime} is $\phi^{\prime} v_{x x}+\phi^{\prime \prime} v_{x}{ }^{2}$. For k sufficiently small we can have positive e_{0}, e_{∞} such that

$$
e_{0} \leqq E \equiv \int_{0}^{1}\left[\psi^{\prime}(\bar{v}+s(v-\bar{v}))+s(v-\bar{v}) \psi^{\prime \prime}(\bar{v}+s(v-\bar{v}))\right] d s \leqq e_{\infty}
$$

for every $v, \bar{v}\left(|v|,|\bar{v}| \leqq\left|v_{0}\right|, u_{0}=\psi\left(v_{0}\right)\right)$. Multiplying v_{x} to both sides of the above

Norio Kikuchi

equation, we have

$$
\begin{gathered}
E \frac{v_{x}-\bar{v}_{x}}{h} v_{x}+\frac{v-\bar{v}}{h} v_{x} \bar{v}_{x} \int_{0}^{1} \phi^{\prime \prime}(\bar{v}+s(v-\bar{v})) d s \\
=\left(\psi^{\prime \prime \prime} v_{x}{ }^{4}+3 \psi^{\prime \prime} v_{x}{ }^{2} v_{x x}+\psi^{\prime} v_{x} v_{x x x}\right) \varphi^{\prime} \\
-\left(\psi^{\prime}\right)^{2} v_{x}{ }^{2}-\phi \psi^{\prime \prime} v_{x}{ }^{3}-\psi \psi^{\prime} v_{x} v_{x x} .
\end{gathered}
$$

At the point $x_{0} \in(0,1)$ where the maximum of $\left|v_{x}\right|$ is attained, we have from (15) that

$$
\frac{v-\bar{v}}{h} F=\varphi\left(\psi^{\prime \prime} v_{x}^{2}\right)-\psi \psi^{\prime} v_{x}
$$

where

$$
f_{0} \leqq F \equiv \int_{0}^{1} \phi^{\prime}\left(\bar{v}\left(s_{0}\right)+s\left(v\left(x_{0}\right)-\bar{v}\left(x_{0}\right)\right)\right) d s \leqq f_{\infty}
$$

for some positive f_{0}, f_{∞} independent of x_{0} and $v, \bar{v}\left(|v|,|\bar{v}| \leqq v_{0} \mid\right)$. Hence, we have at x_{0} that

$$
\begin{gathered}
E \frac{v_{x}-\bar{v}_{x}}{h} v_{x}+\frac{\varphi\left(\psi^{\prime \prime} v_{x}^{2}\right)-\psi \psi^{\prime} v_{x}}{F} v_{x} \bar{v}_{x} \int_{0}^{1} \psi^{\prime \prime}(\bar{v}+s(v-\bar{v})) d s \\
=\varphi^{\prime} \psi^{\prime \prime \prime} v_{x}^{4}+\varphi^{\prime} \psi^{\prime} v_{x} v_{x x x}-\left[\left(\psi^{\prime}\right)^{2}+\psi \psi^{\prime \prime}\right] v_{x}^{3} .
\end{gathered}
$$

By applying the same procedure for (6) and taking k sufficiently small we can show that $\left\{\left|u_{n x}\right|\right\}$ is equi-bounded.
3.4. Estimate of $\left\{v_{n}\right\}$

From (6) we have

$$
\begin{align*}
& h v_{n}^{\prime \prime} \int_{0}^{1} \varphi^{\prime}\left(u_{n-1}{ }^{\prime \prime}+s\left(u_{n}^{\prime \prime}-u_{n-1}{ }^{\prime \prime}\right)\right) d s \tag{16}\\
& \quad=v_{n}-v_{n-1}+h u_{n-1}{ }^{\prime} v_{n}+h u_{n} v_{n}{ }^{\prime} .
\end{align*}
$$

By means of maximum principle for (16) we have the equi-boundedness of $\left\{\left|v_{n}\right|\right\}$ and hence of $\left\{\left|u_{n}^{\prime \prime}\right|\right\}$.
3.5. Estimate of $\left\{v_{n}{ }^{\prime}\right\}$ at the boundary

We make the substitution $v_{n}=\log \left(1+p_{n}\right)$. Then we have from (16) that

$$
\begin{align*}
& E_{n} \frac{p_{n}^{\prime \prime}}{1+p_{n}}-\frac{1}{h}\left[\log \left(1+p_{n}\right)-\log \left(1+p_{n-1}\right)\right] \tag{17}\\
& \quad=E_{n} \frac{\left(p_{n}^{\prime}\right)^{2}}{\left(1+p_{n}\right)^{2}}+u_{n} \frac{p_{n}^{\prime}}{1+p_{n}}+u_{n-1} v_{n} \\
& \\
& \geqq-W
\end{align*}
$$

for some positive W independent of n, N, where

$$
E_{n} \equiv \int_{0}^{1} \varphi^{\prime}\left(u_{n-1}{ }^{\prime \prime}+s\left(u_{n}^{\prime \prime}-u_{n-1}\right)\right) d s
$$

