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ou/ot=¢(u’’)—uu’
WITH INITIAL AND BOUNDARY CONDITIONS
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Dept. of Mathematics, Keio University, Hiyoshi, Yokohama 223, Japan
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0. Introduction

This paper is concerned with a construction of a continuous solution u(Z, x)
for the scalar equation

g—’;= go(u”)—uu’(’:%) for (¢, @)el0, TIX[0, 1]

@
with initial and boundary conditions
2) (0, z)=us(x) for 0=x=1,
u(t,0)=0, (¢, 1)=0 for 0=¢=T.
Now we assume that the function ¢ in (1) satisfies the following conditions :
©) peC*(— o0, 00), (0)=0, ¢"(0)=0,
0<1=¢'(w)=p<oo for —co<Lu<oo.

The compatibility conditions for initial and boundary conditions are the fol-
lowing

4 #,€C[0, 1],
%0(0) =24(1)=0, 2,"(0)=2,"(1)=0.
Under the assumptions stated above we have the following theorem.

Theorem. There exists a continuous ‘ solution’ satisfying (1), (2) in the domain
[0, T1X[0, 1], where T is an arbitrary positive number.

The meaning of ‘solution’ will be explained later.

This paper is stimulated by M. Hukuhara’s papers [2], [3] and is treated by
Rothe’s method. Following S. N. Bernstein’s paper [1] and O. A. Oleinik and T.D.
Venttsel’s paper [5] we find estimates for the derivatives of approximate solutions
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and we further estimate derivatives of higher order up to the boundary. To
construct an approximate solution we use M. Nagumo’s existence theorem of
solutions for a second order differentiat equation with boundary conditions. Here
we shall quote the following theorem ([4]):

Nagumo’s Theorem. Consider a second order differential equation

%) v =9(x, v, v'),
where ¢(z, v, ¥') is a continuous function defined on a closed domain
0=2=l, a(x)=y=w(z), —co<Ly <oo.

alz) and w(x) is a minorant and majorant function of class C*0, 1] respectively
satisfying

a(0)=w(0)=0, «1)=0=w(l),
a"(z) z9(x, a(z), o' (z)),
o"(2)=g(z, 0(z), ' (x)).
If g(x, vy, y’) satisfies the following inequality
lo(z, v, V) =GA+()") (G>0),
then there exists a solution y(x) of (5) satisfying
a(r)=y(@)=w(x) for 0=zx=1,

¥(0)=0, ¥(1)=0.

1. Explanation of the method

Let X=CJ[0,1] be the Banach space of real-valued functions #(x) continuous
on [0,1] with the norm

lu| =sup{|u(x)| ; 0=z=1}.
Let N be a positive integer suﬁiciently large and put
h=T|N(K1), ta=nh (n=0,1,---, N).
We define {#,}c X(n=1,2,---, N) inductively by :

(6) V= %’—_— O(hn") = tnth

a(0) = tn(1)=0,
and define a Cauchy polygon in X by-

t—tn-
5 (tn—tny) for tn\ <t<tn

Py(t)=ttni+
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On a construction of a solution for du/ot=¢(u'")—wuw’ with initial

We have by (6) that

d*Py(f)
dt

where d+/dt denotes right-hand derivative with respect to the topology of X.
Here we define operators A and B in X by

A D(A)={u=u(x)eC0,1]; u(0)=u(1)=0}—-X,
(Au)(z)=u"(x),

B: 9B)={u=u(z)eC0,1]; u(0)=u(l)=0}—-X,
(Bu)(z)=u'(x),

which can be verified to be closed in X.
If we can select a subsequence {Py(#)}c X such that

=@(Px(tn)")— Pn(ta)Py(ta) for tn.<E<ln,

Pr(d)—P), —g—} Py(t)—Q(t), APx()—>R(t), BPx(£)—S(?)

uniformly on [0, 7] and Q(¢) is continuous on [0, 7], we have by noticing the
closedness of A and B that

P(t)e D(A), %P(l‘)=Q(t), AP@#)=R(), BP()=5(t)

and this P(¢) satisfies

) % Pt)=p(AP(#)—P({)BP(®),

P()|t-o=1to.

Under a solution of (1) and (2) we understand a function P(¢) satisfying (7).

