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Kohoku-ku, Yokohama, 223, Japan 
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ABSTRACT 

We study optimization methods for hierarchical power-decentralized systems composed 
of a coordinating central system and plural semi-autonomous local systems in the lower­
level, each of which possesses a decision-making unit. Such a decentralized system where 
both central and local systems possess their own objective function and decision variables 
is hence a multi-objective system. The basic principle of planning is that the central 
system allocates resources so as to optimize its own objective, while the local ones optimize 
their own objectives using the given resources. The lower-level composes a multi-objective 
programming problem, where local decision-makers minimize a vector objective function 
in cooperation. Thus, the lower level generates a set of noninferior solutions being para­
metric w. r. t. the given resources. The central decision-maker, then, chooses an optimal 
resource allocation and the best noninferior solution corresponding to it from among a set 
of resource--parametric noninferior solutions. Several theorems and computational methods 
are obtained based on parametric nonlinear mathematical programming using directional 
derivatives in order to treat nondifferentiable parametric functions. Note that, essentially, 
this paper is concerned with a combined theory for multi-objective decision problem and 
general resource allocation problem. 

1. Introduction 

In decentralized decision-making system, which is composed of plural sub­
systems, the over-all optimization is achieved from a central point of view, while 
each subsystem is invested with considerable power. Such a system is charac­
terized by plural decision-makers of the subsystems, each of which can exercise 
decentralized decisive power to pursue its own goal. Accordingly, the power­
decentralized system implies plural objective functions. It is hence a multi-objective 
system. 

When the decisive powers are decentralized, if objectives, powers and con­
straints are completely separated in correspondence to each decision-maker, in 
other words if subsystems are noninteracting, then overall system is merely a 
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collection of independent usual problems. Thus, the decentralized system premises 
that the subsystems have different objectives and mutual interactions. Those 
interactions are brought in with system equations, constraints etc. 

Decentralized systems have a hierarchical structure in most cases. In this 
paper, we study optimization methods for hierarchical multi-objective decision 
systems composed of a coordinating central system in the upper level and plural 
semi-autonomous local systems (subsystems) in the lower one, each of which 
possesses a decision-making unit. A central decision-maker determines values of 
decision variables peculiar to the central system (for instance, policy coefficients 
defining objectives and constraints in the lower level problems), based on the 
central objective for the over-all system. On the other hand, local decision-makers 
determine values of decision variables peculiar to the local systems, based on their 
own objectives, under the restriction of the given parameters from the central. 
It is noted that a two-level system is such that both central and local systems 
possess independent decision-making units. 

A typical example of the system is a hierarchical planning for resource allo­
cation problems. In economic activities, for instance, the central system distributes 
its available resources to the local ones so as to optimize its objective consisting 
of values of products of the local systems and cost of the resources, while the 
local systems perform optimal production activities utilizing the given resources. 

The above mentioned problem is formulated as two-level planning problem. 
Henceforth, a term "hierarchical multi-objective system" is used in a case when 
the lower level composes a multi-objective programming problem due to interac­
tions among the subsystems, and a term "hierarchical decentralized system" in 
a case when the lower level is completely separated into a set of scalar-objective 
programming problems with the given parameters (allocated resources). 

The decentralized two-level planning problems were studied by Geoffrion (1972) 
and Shimizu (1975, 1976, 1977) for general resource allocation problems. Among 
studies related to ours exist primal decomposition methods by resource allocation 
proposed by Kornai (1965) for LP and Geoffrion (1970), Silverman (1972) for convex 
program. Theories on Multi-objective programming problems were studied in 
References by DaCunha (1967), Shimizu (1975) and Yu (197 4). 

2. Hierarchical Multi-objective Systems 

In this section, we are concerned with hierarchical systems such that the 
central decision-maker decides the optimal resources allocation and the local 
systems try to optimize their own objective functions under the given resources. 
Thus, the local systems consist of a multi-objective problem. 