On a construction of a solution for $\partial u / \partial t=\phi\left(u^{\prime \prime}\right)-u u^{\prime}$ with initial
We consider a function $q_{n}=p_{n}+k e^{-x}$ and put

$$
\begin{equation*}
L q_{n}=E_{n} \frac{q_{n}^{\prime \prime}}{1+p_{n}}-\frac{1}{h}\left[\log \left(1+q_{n}\right)-\log \left(1+q_{n-1}\right)\right] . \tag{18}
\end{equation*}
$$

From (17) and (18) we have

$$
L q_{n} \geqq-W+k \lambda e^{-V_{0}-1}>0,
$$

if we take k sufficiently large such that

$$
k>\lambda^{-1} e^{1+V_{0}} W
$$

This implies that $\left\{q_{n}\right\}(n=0,1, \cdots, N)$ can have a maximum value at $x=0$ and hence we have

$$
\left.\frac{d p_{n}}{d x}\right|_{x=0} \leqq k \quad(n=0,1, \cdots, N)
$$

By using the same method for establishing the estimate $\left\{u_{n}{ }^{\prime}\right\}$ at the boundary, we have the equi-boundedness of $\left\{v_{n}{ }^{\prime}\right\}$ at the boundary.
3.6. Estimate of $\left\{v_{n}\right\}$ in the interior

Differetiating both sides of (16) we have

$$
\begin{align*}
& \frac{v_{n}{ }^{\prime}-v_{n-1}^{\prime}}{h}=v_{n}^{\prime \prime \prime} \int_{0}^{1} \varphi^{\prime}\left(u_{n-1}^{\prime \prime}+s\left(u_{n}{ }^{\prime \prime}-u_{n-1}^{\prime \prime}\right)\right) d s \tag{19}\\
& \quad+v_{n}^{\prime \prime} \int_{0}^{1} \varphi^{\prime \prime}\left(u_{n-1}^{\prime \prime}+s\left(u_{n}{ }^{\prime \prime}-u_{n-1}^{\prime \prime}\right)\right)\left[u_{n-1}{ }^{\prime \prime \prime}+s\left(u_{n}^{\prime \prime \prime}-u_{n-1}^{\prime \prime \prime}\right)\right] d s \\
& \quad-\left(u_{n-1}{ }^{\prime} v_{n}{ }^{\prime}+u_{n-1}{ }^{\prime \prime} v_{n}+u_{n}{ }^{\prime} v_{n}{ }^{\prime}+u_{n} v_{n}{ }^{\prime \prime}\right)
\end{align*}
$$

By means of maximum principle for (19) we have

$$
\left|v_{n}^{\prime}\right| \frac{\left|v_{n}^{\prime}\right|-\left|v_{n-1}^{\prime}\right|}{h} \leqq U_{1}\left|v_{n}^{\prime}\right|^{2}+U_{2} V_{0}\left|v_{n}^{\prime}\right|+U_{1}\left|v_{n}^{\prime}\right|^{2}
$$

which implies the equi-boundedness of $\left\{\left|v_{n}{ }^{\prime}\right|\right\}$ and hence of $\left\{\left|u_{n}{ }^{\prime \prime \prime \prime}\right|\right\}$.
3.7. Estimate of $\left\{u_{n}^{(4)}\right\}$

Differentiating both sides of (6) three times we have

$$
\begin{aligned}
\frac{u_{n}^{\prime \prime \prime \prime}-u_{n-1}^{\prime \prime \prime \prime}}{h}= & \varphi^{\prime} u_{n}^{(5)}+3 \varphi^{\prime \prime} u_{n}^{\prime \prime \prime \prime} u_{n}^{(4)}+\varphi^{\prime \prime \prime}\left(u_{n}^{\prime \prime \prime}\right)^{8} \\
& -u_{n} u_{n}^{(4)}-4 u_{n}^{\prime} u_{n}^{\prime \prime \prime \prime}-3\left(u_{n}^{\prime \prime}\right)^{2}
\end{aligned}
$$

where the argument of φ is $u_{n}{ }^{\prime \prime}$. Put $p_{n}=u_{n}{ }^{\prime \prime \prime}$ and hence we have

$$
\begin{align*}
\frac{p_{n}-p_{n-1}}{h}= & \varphi^{\prime} p_{n}^{\prime \prime}+3 \varphi^{\prime \prime} p_{n} p_{n}{ }^{\prime}+\varphi^{\prime \prime \prime} p_{n}^{3} \tag{20}\\
& -u_{n} p_{n}^{\prime}-4 u_{n}^{\prime} p_{n}-3\left(u_{n}^{\prime \prime}\right)^{2} .
\end{align*}
$$