2. Construction of {u,}

In order to construct #, satisfying (6) we shall consider the following equation
with 0-Dirichlet condition

8 u—/; “ =o(u")—uu,

u(0)=u(1)=0,
where # is a function of class C*0, 1] satisfying
#0)=a(1)=0, #"(0)=a"(1)=0.
Here we shall construct o(zx) of the type
ax—bx? 0=r=—,
o(r)=

a a
4b 2b
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and define a(x) by
a(x)=—w(z).

Such a(z) and w(x) can be verified to be minorant and majorant function for (8),
if we take @, b suitably large. Hence, by using Nagumo’s Theorem we can con-
struct u, satisfying (6). (a(x), o(x) don’t belong to C?[0,1] but Nagumo’s Theorem
is known to be applicable if a(x) and w(x) are such functions.)

3. Estimates of {u.}, {v,} and their derivatives

Here we shall prove the following estimates: there exists positive numbers
Uy, Vi independent of N such that

9 luP|=Ur (B=0,1,2,3,4),

(10) lo®|1=Vi (k=1,2,3).
From the relation (6) we note that

11) un=0, u,'=0, u®=0

(12) v, =0,

at the boundary (i.e., =0, 1).
3.1. Estimate of {#.}
By means of maximum principle for (6) we have

|unlélun-l|§'”§luol‘

3.2. Estimate of {u,’} at the boundary
We make the substitution #,=log(1+p.). Then we have from (6) that

pn/l 1
13) T [log(1+pz) —log(L+pn-1)]
(pn,)z + ot pn l U= ___l U 2

S T T
We consider a function gn.=p.+ke*(k>0) and put

_ qnll _l } B
14) Lgn=p g 5=, Hog(L+gu)~ log(L+n-1)}

From (13) and (14) we have

kp U2

Loz iy ™

Dn—Dnr 1 1
- d
P So[1+pn_1+s(pn—pn_1.) 1+z>n-1+ke-’”+s(pn—pn_1)] s
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At the point x where p,(x)=pr-(x) We have

k/l [jo2
LQnEW— T>0

if we take % sufficiently large such that
k>eUy2eVou 2,
This implies that {g.} #=0,1,---, N) can have a maximum value at x=0 if % is

chosen sufficiently large. Consequently, we have

%

aJC ék (n=0) 1’ Y N)'

=0

By considering the function p.—ke~* we can similarly verify that

0pn
ox

=—k n=0,1, -, N).

r=0

We can further similarly have that

it

9z gk (n':O, ]-7 ) N)'

=1

Hence, we have an equi-boundedness of {«,’} at the boundary.
3.3. Estimate of {#,’} in the interior
In order to estimate {,’} we consider the following transformation

%=¢(Z)), ¢’(v)=e-kv2(k>0)-
We then have from (8) that

(15) v; ? Sl ' +s@—0))ds=p(¢ Ve + V2" — PPV,

0

where #=¢(). Differentiating this equation with respect to # we have

vx_ﬁz

h

S:[gl/(ﬁ +s(v—0))+s—2)¢"(@+s@—))lds

v—v mSl ¢ (O +s(v—10))ds

T

= (gb,l,vzs + Sgbllvzvzz + SI)varz)SD, - (Sb,)zvzz - ¢¢’”vzz - ¢¢,sz,

where the argument of ¢’ is ¢'v..+¢"v.%. For k sufficiently small we can have
positive ey, e, such that

1
eo_S_EES [ @+ 50— ) + (0 — D)9+ S(v— D)) s Ze
(1]
for every v, #(|v], [D| = |vo|, wo=¢(v0)). Multiplying v, to both sides of the above
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equation, we have

Vp— Uy v—7

Ehv’”+h

vxﬁzgl ¢ (0 +s(v—0))ds

=( (/)'”Z)z“ + 3¢v” Vo Vpn+ Sb,vxvxxx)?,
(02— 0= GO0

At the point z,€(0,1) where the maximum of |v,| is attained, we have from (15)
that

1)‘}: 0 F= y7(§[1”1)12) _ ¢¢/vx’

where

fogF—:—S:gl:’(ﬁ(so)+S(v(xo)—17(xo)))ds§fw

for some positive f, f. independent of x, and v, &(|v|, |#|=v.|). Hence, we have
at x, that

s 1y 2\ __ / 1
ey PV 900 o (ot so—opas
0

— @,¢,//vz4 +¢,¢1vzvx1x—‘ [(¢/)2 +¢'¢”}va-

By applying the same procedure for (6) and taking % sufficiently small we can
show that {|#.;|} is equi-bounded.