The lower level consists of N local systems each of which possesses its own 
decision variable vector Xn, an objective function In and a constraint vector func­
tion g;£0. And each local decision-maker desires the vector Xn such that its own 
objective In is minimized under the parameter an assigned by the center. But 
there exist mutual interactions among the local systems, because In and/or Un 

have not only Xn but x=(x'[, ···, x'§Y as its argument generally. Therefore, the 
lower level is composed of a group of local systems having mutual interactions 
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and different goals. So, for the lower level problem, we consider a case such that 
the local decision-makers carry out minimization of the vector objective function 
f=(/1, ···JN)T with respect to x cooperating together. The lower level decides 
the best value of the vector x which is dependent on the assigned parameters 
{an}, thus generates a set of noninferior (Pareto optimal) solutions x(a) being 
parametric with respect to a=(af, ···, a'§)T. Accordingly, one can not get a unique 
solution even if a is fixed. 

On the other hand, the central decision-maker in the upper level determines 
an optimal parameter a 0 =(a?r, ···, a<JJY, based on the central objective function <P. 
At the same time, it choose the best noninferior solution x0 corresponding to a 0

• 

As a typical problem of the above mentioned two-level multi-objective decision 
problem, let us consider the resource allocation problem mentioned in Page 2. Let 
Xn be production activity of the local system n, and an be the resources allocated 
to it. In this paper, we consider the case when the super objective function </) is 
a function of f and a. Then, the resource allocation problem is formulated as 
follows. 

min <P(f(.i(a)), a) 
a,x(a) 

N 

subj. to I: an~b 
n=l 

(b ; total resources) 

subj. to U1(x)~a1 

UN(x)~aN 

XEX 

(1. a) 

(1. b) 

(1. c) 

(1. d) 

(1. e) 

where x=(x'[, ···, x'§)T, a=(af, ... , a'§)T and x(a) represents a parametric noninferior 
solution. 

The constraint (1. b) bounds a total amount of resources, (1. d) represents an 
upper bound of the resources that are available to the local system n for produc­
tion activity and (1. e) is a technological restriction not related to the resources. 
A practical example of <P(f(x(a), a)) is often given as <P=F(f(x(a)))+H(a), where 
F is a preference function and His a cost function concerned with resources. 

After all, the problem (1) is to find the optimal resource allocation a 0 and the 
best noninferior solution x 0 =Xbest(a0

) corresponding to a 0 so as to minimize </) 

under the constraints (1. b)"-'(l. e). Therefore, </) must provide both roles of 
determining the optimal parameter and at the same time choosing the best solution 
from among the noninferior solution set. Note that a value of </) varies with x(a) 
chosen even if a is fixed. 

The problem (1) is regarded as the hierarchical multi-objective decision system, 
in which there exist N mutually independent local objective function Un} and a 
super objective function <P. Further, it is such a problem that parameterized 
constrained optimization problems of the lower level are contained in a part of 
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the constraints of the upper level. Therefore, it is not of a type of usual mathe­
matical programming problem. 

For simplicity, let f=(fi, ···JN)T and g=(gf, ···, g'J;Y. The problem (l. c) (1. d) 
(1. e) is then written as follows. 

f(x(a))=min f(x) 
x 

subj. to g(x)~a 

XEX 

(1. c)' 

(1. d)' 

(1. e)' 

Now, let us consider the following scalarization problem, termed "e-constraint 
problem " (Haimes 1975, Lin 1977), where (N-1) objectives are replaced with 
(N-1) constraints in relation to the multi-objective programming problem (1. c)'"" 
(1. e). 

minfp(x) 
x 

subj. to fy,(x)~e 

g(x)~a 

XEX, 

where fy,(x)=(/1(x), ···Jp-1(x), fp1-1(x), ···JN(x))T, e=(si, ···, sp-i, sp+i, ···, sN)T. 

(2) 

Here, it is necessary for feasibility of the problem (2) that the parameter 
(a, e) satisfies the following condition. 