Here we consider the following transformation

Norio Kikuchi

$$
p_{n}=\phi\left(q_{n}\right), \phi^{\prime}(q)=e^{-k q^{2}}(k>0)
$$

We then have from (20) that

$$
\begin{aligned}
& \frac{q_{n}-q_{n-1}}{h} \int_{0}^{1} \phi^{\prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right) d s=\left(\phi^{\prime} q_{n}^{\prime \prime}+\phi^{\prime \prime}\left(q_{n}^{\prime}\right)^{2}\right) \varphi^{\prime} \\
& +3 \varphi^{\prime \prime} \phi^{\prime} p_{n} q_{n}{ }^{\prime}+\varphi^{\prime \prime \prime} p_{n}^{3}-\psi^{\prime} u_{n} q_{n}{ }^{\prime}-4 u_{n}{ }^{\prime} p_{n}-3\left(u_{n}^{\prime \prime}\right)^{2}
\end{aligned}
$$

Differentiating this equation with respect to x we have

$$
\begin{aligned}
& \frac{q_{n}{ }^{\prime}-q_{n-1}^{\prime}}{h} \int_{0}^{1}\left[\psi^{\prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right)+s\left(q_{n}-q_{n-1}\right) \psi^{\prime \prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right)\right] d s \\
& +\frac{q_{n}-q_{n-1}}{h} q_{n-1} \int_{0}^{1} \phi^{\prime \prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right) d s \\
& =\left(\psi^{\prime}{q_{n}}^{\prime \prime \prime}+3 \phi^{\prime \prime}{q_{n}}^{\prime} q_{n}{ }^{\prime \prime}+\psi^{\prime \prime \prime}\left(q_{n}\right)^{3}\right) \varphi^{\prime}+\left(\phi^{\prime} q_{n}{ }^{\prime \prime}+\psi^{\prime \prime}\left(q_{n}{ }^{\prime}\right)^{2}\right) \varphi^{\prime \prime} p_{n} \\
& +3 \varphi^{\prime \prime} \psi^{\prime} p_{n}{q_{n}}^{\prime \prime}+3 \varphi^{\prime \prime}\left(\psi^{\prime}\right)^{2}\left(q_{n}\right)^{2}+3 \varphi^{\prime \prime} \psi^{\prime \prime} p_{n}\left(q_{n}\right)^{2}+3 \varphi^{\prime \prime \prime} \phi^{\prime}\left(p_{n}\right)^{2} q_{n}{ }^{\prime} \\
& +3 \varphi^{\prime \prime \prime} \psi^{\prime} p_{n}{ }^{2} q_{n}{ }^{\prime}+\varphi^{(4)} p_{n}{ }^{4}-\phi^{\prime} u_{n}{q_{n}}^{\prime \prime}-\phi^{\prime \prime} u_{n}\left(q_{n}\right)^{2}-5 \psi^{\prime} u_{n}{ }^{\prime} q_{n}{ }^{\prime}-10 u_{n}{ }^{\prime \prime} p_{n} .
\end{aligned}
$$

Multiplying $q_{n}{ }^{\prime}$ to both sides of the above equation, we have

$$
\begin{align*}
& E \frac{q_{n}{ }^{\prime}-q_{n-1}{ }^{\prime}}{h} q_{n}{ }^{\prime}+\frac{q_{n}-q_{n-1}}{h} q_{n}{ }^{\prime} q_{n-1}{ }^{\prime} \int_{0}^{1} \phi^{\prime \prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right) d s \tag{21}\\
& =\left(\psi^{\prime} q_{n}{ }^{\prime} q_{n}{ }^{\prime \prime \prime}+3 \psi^{\prime \prime}\left(q_{n}\right)^{2} q_{n}{ }^{\prime \prime}+\psi^{\prime \prime \prime}\left(q_{n}{ }^{\prime}\right)^{4}\right) \varphi^{\prime}+\left(\psi^{\prime} q_{n}{ }^{\prime} q_{n}{ }^{\prime \prime}+\psi^{\prime \prime}\left(q_{n}\right)^{3}\right) \varphi^{\prime \prime} p_{n} \\
& +3 \varphi^{\prime \prime} \phi^{\prime} p_{n} q_{n}{ }^{\prime} q_{n}{ }^{\prime \prime}+3 \varphi^{\prime \prime}\left(\phi^{\prime}\right)^{2}\left(q_{n}\right)^{3}+3 \varphi^{\prime \prime} \phi^{\prime \prime} p_{n}\left(q_{n}\right)^{3}+3 \varphi^{\prime \prime \prime} \psi^{\prime} p_{n}{ }^{2}\left(q_{n}\right)^{2} \\
& +3 \varphi^{\prime \prime \prime} \psi^{\prime} p_{n}{ }^{2}\left(q_{n}\right)^{2}+\varphi^{(4)} p_{n}{ }^{4}{q_{n}}^{\prime}-\phi^{\prime} u_{n} q_{n}{ }^{\prime} q_{n}{ }^{\prime \prime}-\psi^{\prime \prime} u_{n}\left(q_{n}\right)^{3}-5 \phi^{\prime} u_{n}{ }^{\prime}\left(q_{n}\right)^{2}-10 u_{n}{ }^{\prime \prime} p_{n} q_{n}{ }^{\prime},
\end{align*}
$$