3.4. Estimate of {vn}

From (6) we have

1
(16) hvn”g @ (tnr" +5(tn" — thn-,""))ds
0

=Vp—UVp-1+ hun—llvn + hunvn,-

By means of maximum principle for (16) we have the equi-boundedness of {|v.|}
and hence of {|u."|}.
3.5. Estimate of {v,’} at the boundary
We make the substitution v,=log(1+p,). Then we have from (16) that
7

X 1
a7 E. T+pn —~h—[log(1+1>n)—log(1+1>n—1)]

_ (pn')? b’
=Er sy T T4

=W

for some positive W independent of », N, where

+ un—llvn

1
EnES @ (s + 52t — thn ")) d.
K
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On a construction of a solution for ou/of=¢(u'')—un' with initial

We consider a function g.=p.+ke~* and put

(18) Lgn=E, - —}11- [log(1+gn)—log(1+gn-1)].

1+p

From (17) and (18) we have
Lg.=— W+kie Vo1 >0,

if we take % sufficiently large such that

k>Aet VoW,

This implies that {g.} #=0,1,---, N) can have a maximum value at x=0 and
hence we have

dpn

dx x:oék (n=0)17""N)

By using the same method for establishing the estimate {«,’} at the boundary,
we have the equi-boundedness of {v,’} at the boundary.

3.6. Estimate of {v.’} in the interior

Differetiating both sides of (16) we have

V0’ —Vnt/

19) 7

1
=vnIIIS SD,(un—-l”'i-s(un”_un—-l”))ds
0
1
_l_vn/IS So”(un—l”'l_s(un”—u'n,—-l”)) [un—ll,,+s(un/’,—un—-l”,)]ds
o
— (1 V0" sV 002 - ua02”).
By means of maximum principle for (19) we have

03| = Va1
h

25 = Uilon' 124 U Volon'| + Usjor’ |3,

which implies the equi-boundedness of {|»./|} and hence of {Iu,,’” 1}
3.7. Estimate of {#®}
Differentiating both sides of (6) three times we have

1 "m
Un  — Un—

h =§0’u?(?r5) +3§D”un”lu$:) +SD,”(un,”)3

— unt® — Ay un'" — 3(un")?,

where the argument of ¢ is %,”. Put pn=un”’ and hence we have
p’" pn‘ 7 n /7. 4 ", 8
(20) Sopn +350 Dnbn +§D 2

- unpnl - 4un,pn - 3(un,/)z-
Here we consider the following transformation
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Du=9(gn), ¢'(@)=€"*(k>0).
We then have from (20) that

i"—%:l_sog/}'((h—x +8(gn— gn-1))ds= (¢/qn// + 9b,,(qn,),‘,)#’,

‘|’390”¢,an1»’ +¢///pns_¢/unqn/ _4un/pn_3(un//)2.
Differentiating this equation with respect to x we have

qn'_qni

7 S:w/(qn—l +5(gn—gn-1)) +8(qn—qn-)¢" (@n-1 4 $(gn— qu-1))1ds

dn—dn-1

1
+ 7 qn—l/S ¢"(@n-1+5(qn—qn-1))ds
0

=( ¢/ " +3 ¢// ' Qn” + ¢,w( qn/)‘s) 90/ +( (/,/ qnﬂ + ¢//( qn/)z) SD”Pn
+3¢" " bagn” +3¢" (') (qn")* +30" " Prlgn")" + 30" ¢’ (Pn)’gn’
+3§D’”¢'pn2(]n/ + 50(4)1’”4 _ ¢/ %nQn” _ S[)//u"(q"/)z _ 5¢/un/qn/ _ louﬂnpn .