(a, e)E W={(a, e)I There exists xEX such that fy,(x)~e 

and g(x)~a} (3) 

Next, we consider a domain of the parameter (a, e) such that an optimal solution 
x 0 (a, e) to the problem (2) makes all e-constraint fy,(x)~e binding, that is, 

Wa={(a, e)j(a, e)E W, fy,(X0 (a, e))=e}. 

Then the following theorem holds. 
Theorem 1. Suppose a be fixed. 

(i) A noninferior solution x(a) to the problem (1. c),....,(l. e) given a solves the 
e-constraint problem (2) for some e such that (a, e)E Wa. 

(ii) Assume that an optimal solution x 0 (a, e) to the e-constraint problem (2) 
for any fixed (a, e) is unique. Then x 0 (a, e) is a noninferior solution to the problem 
(1. c),....,(l. e) given a. 
(Proof) (i) Let x 0 (a) solve the e-constraint problem for e=fy,(x(a)). Then it holds 
that (fy,(x0 (a)), /p(X0(a)))~(fy,(x(a)), fp(x(a))). If this relation holds except for 
equality, it contradicts to the noninferiority of x(a), since g(x0(a))~a and x 0 (a)EX. 
Therefore f(x 0 (a)) =f(x(a)). This indicates that x(a) solves the e-constraint pro­
blem (2) for e=fy,(x(a)) and that (a, e)E Wa. 

(ii) We suppose that x 0 (a, e) is not a noninferior solution to the problem 
(1. c),....,(1. e) given a, then there exists .iEX such that g(x)~a and that 
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f(x)~f(x0(a, e)) and f 1(x)<fix0 (a, e)) for some j=l, ···, N. 

a) If fp(x)< fp(x0 (a, e)), since f1i(X)~fp(x0(a, e))~e, g(x)~a and xEX, x be­
comes feasible for the e-constraint problem (2). This contradicts to the fact that 
x0 (a, e) solves the e-constraint problem (2). 

b) If fp(x)=fp(x°(a, e)), by uniqueness of x0 (a, e), we must have x=x0 (a, e). 
On the other hand, it must also hold 

for some j ~ p. 

But the above relation never holds as x=x0 (a, e). 
Let us assume : 

Assumption (i) An optimal solution to the e-constraint problem for any fixed 
(a, e) is unique. 

Then by use of Theorem 1, under the above assumption it turns out that the 
problem (1) may be equivalently represented as follows using the e-constraint 
problem (2) and the condition (3) : 

min (JJ(f(x0 (a, e)), a) 
a,11 

N 

subj. to I: an~b 
n=! 

(a, e)E Wa. 

fp(X0 (a, e)) =min f p(x) 
:x: 

subj. to fp(X)~e 

g(x)~a 

XEX, 

(4. a) 

(4. b) 

(4. c) 

(4. d) 

(4. e) 

(4. f) 

(4. g) 

where the problem (4. d),.....,(4. g) is a parametric optimization problem having the 
constraints with the right hand side parameter (a, e). x 0 (a, e) is a parametric 
optimal solution to the scalarization problem (4. d),.....,(4. g), and is assumed to be 
uniquely determined when (a, e) is fixed. 

For development of computational methods one can regard a and e as the 
parameters of the same kind mathematically, although in practice a is a resource 
variable and e is a parameter of the e-constraint problem. A difficulty to solve 
the problem is due to the fact that it is almost impossible to obtain a parametric 
optimal solution x 0 (a, e) for the lower level problem (4. d),.....,(4. g) in explicit form. 
But if the parameter (a, e) is fixed, one can attempt to solve the problem by 
means of some nonlinear programming technique. Therefore, we consider an 
iterative algorithm to search for a better value than the current (a, e) based on 
the information of the solution for the lower level problem (4. d),.....,(4. g) with 
current (a, e). Namely, the iterative procedure consists of the center asking the 
local systems what would happen if the parameter vector were set at (a, e), to 
which the lower level responds by giving some local information concerning the 
optimal solution for the lower level problem. The center then uses this informa-
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tion in a prescribed manner to determine a revised trial setting for (a, e). 
By the way, the parametric solution x 0 (a, e) may not always be differentiable 

with respect to (a, e), hence, neither is </J. This is the principal difficulty in 
solving the problem. But, we can apply a feasible direction method using a 
directional derivative of the function 

v(a, e)=fp(X0 (a, e)), (5) 

in the case when </J is a function of f as the eqn. (4. a). 
In order to make further theoretical progress, we impose the following con­

ditions. 
Assumption (ii) </J is convex, continuous and differentiable with respect to (f, a) 
and monotone increasing with respect to fp· 