where, by taking k sufficiently small,

$$
e_{0} \leqq E \equiv \int_{-0}^{1}\left[\psi^{\prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right)+s\left(q_{n}-q_{n-1}\right) \psi^{\prime \prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right)\right] d s \leqq e_{\infty}
$$

for some positive e_{0}, e_{∞} independent of $x \in[0,1], n$ and N. At the point $x_{0} \in(0,1)$ such that $\left|q_{n}{ }^{\prime}\right|=\left|q_{n}{ }^{\prime}\left(x_{0}\right)\right|$ we have

$$
\begin{align*}
\frac{q_{n}-q_{n-1}}{h} F= & \phi^{\prime \prime}\left(q_{n}^{\prime}\right)^{2} \varphi^{\prime}+3 \varphi^{\prime \prime} \phi^{\prime} p_{n} q_{n}^{\prime}+\varphi^{\prime \prime \prime \prime} p_{n}^{3} \tag{22}\\
& -\phi^{\prime} u_{n} q_{n}^{\prime}-4 u_{n}^{\prime} p_{n}-3\left(u_{n}^{\prime \prime}\right)^{2}
\end{align*}
$$

where

$$
f_{0} \leqq F \equiv \int_{0}^{1} \psi^{\prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right) d s \leqq f_{\infty}
$$

for some positive f_{0}, f_{∞} independent of x_{0}, n and N. From (21) and (22) we have at x_{0} that

On a construction of a solution for $\partial u / \partial t=\phi\left(u^{\prime \prime}\right)-u u^{\prime}$ with initial

$$
\begin{aligned}
& E \frac{q_{n}{ }^{\prime}-q_{n-1}^{\prime}}{h} q_{n}{ }^{\prime}+\frac{q_{n}{ }^{\prime} q_{n-1}^{\prime}}{F} \int_{0}^{1} \phi^{\prime \prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right) d s \\
& \times\left(\varphi^{\prime} \phi^{\prime \prime}\left(q_{n}\right)^{2}+3 \varphi^{\prime \prime} \psi^{\prime} p_{n} q_{n}{ }^{\prime}+\varphi^{\prime \prime \prime} p_{n}{ }^{3}-\psi^{\prime} u_{n} q_{n}{ }^{\prime}-4 u_{n}{ }^{\prime} p_{n}-3\left(u_{n}{ }^{\prime \prime}\right)^{2}\right) \\
& \left.=\left(\psi^{\prime} q_{n}{ }^{\prime} q_{n}^{\prime \prime \prime}+\phi^{\prime \prime \prime}\left(q_{n}\right)^{4}\right) \varphi^{\prime}+\varphi^{\prime \prime} \psi^{\prime \prime} p_{n}\left(q_{n}\right)^{\prime}\right)^{3} \\
& \left.+3 \varphi^{\prime \prime}\left(\psi^{\prime}\right)^{2}\left(q_{n}\right)^{3}+3 \varphi^{\prime \prime} \psi^{\prime \prime} p_{n}\left(q_{n}\right)^{3}+3 \varphi^{\prime \prime \prime} \phi^{\prime} p_{n}^{2}\left(q_{n}\right)^{2}\right)^{2} \\
& +3 \varphi^{\prime \prime \prime} \psi^{\prime} p_{n}{ }^{2}\left(q_{n}{ }^{\prime}\right)^{2}+\varphi^{(4)} p_{n}{ }^{4} q_{n}{ }^{\prime}-\psi^{\prime \prime} u_{n}\left(q_{n}{ }^{\prime}\right)^{3}-5 \psi^{\prime} u_{n}{ }^{\prime}\left(\boldsymbol{q}_{n}{ }^{\prime}\right)^{2}-10 u_{n}{ }^{\prime \prime} p_{n} q_{n}{ }^{\prime} .
\end{aligned}
$$

By taking k sufficiently small we can show the equi-boundedness of $\left\{\left|u_{n}^{(4)}\right|\right\}$ and hence of $\left\{\left|v_{n}{ }^{\prime \prime}\right|\right\}$.
3.8. Estimate of $\left\{u_{n}^{(5)}\right\}$ at the boundary

Differentiating both sides of (6) four times we have

$$
\begin{aligned}
\frac{u_{n}^{(4)}-u_{n-1}^{(4)}}{h}= & \varphi^{\prime} u_{n}^{(6)}+4 \varphi^{\prime \prime} u_{n}^{\prime \prime \prime} u_{n}^{(5)}+3 \varphi^{\prime \prime}\left(u_{n}^{(4)}\right)^{2} \\
& +6 \varphi^{\prime \prime \prime}\left(u_{n}^{\prime \prime \prime}\right)^{2} u_{n}^{(4)}+\varphi^{(4)}\left(u_{n}^{\prime \prime \prime}\right)^{4} \\
& -u_{n} u_{n}^{(5)}-5 u_{n}^{\prime} u_{n}^{(4)}-10 u_{n}{ }^{\prime \prime} u_{n}^{\prime \prime \prime}
\end{aligned}
$$