Multiplying ¢.’ to both sides of the above equation, we have

r__ 4 — 1
21) E qn k@n—l g’ + qn hQn_l qn'qn_l'gogb"(Qn—n+3(Qn—qn—1))d3

=g’ g +30@n' V@ + @)+ 0 G+ 4@
+3¢" ¢ ban’ @n” +3¢"(¢")}(qn')* +3¢" ¢ Pn(@n’)* +3¢""' P n (@)
3¢ P (qa’)* + 0L Pa’gn’ — ¢ Ungn' @n" — " tn(gn')* — 59 s’ (@n”)* — 100" Pugs,

where, by taking % sufficiently small,

1
e=FE= S-o [Sb/(qn#i +5(gn—qn-1)) +5(@n—qn-1)¢" (@n-1+5@n— qu-1)) Jds =Ze..

for some positive e, e independent of z€[0, 1], » and N. At the point z,€(0, 1) such
that |ga'|=|gx/(x0)| We have

(22) q";hq"“_ F=¢"(ga")?0 430"} bugn/ + " P’
— g[’"unQn/ _ 4unlpn —_ S(Mnll)z’
where

fosF= S:w(qn_l+s<qn—«qn_i>>ds§fw

for some positive f,, f.. independent of x,, # and N. From (21) and (22) we have
at Xy that
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r_ ’ ’ ’ 1
E dn hQn—l g+ dn (ir:—x S ¢/’(Qn—1+3(Qn_Qn——1))ds
0

X9 9/@x 3¢9 b+ a" = § g’ — bt pu =3t
= (0" +9" @)y Y e

+ 3¢ an 430" bulan' )+ 3¢ @

O N T RO LU

By taking % sufficiently small we can show the equi-boundedness of {|#{’|} and
hence of {|v.”[}.

3.8. Estimate of {#} at the boundary

Differentiating both sides of (6) four times we have

”'(!‘) - uil‘)-l ’ 1", M 17( 2,02

1 9+ A ) +3 ()
+6 SDr//(%nn/)zug) + SD(«t) (28""")*
— Untt® —Sun’ P — 100" 00",

where the argument of ¢ is u.”. Put p.=# and hence we have

(23) pn —/f"Pl — (/J’Pn” + 4¢”un”,pn, + 3§0”an

+ 6SD/II(u"III)2pn + S0(4) (u"1/1)4
— Unn’ —Dttn pn— 100" 185" .
In (23) we make the substitution p,=log(l1+g¢»). Then we have

”
;) _Gn

¢ 1+¢n

— 4 log(1+g2)~log(1+4a-1)]

(gn’)? '
= —2" 7 A n///
¢ (1+gn)? P 1+4+4¢n

_ SDn/(unm)zlhn_ g0(4)(”"'//)4

—_ 3@”pn2

7
+%n 1i_nqn - 5un’pn — 102" 18"
=z-W,

where W is a positive number independent of z,# and N. By using the same
method for establishing the estimate of {.’} at the boundary, we have the equi-
boundedness of {#$} at the boundary.

3.9. Estimate of {#®} in the interior

By the following transformation

tn=9(qn), ¢'(@=e""(k>0)
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we have from (23) that

—g. s 1
_%_h%1_80¢,(qn_l +5(gn—gn-1))ds

— (¢'IQnﬂ+¢H(in)z)§0’ +4(‘0N¢lun/llqn/ + 3901/15"2
+ 6¢/Il(un1//)2pn _I__ ¢(4)(un’11)4 — ¢/unqn/ - 5u"/pn_ 10un”un”,n

Differentiating this equation with respect to x we have

(24) _qL—h‘Zl‘:.LS:[gb'(Qn_l +5(gn— Gn-1)) +5(@n—Gn-1)¢" (@n—1 + S(@n—qn_1))1ds
e q"“"S:W(qn—l +5(gn—gn-1))ds
=('qs"" +3¢"qn’ qn" + ¢ (@n")?)0" +5¢" " un’" qn” +5¢" ¢ 1" (gn")?
+10¢" 0 pugn’ + 100"/ (" Vg’ +15¢" un'"pr®
+40 @O u""pr+ ¢ (1,
— U@ — " Un(qn" ) — 64" t0n’ g’ — 150" pr— 10(24")*.

At the point x,€(0,1) such that |g.'|=|g.’(xs)] We have

(25) ‘In—‘hQn—l F=o' ¢/ (g +4¢" ¢ us"'q

+ 390//15”2 + 650"'(%7;.'")2177: + 90(4) (unm)4
_ </1/un4n/ _ 5un’l>n— 100" us".