(iii) fn, Un, n=l, ... , N are convex, continuous and differentiable in x. 
(iv) X is a nonempty, compact and convex set. 
( v) The problem (1) is feasible. 
Convexity assumptions on f n, Un, X ensures that the set W, which is the 

domain of the function v, is convex and that the function v is convex over W. 
Furthermore, by taking account of the set Wa={(a, e)[f.v(x0 (a, e))=e} introduced in 
the eqn. (4. c), </J can be transformed over Wa as follows. 

</J(f(x0 (a, e)), a) 

=<!J(f.v(x0 (a, e)), fp(X0 (a, e), a) 

=<!J(e, v(a, e), a) 

Therefore, the two-level planning problem (4) is equivalent to 

min iP(a, e) = </J(e, v(a, e), a) 
a, e 

N 
subj. to L: an~b 

n=l 

(a, e)E Wa 

(6) 

(7. a) 

(7. b) 

(7. c) 

Here, from the assumptions (ii), (iii) we can easily prove that the functions v(a, e) 
and iP(a, e)=</J(e, v(a, e), a) are convex in (a, e)E W. By the convexity of v, v(a, e) 
is continuous in (a, e)Eint W, since convex function defined on a convex set is 
continuous in the interior of the set (Rockafellar 1970). So by continuity of v and 
</J and the assumption (v), there always exists the optimal solution (a0

, e0
) for the 

problem (7), if the set of (a, e) satisfying eqns. (7. b), (7. c) is compact. 
A feasible direction method using directional derivatives was first applied by 

Geoffrion (1970) and Silverman (1972) to separable mathematical programs. Al­
though our problem is not the same that they studied, we can still apply the 
similar technique as far as calculation is concerned. 

To make further theoretical progress, we extend the function iP to all of the 
(a, e)-space by defining iP(a, e)= +oo for (a, e)$Wa. Thus iP becomes a proper 
convex function with effective domain dom iP= Wa. Then, the directional deriva-
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tive DcP(a, e; y, s)t of (fJ(a, e) has a finite value at an interior point of the set Wa. 
It can be obtained as a function of (y, s) by solving the lower level problem (4. d) 
"'(4. g) given (a, e). Hence, we can construct a direction-finding problem as fol­
lows to seek a direction (y0

, s0
) making locally the best improvements of the value 

of & at (a, e) by minimizing the directional derivative DcP(a, e; y, s) with respect 
to the direction (y, s). 

min DcP(a, e; y, s) (8. a) 
(y, s) 

subj. to (y, s)ER(a, e) (8. b) 

II (y, s) II ~1 (normalization condition), (8. c) 

where the eqn. (8. b) is needed for local feasibility with respect to a direction 
(y, s) at a current point (a, e). Thus, 

R(a, e)={(y, s)I There exists (bO such that 

N -
~ (an+oyn)~b and (a+oy, e+os)E Wa for all O<a~a} (9) 
71=1 

If a parameter (a, e) is not optimal, a step is taken in the direction (y0
, s0

), a new 
parameter is determined and the process is repeated. So we assume the following. 

(vi) A point (a, e) is an interior point of the set Wa· 
Note that we can take a sufficiently small step in an arbitrary direction be­

cause of this assumption. 

Optimality of (a, e) and usable feasibility of (y, s) 

We have the following theorem for optimality test for (a, e). 
Theorem 2. Let (a, e) be feasible for the problem (7). If (g°, s0

) =0 is optimal for 
the direction-finding problem (8), then (a, e) solves the problem (7). 
(Proof) Proved in a similar way to theorem 1 in Section 9.3 of Lasdon (1970). 