where the argument of φ is $u_{n}{ }^{\prime \prime}$. Put $p_{n}=u_{n}^{(4)}$ and hence we have

$$
\begin{align*}
\frac{p_{n}-p_{n-1}}{h}= & \varphi^{\prime} p_{n}{ }^{\prime \prime}+4 \varphi^{\prime \prime} u_{n}^{\prime \prime \prime} p_{n}{ }^{\prime}+3 \varphi^{\prime \prime} p_{n}{ }^{2} \tag{23}\\
& +6 \varphi^{\prime \prime \prime}\left(u_{n}{ }^{\prime \prime \prime}\right)^{2} p_{n}+\varphi^{(4)}\left(u_{n}^{\prime \prime \prime}\right)^{4} \\
& -u_{n} p_{n}{ }^{\prime}-5 u_{n}{ }^{\prime} p_{n}-10 u^{\prime \prime} u_{n_{n}}{ }^{\prime \prime \prime}
\end{align*}
$$

In (23) we make the substitution $p_{n}=\log \left(1+q_{n}\right)$. Then we have

$$
\begin{aligned}
& \varphi^{\prime} \frac{q_{n}^{\prime \prime}}{1+q_{n}}-\frac{1}{h}\left[\log \left(1+q_{n}\right)-\log \left(1+q_{n-1}\right)\right] \\
& =\varphi^{\prime} \frac{\left(q_{n}^{\prime}\right)^{2}}{\left(1+q_{n}\right)^{2}}-4 \varphi^{\prime \prime} u_{n}^{\prime \prime \prime} \frac{q_{n}^{\prime}}{1+q_{n}}-3 \varphi^{\prime \prime} p_{n}^{2} \\
& \\
& -\varphi^{\prime \prime \prime \prime}\left(u_{n}^{\prime \prime \prime}\right)^{2} p_{n}-\varphi^{(4)}\left(u_{n}{ }^{\prime \prime \prime}\right)^{4} \\
& \quad+u_{n} \frac{q_{n}^{\prime}}{1+q_{n}}-5 u_{n}^{\prime} p_{n}-10 u_{n}{ }^{\prime \prime} u_{n}^{\prime \prime \prime} \\
& \quad \geqq-W,
\end{aligned}
$$

where W is a positive number independent of x, n and N. By using the same method for establishing the estimate of $\left\{u_{n}{ }^{\prime}\right\}$ at the boundary, we have the equiboundedness of $\left\{u_{n}^{(5)}\right\}$ at the boundary.
3.9. Estimate of $\left\{\boldsymbol{u}_{n}^{(5)}\right\}$ in the interior

By the following transformation

$$
p_{n}=\psi\left(q_{n}\right), \psi^{\prime}(q)=e^{-k q^{2}}(k>0)
$$

we have from (23) that

$$
\begin{aligned}
& \frac{q_{n}-q_{n-1}}{h} \int_{0}^{1} \psi^{\prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right) d s \\
& \quad-\left(\psi^{\prime} q_{n}^{\prime \prime}+\psi^{\prime \prime}\left(q_{n}\right)^{2}\right) \varphi^{\prime}+4 \varphi^{\prime \prime} \psi^{\prime} u_{n}^{\prime \prime \prime \prime} q_{n}{ }^{\prime}+3 \varphi^{\prime \prime} p_{n}^{2} \\
& \quad+6 \varphi^{\prime \prime \prime}\left(u_{n}^{\prime \prime \prime}\right)^{2} p_{n}+\varphi^{(4)}\left(u_{n}^{\prime \prime \prime}\right)^{4}-\psi^{\prime} u_{n} q_{n}^{\prime}-5 u_{n}{ }^{\prime} p_{n}-10 u_{n}^{\prime \prime} u_{n}^{\prime \prime \prime \prime} .
\end{aligned}
$$

Differentiating this equation with respect to x we have

$$
\begin{align*}
& \frac{q_{n}^{\prime}-q_{n-1}^{\prime}}{h} \int_{0}^{1}\left[\psi^{\prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right)+s\left(q_{n}-q_{n-1}\right) \psi^{\prime \prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right)\right] d s \tag{24}\\
& \quad+\frac{q_{n}-q_{n-1}}{h} q_{n-1} \int_{0}^{1} \psi^{\prime \prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right) d s \\
& =\left(\psi^{\prime} q_{n}^{\prime \prime \prime}+3 \psi^{\prime \prime} q_{n}{ }^{\prime} q_{n}^{\prime \prime}+\psi^{\prime \prime \prime}\left(q_{n}^{\prime}\right)^{3}\right) \varphi^{\prime}+5 \varphi^{\prime \prime} \psi^{\prime} u_{n}^{\prime \prime \prime} q_{n}^{\prime \prime}+5 \varphi^{\prime \prime} \psi^{\prime \prime} u_{n}^{\prime \prime \prime}\left(q_{n}\right)^{2} \\
& \quad+10 \varphi^{\prime \prime} \psi^{\prime} p_{n} q_{n}{ }^{\prime}+10 \varphi^{\prime \prime \prime} \phi^{\prime}\left(u_{n}^{\prime \prime \prime}\right)^{2} q_{n}^{\prime}+15 \varphi^{\prime \prime \prime} u_{n}^{\prime \prime \prime} p_{n}^{2} \\
& \quad+4 \varphi^{(4)} u_{n}^{\prime \prime \prime \prime} p_{n}+\varphi^{(5)}\left(u_{n}^{\prime \prime \prime \prime}\right)^{5} \\
& -\psi^{\prime} u_{n} q_{n}^{\prime \prime}-\psi^{\prime \prime} u_{n}\left(q_{n}^{\prime}\right)^{2}-6 \psi^{\prime} u_{n}{ }^{\prime} q_{n}{ }^{\prime}-15 u_{n}^{\prime \prime} p_{n}-10\left(u_{n}^{\prime \prime \prime}\right)^{3} .
\end{align*}
$$