From (24) and (25) we have at x, that

o — s 1t
L S S WACREE GRS

X qnr/(@'¢"(@n' )+ 40" G " qn’ + 3¢ Pn® + 60" (n”")
+ 0O (W)~ ' Ungn’ — 5tk pu— 100" 2r")

= (g g+ @)V + 5" " (@'Y + 106" Dalgn'
+100" ) (" qn' 2+ 150" n" bu*@n’ + 60 (s} b’
+Ao©Cun""prga’ + ¢ (Ua”") g’ — ¢ n(@n")*
— 6"t (g0’ )*— 150" pagn’ — 100",

where E and F are similar functions as defined in 3.3. By taking % sufficiently
small we can show the equi-boundedness of {|#®|} and hence of {[v{]}.
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4. Estimate of {|u,”—uxn-,"|}
From the construction (6) of #,(2=2) we have

1
(24) P — un_x”)S @' (Un—" +5(tn" — tn—1""))dss
0 . .
= (un_ un—l) - (un—l — .un—z) + It 104 +}l2un_1’vn + 7300,

Differentiating both sides of (24) twice we have

1
(25) Pun""" — un~1””)g gD’(un_x" + $(tn" — tn_i"))ds
0
1 ) ’
+ zh(un’”_ uﬂ—l”l)S ?’(u’ﬂ—l’( + s(un” . un—l”)) [un—l”,-l_s(u’n”l—' un—],/,)]ds
0
1
+h(unll__ un—l”)S {SD”I(u'n,—l,,'I_S(un”_ un—l”)) [%n—x”l+S(unm—un—1m)]2
0
+ ¢//(un_1”+s(unll__ un—l”)) [un—l”,/"'s(un””— un_lllll)]}ds
— (un”— un-l”) _ (un_ln_ un-z”)
+h2un—1vn’”+3122%7;—1'1)7;” +3h2un—1”vn, +h2un/llvn +3hsvn,vn’/+h3vnvn”,.
By means of maximum principle for (25) we have
(26) [thn —tna" | S| tn1” — thn2”| + K [t00" — thn” | + 1P K,
where : R
K= sup |¢"(w)|+ sup |¢"(w)|U,,
lulsU2 lu|sU2
K=U,Vs+3U  Vo+3UVi+UsVo+3V Vot Vo V.
On the other hand, from the relation

wy— tho=ho(u,")— huu,

we have o

(27) u{f—uo”=hgo’(u1”)u1""+hga”(u1”)(u1’”)2—3hu1’u1”—hu,ul’" ‘

and hence we have by using maximum principle for (27) that

(28) ) v ‘ ' |u1"—uo”| éth,
where
Ks=|,§|1§g " ()| Us* +3U,Uz + Uy Us+p U,

Hence, we have from (26) and (28) that

K+ KK {1-(1-AiK,)"} <K

"_ ”
(29) |tn — thn "'} =P A—rK)™ 1 =
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for some constant K independent of N and #.

5. Completion of the proof

The equi-boundedness (9) of {J#.’|} implies that {Py(f)} (0=¢<T) belongs to a
compact set in X and the equi-boundedness of {|u.|}, {|#x’|}, {{#x”|} implies the
equi-continuity of {Px(f)}. Hence, {Px(#)} can be assumed to be a normal family
of functions with values in X converging to a continuous function P(#)e X uni-
formly on [0, T].

The equi-boundedness (9) of {|«,’”|} similarly implies that {d+*Px(t)/dt} 0=i=T)
belongs to a compact set in X. From the estimates (9), (10) and (29) we have

(") — thnthn” — @(thn—1") + Un—1 %001 |
gh(ﬂK-F U1 Vo+ V1U0+ Von) (n%l),

which shows that {d*Py(¢)/dt} is equi-continuous. Hence, {d*Py(f)/dt} can be as-
sumed to be a normal family of functions with values in X converging to a
continuous function uniformly on [0, T].

Noticing the closedness of A and B, we have by letting N—oco in (6) that

& PO=glAP()~ POBP(®) 0St=T,
Ped(A),
P(t)l;=o=uo .

Hence, a solution for (1) and (2) was constructed.
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