If the above optimality condition is satisfied at a feasible point (a0
, e0

) for the 
problem (7), then a 0 is an optimal resource allocation and a parametric optimal 
solution x 0 (a 0

, e0
) to the problem (4. d)"-'(4. g) is the best noninferior solution. 

As is well known, the above optimality condition of (a0
, e0

) is equivalently 
stated as follows (See Appendix 2 of Lasdon (1970)). 

DcP(a0
, e0 ;y, s)~O for all (y, s) 

Thus, if optimality test of Theorem 2 is not passed, then a direction (g°, s0
) is 

produced such that 

DcP(a, e ;y0
, s0 )<0. 

t A directional derivative off in s direction with respect to x is defined: 

Df(x; s)= lim f(xHs)-f(x). 
B~o-'- /3 

af(x) 
In a case when f is differentiable at x, Df(x; s)=----ax-s. 
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Such a direction (y0
, s0

) is a usable feasible direction at (a, e) (Proved in a similar 
way to theorem 2 in Section 9.3 of Lasdon (1970)). 

Taking into account that the constraints (7. b) is linear in a and that the 
assumption (vi) enables us to take a sufficiently small step in any direction from 
(a, e), we can write the local feasibility condition for (y, s) concretely as follows. 

N N 
R(a, e)={(y, s)i I: Yni-;£0, iEB={ilbi- I: ani=O}, 

n=l n=l 

s ; arbitrary} (10) 

An expression of D<l>(a, e; y, s) and a direction-finding problem 
Since ofp(x0 (a, e))/ae=lp-1((p-l) X (p-1) unit matrix) from the eqn. (4. c), the 

directional derivative of <l>(a, e) =<P(e, v(a, e), a) is given as follows. 

D<l>(a, e; y, s) 

o</J(e, v(a, e), a) o</J(e, v(a, e), a) 
- aa. Y+ arp s 

o</J(e, v(a, e), a) D ( . ) + ofp va,e,y,s (11) 

where Dv(a, e; y, s) is a directional derivative of v(a, e) in a direction (y, s) at 
(a, e). So, we must get an expression of Dv(a, e; y, s) at (a, e). It is well known 
that a subgradient of v(a, e) and (a, e) is a gradient vector of a supporting hyper­
plane at (a, e) for a graph of v, and that the following theorem holds (Lasdon 
1970). 
Theorem 3. Let x 0 solve the lower level problem (4. d),......,(4. g) given (a, e) and 
define the Lagrangian function Lp related with the problem (4. d),......,(4. g) as 

(12) 

Then, -(µ0
, l 0

) is a subgradient of v(a, e) at (a, e), if and only if (x0
, µ 0

, ..<0
) is a 

suddle point for Lp(x, µ, ..<). 
From this theorem we see that a subgradient ('1J, e) of v(a, e) at (a, e) is the 

optimal Lagrange multiplier vector whose sign is opposite. Denoting a set of 
subgradients of v at (a, e) by av(a, e) and a set of optimal Lagrange multiplier 
vectors by M, we can represent the directional derivative Dv(a, e; y, s) as 

Dv(a, e; y, s)= max ('1JTY+eTs) 
(7J,e)eav(a,s) 

(13) 

(Refer to Theorem 16 in Appendix 2 of Ref. [6]). The existence of optimal 
Lagrange multipliers (µ0

, ..(
0

) is guaranteed by Slater's constraint qualification 
(Mangasarian 1969) such that there exists xE X satisfying f p(X) < e and g(x) <a 
from the assumption (vi). 

Let the set X be expressed as 

20 



Hierarchical Multi-objective Decision Systems and Power-decentralized 

X={xlq(x)~O}, (14) 

where each component of q is assumed to be convex and differentiable, and r0 be 
an optimal Lagrange multiplier vectors associated with the constraint q(x) ~O. 
Then, (µ 0

, ).
0 )EM if and only if x 0

, µ 0
, ).