At the point $x_{0} \in(0,1)$ such that $\left|q_{n}{ }^{\prime}\right|=\left|q_{n}{ }^{\prime}\left(x_{0}\right)\right|$ we have

$$
\begin{gather*}
\frac{q_{n}-q_{n-1}}{h} F=\varphi^{\prime} \psi^{\prime \prime}\left(q_{n}\right)^{2}+4 \varphi^{\prime \prime} \psi^{\prime} u_{n}{ }^{\prime \prime \prime} q_{n}{ }^{\prime} \tag{25}\\
\quad+3 \varphi^{\prime \prime} p_{n}{ }^{2}+6 \varphi^{\prime \prime \prime}\left(u_{n}^{\prime \prime \prime}\right)^{2} p_{n}+\varphi^{(4)}\left(u_{n}{ }^{\prime \prime \prime}\right)^{4} \\
-\psi^{\prime} u_{n} q_{n}{ }^{\prime}-5 u_{n}{ }^{\prime} p_{n}-10 u_{n}{ }^{\prime \prime} u_{n}^{\prime \prime \prime \prime} .
\end{gather*}
$$

From (24) and (25) we have at x_{0} that

$$
\begin{aligned}
& E q_{n}{ }^{\prime} \frac{q_{n}{ }^{\prime}-q_{n-1}{ }^{\prime}}{h}+\frac{1}{F} \int_{0}^{1} \psi^{\prime \prime}\left(q_{n-1}+s\left(q_{n}-q_{n-1}\right)\right) d s \\
& \times q_{n}{ }^{\prime} q_{n-1}{ }^{\prime}\left(\varphi^{\prime} \psi^{\prime \prime}\left(q_{n}\right)^{2}+4 \varphi^{\prime \prime} \psi^{\prime} u_{n}{ }^{\prime \prime \prime} q_{n}{ }^{\prime}+3 \varphi^{\prime \prime} p_{n}{ }^{2}+6 \varphi^{\prime \prime \prime}\left(u_{n}{ }^{\prime \prime \prime}\right)^{2} p_{n}\right. \\
& \left.+\varphi^{(4)}\left(u_{n}{ }^{\prime \prime \prime}\right)^{4}-\psi^{\prime} u_{n} q_{n}{ }^{\prime}-5 u_{n}{ }^{\prime} p_{n}-10 u_{n}{ }^{\prime \prime} u_{n}{ }^{\prime \prime \prime}\right) \\
& =\left(\phi^{\prime} q_{n}{ }^{\prime} q_{n}{ }^{\prime \prime \prime}+\psi^{\prime \prime \prime}\left(q_{n}\right)^{4}\right) \varphi^{\prime}+5 \varphi^{\prime \prime} \psi^{\prime \prime} u_{n}{ }^{\prime \prime \prime}\left(q_{n}\right)^{3}+10 \varphi^{\prime \prime} \psi^{\prime} p_{n}\left(q_{n}\right)^{2} \\
& +10 \varphi^{\prime \prime \prime} \psi^{\prime}\left(u_{n}^{\prime \prime \prime}\right)^{2}\left(q_{n}\right)^{2}+15 \varphi^{\prime \prime \prime} u_{n}^{\prime \prime \prime} p_{n}^{2} q_{n}{ }^{\prime}+6 \varphi^{(4)}\left(u_{n}{ }^{\prime \prime \prime}\right)^{3} p_{n} q_{n}{ }^{\prime} \\
& +4 \varphi^{(4)} u_{n}{ }^{\prime \prime \prime} p_{n} q_{n}{ }^{\prime}+\varphi^{(5)}\left(u_{n}{ }^{\prime \prime \prime}\right)^{5} q_{n}{ }^{\prime}-\phi^{\prime \prime} u_{n}\left(q_{n}\right)^{3} \\
& -6 \psi^{\prime} u_{n}{ }^{\prime}\left(q_{n}{ }^{\prime}\right)^{2}-15 u_{n}{ }^{\prime \prime} p_{n} q_{n}{ }^{\prime}-10\left(u_{n}^{\prime \prime \prime}\right)^{3} q_{n}{ }^{\prime} \text {, }
\end{aligned}
$$

where E and F are similar functions as defined in 3.3. By taking k sufficiently small we can show the equi-boundedness of $\left\{\left|u_{n}^{(5)}\right|\right\}$ and hence of $\left\{\left|v_{n}^{(3)}\right|\right\}$.

On a construction of a solution for $\partial u \mid \partial t=\phi\left(u^{\prime \prime}\right)-u u^{\prime}$ with initial

4. Estimate of $\left\{\left|\boldsymbol{u}_{n}{ }^{\prime \prime}-\boldsymbol{u}_{n-1}{ }^{\prime \prime}\right|\right\}$

From the construction (6) of $u_{n}(n \geqq 2)$ we have

$$
\begin{align*}
& h\left(u_{n}^{\prime \prime}-u_{n-1}{ }^{\prime \prime}\right) \int_{0}^{1} \varphi^{\prime}\left(u_{n-1}{ }^{\prime \prime}+s\left(u_{n}^{\prime \prime}-u_{n-1}^{\prime \prime}\right)\right) d s \tag{24}\\
& \quad=\left(u_{n}-u_{n-1}\right)-\left(u_{n-1}-u_{n-2}\right)+h^{2} u_{n-1} v_{n}^{\prime}+h^{2} u_{n-1}{ }^{\prime} v_{n}+h^{3} v_{n} v_{n} .
\end{align*}
$$

Differentiating both sides of (24) twice we have

$$
\begin{align*}
& h\left(u_{n}{ }^{\prime \prime \prime \prime}-u_{n-1}{ }^{\prime \prime \prime \prime}\right) \int_{0}^{1} \varphi^{\prime}\left(u_{n-1}{ }^{\prime \prime}+s\left(u_{n}^{\prime \prime}-u_{n-1}{ }^{\prime \prime}\right)\right) d s \tag{25}\\
& +2 h\left(u_{n}^{\prime \prime \prime}-u_{n-1}^{\prime \prime \prime}\right) \int_{0}^{1} \varphi^{\prime}\left(u_{n-1}{ }^{\prime \prime}+s\left(u_{n}^{\prime \prime}-u_{n-1} \prime \prime\right)\right)\left[u_{n-1}^{\prime \prime \prime}+s\left(u_{n}^{\prime \prime \prime}-u_{n-1}^{\prime \prime \prime}\right)\right] d s \\
& +h\left(u_{n}^{\prime \prime}-u_{n-1}{ }^{\prime \prime}\right) \int_{0}^{1}\left\{\varphi^{\prime \prime \prime}\left(u_{n-1}^{\prime \prime}+s\left(u_{n}{ }^{\prime \prime}-u_{n-1}^{\prime \prime}\right)\right)\left[u_{n-1}{ }^{\prime \prime \prime}+s\left(u_{n}^{\prime \prime \prime}-u_{n-1}{ }^{\prime \prime \prime}\right)\right]^{2}\right. \\
& \left.+\varphi^{\prime \prime}\left(u_{n-1}{ }^{\prime \prime}+s\left(u_{n}^{\prime \prime}-u_{n-1}{ }^{\prime \prime}\right)\right)\left[u_{n-1}{ }^{\prime \prime \prime \prime}+s\left(u_{n}^{\prime \prime \prime \prime \prime}-u_{n-1}^{\prime \prime \prime \prime \prime}\right)\right]\right\} d s \\
& =\left(u_{n}{ }^{\prime \prime}-u_{n-1}{ }^{\prime \prime}\right)-\left(u_{n-1}{ }^{\prime \prime}-u_{n-2}{ }^{\prime \prime}\right) \\
& +h^{2} u_{n-1} v_{n}{ }^{\prime \prime \prime}+3 h^{2} u_{n-1}{ }^{\prime} v_{n}{ }^{\prime \prime}+3 h^{2} u_{n-1}{ }^{\prime \prime} v_{n}{ }^{\prime}+h^{2} u_{n}{ }^{\prime \prime \prime} v_{n}+3 h^{3} v_{n}{ }^{\prime} v_{n}{ }^{\prime \prime}+h^{3} v_{n} v_{n}{ }^{\prime \prime \prime} .
\end{align*}
$$

By means of maximum principle for (25) we have

$$
\begin{equation*}
\left|u_{n}^{\prime \prime}-u_{n-1}{ }^{\prime \prime}\right| \leqq\left|u_{n-1}{ }^{\prime \prime}-u_{n-2}{ }^{\prime \prime}\right|+h K_{1}\left|u_{n}^{\prime \prime}-u_{n-1}{ }^{\prime \prime}\right|+h^{2} K_{2}, \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{1}=\sup _{|u| \leqslant U_{2}}\left|\varphi^{\prime \prime \prime}(u)\right|+\sup _{|u| \leqslant U_{2}}\left|\varphi^{\prime \prime}(u)\right| U_{4}, \\
& K_{2}=U_{0} V_{3}+3 U_{1} V_{2}+3 U_{2} V_{1}+U_{3} V_{0}+3 V_{1} V_{2}+V_{0} V_{3} .
\end{aligned}
$$