0 and r0 satisfy the Kuhn-Tucker conditions 
for the lower level problem (4. d)~(4. g) as follows. 

fp(X0)-e~O, µ 0 T(fp(X0 )-e)=0, µ0 ?;.0 

g(x0)-a~O, ).0 T(g(x0 )-a)=0, ).0 ?;.0 

(15. a) 

(15. b) 

(15. c) 

(15. d) 

Taking into account that fp(x0 )=e for fixed (a, e)E Wa from uniqueness of x 0 

(Assumption (i)) and eqn. (7.c) and that Ani°=O for iE{il!lni(X0 )<ani} from the eqn. 
(15. c) etc., we find that Dv(a, e; y, s) is the maximum value of the objective 
function of the following LP. 

b • afp(X0 )T µo+ ~ '1 agni(X0 )T , .o 

SU J. to ax nL::1 ifcjn ax llni 

(16) 

Moreover, as the direction (y, s) is given, it coincides with the minimum value 
of the objective function of the dual problem : 

min afp(Xo) 
z ax z 

subJ'. to afp(x
0

) z~s 
ax -

(17) 
agni(X

0
) • c 1 N 

ax Z~Yni, ZE n, n= , ... , 

oqi(Xo) 0 . D 
---Z~ ZE 

ax - ' 

After all, substituting the problem (17) for Dv(a, e; y, s) in the eqn. (11), and 
taking into account that a<P/afp?;.0 from the assumption (i), we can represent the 
directional derivative Dcl>(a, e; y, s) explicitly, and have the direction-finding pro-
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(y,a,z) 
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of/J(f(x0
), a) of/J(f(x0

), a) 
aa y+ ofp s 

of/J(f(X0
), a) of p(X0

) 

+ ofp ax z 

N N 

subj. to I: Yni~O, iEB={iJbi- I: ani=O} 
n=l n=l 

ofp(X0
) ---zss 

ax -

ogni(X
0

) C .
1 

( ) O} 
ax Z~Yni, iE n= {z Uni X0 -ani= 

n=l, ... , N 

oq~~
0

) z~O, iED={iJqi(x0 )=0} 

-l~si~l, i=l, ... ,p-1, p+l, ... , N 

(18) 

The locally best direction (y, s) is obtained by solving the above LP. Given 
this usable feasible direction (yk, sk) in the k-th interation, a change of fp=v(a, e) 
corresponding to the displacement (yk, sk) from the current point (ak, ek) can be 
approximated as 

of (x0
) 

sk=Dv(akek·yksk)- P zk 
p ' ' ' ax 

(19) 

from the eqns. (13), (17). A new point (ak+ 1
, ek+ 1)=(ak+okyk, ek+aksk) is generated 

by solving a one-dimensional convex program in the (f, a)-space to determine a 
step size ok. 

min{f/J(ek+osk,fpk +asl, ak +ayk)J(ak +ayk, ek+ask) 
ii 

(20) 
satisfies (7. b), (7. c)}, 

where fpk=v(ak, ek). Then, it holds that f/J(ek+1,fl+oksl, ak+ 1)<f/J(ek, v(ak, ek), ak). 

However, it does not necessarily hold that 

(21) 

If the above relation (21) does not hold, the step size (jk is reduced by half until 
the relation (21) holds. 

In a case when v(a, e) is differentiable 
The above arguments are simplified at a point (a, e) at which the function 
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v(a, e) is differentiable. In such a case, the subgradient of v at (a, e) is composed 
with a single element, and there exists a unique optimal Lagrange multiplier 
vector (µ 0

, l 0
) satisfying the linear system (15). When the (µ 0

, .,(
0

) is obtained 
uniquely, the directional derivative of v is simply represented: 

D<P(a, e; y, s) 

= ( o<P(f(x0
), a) 

aa 

( 
o<P(f(x0

), a) 
+ arf! 

o<P(f(xo), a) ior) 
afp Y 

o<P(f(x0
), a) or) 

ofp µ 8 (22) 

Then, the direction-finding problem is the problem (8) in which the objective 
function (8. a) is replaced with the eqn. (22) and the constraint with the eqn. (10). 