On the other hand, from the relation

$$
u_{1}-u_{0}=h \varphi\left(u_{1}^{\prime \prime}\right)-h u_{1} u_{1}^{\prime}
$$

we have

$$
\begin{equation*}
u_{1}^{\prime \prime}-u_{0}^{\prime \prime}=h \varphi^{\prime}\left(u_{1}^{\prime \prime}\right) u_{1}^{\prime \prime \prime \prime \prime}+h \varphi^{\prime \prime}\left(u_{1}^{\prime \prime}\right)\left(u_{1}^{\prime \prime \prime}\right)^{2}-3 h u_{1}^{\prime} u_{1}^{\prime \prime}-h u_{1} u_{1}^{\prime \prime \prime} \tag{27}
\end{equation*}
$$

and hence we have by using maximum principle for (27) that

$$
\begin{equation*}
\left|u_{1}^{\prime \prime}-u_{0}^{\prime \prime}\right| \leqq h K_{3}, \tag{28}
\end{equation*}
$$

where

$$
K_{3}=\sup _{|u| \leq V_{2}}\left|\varphi^{\prime \prime}(u)\right| U_{3}^{2}+3 U_{1} U_{2}+U_{0} U_{3}+\mu U_{4} .
$$

Hence, we have from (26) and (28) that

$$
\begin{equation*}
\left|u_{n}^{\prime \prime}-u_{n-1}^{\prime \prime}\right| \leqq h \frac{K_{3}+K_{2} K_{1}^{-1}\left\{1-\left(1-h K_{1}\right)^{n-1}\right\}}{\left(1-h K_{1}\right)^{n_{-1}}} \leqq h K \tag{29}
\end{equation*}
$$

for some constant K independent of N and n.

5. Completion of the proof

The equi-boundedness (9) of $\left\{\left|u_{n}{ }^{\prime}\right|\right\}$ implies that $\left\{P_{N}(t)\right\}(0 \leqq t \leqq T)$ belongs to a compact set in X and the equi-boundedness of $\left.\left\{\mid u_{n}\right\}\right\},\left\{\left|u_{n}{ }^{\prime}\right|\right\},\left\{\left|u_{n}{ }^{\prime \prime}\right|\right\}$ implies the equi-continuity of $\left\{P_{N}(t)\right\}$. Hence, $\left\{P_{N}(t)\right\}$ can be assumed to be a normal family of functions with values in X converging to a continuous function $P(t) \in X$ uniformly on $[0, T]$.

The equi-boundedness (9) of $\left\{\left|u_{n}{ }^{\prime \prime \prime}\right|\right\}$ similarly implies that $\left\{d^{+} P_{N}(t) \mid d t\right\}(0 \leqq t \leqq T)$ belongs to a compact set in X. From the estimates (9), (10) and (29) we have

$$
\begin{aligned}
& \left|\varphi\left(u_{n}{ }^{\prime \prime}\right)-u_{n} u_{n}{ }^{\prime}-\varphi\left(u_{n-1}{ }^{\prime \prime}\right)+u_{n-1} u_{n-1}{ }^{\prime}\right| \\
& \quad \leqq h\left(\mu K+U_{1} V_{0}+V_{1} U_{0}+V_{0} V_{1}\right) \quad(n \geqq 1),
\end{aligned}
$$

which shows that $\left\{d^{+} P_{N}(t) \mid d t\right\}$ is equi-continuous. Hence, $\left\{d^{+} P_{N}(t) \mid d t\right\}$ can be assumed to be a normal family of functions with values in X converging to a continuous function uniformly on $[0, T]$.

Noticing the closedness of A and B, we have by letting $N \rightarrow \infty$ in (6) that

$$
\begin{gathered}
\frac{d}{d t} P(t)=\varphi(A P(t))-P(t) B P(t) 0 \leqq t \leqq T \\
P(t) \in \mathscr{D}(A) \\
\left.P(t)\right|_{t=0}=u_{0} .
\end{gathered}
$$

Hence, a solution for (1) and (2) was constructed.

REFERENCES

[1] S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. Ecole Norm. Sup. 29 (1912), 431-485.
[2] M. Hukuhara, Existence proof of solutions by Cauchy polygon, F.E., 14 (1961), 265272 (Japanese).
[3] M. Hukuhara, Un théorème d'existence pour une equation aux dérivees partielles parabolique non linéaire I, II, RIMS-14 (1966), RIMS-18 (1966).
[4] M. Nagumo, Über die Diffentialgleichung $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$, Proc. Phys.-Math. Soc. Japan, 19 (1937), 861-866.
[5] O.A. Oleinik and T.D. Venttsel', Cauchy's problem and the first boundary value problem for quasi-linear equation of parabolic type, Dokl. Akad. Nauk SSSR, 97 (1954), 605-608.