Let us state the proposed computational method in algorithmic form. By the 
way, since we cannot represent Wa explicitly, in practice, we cannot help ignoring 
temporarily the constraint (ak+oy\ ek+osk)E Wa, and determining (]k by one-dimen­
sional program min <P(ek+os\fpk+osl, ak+oyk) subject to (ak+oy\ ek+osk) satisfy-

il 

ing only (7. b). After that, if the solution to the e-constraint problem by setting 
a=ak+oky\ e=ek+oksk does not exist or does not make the e-constraint binding, 
the step size (]k is reduced until a solution exists and makes it binding. 

Taking the matters into account, we can given a computational procedure as 
below. 
Step 1. Choose any initial point (a1, e1)E Wa and set k=l. 

Step 2. Set (a, e)=(ak, ek), solve the e-constraint problem (2) and obtain a nonin­
ferior solution xk=.x0 (a\ ek) and a noninferior value fk=(e\fp(xk)) corre­
sponding to ak. 

Step 3. Calculate of(xk)/ox, ogni(xk)/ox, iECn={iJgni(xk)-ani=O}, n=l, ···, N, oqi(xk)/ 
ax, iED={ilqi(xk)=O}, o<P(f(xk), ak)/of and o<P(f(xk), ak)/oa, compose a direction­
finding problem (18) and find the optimal direction (y\ sk) at the point 
(a\ ek). 

Step 4. If II (yk, sk) II ;£a, stop, where the tolerance a is a sufficiently small positive 
number. Let (a\ ek) be the optimal resource allocation and the optimal 
e-parameter. Then, ~k is the best noninferior solution corresponding to ak. 
Otherwise go to Step 5. 

Step 5. Find (]k minimizing <P(ek+osk,f Pk+osp\ ak+oyk) subject to (ak+oyk, ek+osk) 
satisfying (7. b), where fp=v(ak, ek) and spk=(ofp(xk)fox)zk. 

Step 6. A point (ek+oks\fpk+okspk) is not necessarily located on the noninferior 
surface. So set (a, e)=(ak+okyk, ek+oksk) and solve thee-constraint problem 
(2). 

Step 7. If the problem is feasible and the solution makes the e-costraint binding, 
then set ak+i=ak+okyk, ek+1=ek+oksk. But at this time take a step-size in 
plactice slightly shorter than (]k in the step-size choosing problem (Step 5).t 
Then obtain a noninferior solution xk+i =.x0 (ak+1, ek+1) and a noninferior value 

t Our direction-finding problem is based on the condition that (ak, ek) e int Wa. 
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fk+1 = (ek+1, v(ak+i, ek+ 1
)) and go to Step 8. Otherwise go to Step 9. 

Step 8. If </J(fk+1, ak+ 1)~</J(fk, ak), then go to Step 9. Otherwise set k :=k+l and 
go back to Step 2. 

Step 9. Reset (jk :=ok/2 and go back to Step 6. 
Our algorithm is a feasible direction method in the (a, e)-space. Convergence 

of feasible direction algorithms for nonlinear programming was studied in detail 
by D. M. Topkis and A. F. Veinott (1967) Through their theorems, our feasible 
direction method does converge to an optimal parameter (a0

, e0
). 

3. Hierarchical Decentralized Systems 

The hierarchical multi-objective system becomes a hierarchical decentralized 
system when an objective function fn and a constraint Un~O of each local system 
contain only its own decision variable vector Xn and a resource allocation an given 
from the central system. Accordingly, the each local system is separated with 
respect to x each other. Then, the two-level resource allocation problem (1) 

becomes as follows. 

min </J(f(x0 (a)), a) 
a 

N 

subj. to ~ an~b (b; total resources) 
n=l 

fn(Xn°(an)) =min fn(Xn) 
Xn 

n=l,···,N 

(23. a) 

(23. b) 

(23. c) 

(23. d) 

(23. e) 

where a=(af, .. ., a'J;-)T, x 0(a)=(x1°(a1)r, .. ., x'N(aN)T)T. The central decision-maker 
allocates the resource vector b to the local systems such that the central objective 
</J is optimized. The lower level of the problem (23) consists of a set of N sepa­
rated optimization subproblems, each of which is usual parametric optimization 
problem with a scalar objective function. They are mutually interacting only 
through the restriction on the total amount of resources (23. b). A vector Xn°(an) 
means a usual parametric optimal solution. This is a special case of the two-level 
multi-objective system. It is noted that the eqn. (23. a) achieves minimization 
with respect to only a in contrast to the eqn. (1. a). 

We try to solve the problem (23) iteratively by choosing a feasible allocation 
testing it for optimality and improving it if it is not optimal. Then, given the 
allocation an, the problem of the local system n (we shall term it Local Problem 
Pn(an)) is represented as follows. 

subj. to Un(Xn)~an 

24 

(24. a) 

(24. b) 
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(24. c) 

We can apply the feasible direction method mentioned in the last section in order 
to solve the problem (23). But it becomes much simpler. 

Denote the minimal value of the objective fn for the problem (24) by Wn(an). 
Then, the two-level decentralized planning problem (23) is equivalent to the fol­
lowing problem. 

min C/J(w(a), a) (25. a) 
\an) 

N 

subj. to Z: an;£b (25. b) 
n=l 

anE Vn, n=l, ···, N, (25. c) 

where w(a)=(w1(a), ···, Wn(an))T. The set Vn is defined as 

Vn={anl There exists XnEXn satisfying Yn(Xn);£an}, 

which is necessary for feasibility of Pn(an). 
To make further theoretical progress, we assume the following. 
(vii) C/J(f, a) is convex and differentiable with respect to (f, a) and monotone 

increasing with respect to f. 
(viii) fn(Xn), Yn(Xn), n=l, ···, N are convex and differentiable in Xn. 

(ix) Xn, n=l, .. ., N, is a nonempty, compact and convex set. 
(x) The problem (23) is feasible. 

(xi) A point an is an interior point of the set Vn. 
The convexity assumption on fn, Un and Xn ensures that Vn is convex and 

that Wn is convex with respect to an over Vn, so the problem (25) is a convex 
program. 

A direction-finding problem can be constructed in analogous manner to the last 
section to seek a usable feasible direction y 0 making improvement of (fJ than the 
current resource allocation a, by minimizing the directional derivative DC/J(w(a), 
a; y) with respect to y. The directional derivative DC/J(w(a), a; y) in a direction 
y=(yf, ···, y'§Y with respect to a=(af, ···, a'§Y is given as 

DC/J(w(a), a ; y) 

_ {;, [oC/J(w(a), a) D ( . ) oC/J(w(a), a) J 
- L.J ()l+ Wn an , Yn + 0 Yn , 

n=I 'Jn an 
(26) 

where Dwn(an; Yn) is a directional derivative of Wn(an). Therefore, the direction­
finding problem is represented as 

. {;, [ oC/J(w(a), a) D (. . ) oC/J(w(a), a) J 
mm L.J olf Wn an ,yn + 0 Yn 
\Yn) n=I n an 

(27) 
N N 

subj. to Z: Yni;£0, iEB={ilbi- Z: ani=O} 
n=I n=I 

-l;£Yni;£l, i=l, ··-,dim an, n=l, ···, N 

25 
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Then the following properties hold. 
(A) Let a be feasible for the problem (25). If y=O is optimal for the direc­

tion-finding problem, then a solves the problem (25). 
(B) Let own(an) be a set of subgradients of Wn at an. Then the directional 

derivative Dwn(an ; Yn) is expressed as 

where An is a set of all optimal Lagrange multiplier vectors An° for the constraint 
(24. b) in Pn(an). 

Let each set Xn be expressed as 

We assume that each component of qn is convex and differentiable. Let Xn° 

is an optimal solution to Pn(an) and rn° is the Lagrange multiplier vector associated 
with qn~O. Then An°EAn if and only if Xn°, An° and some rn° satisfy the Kuhn­
Tucker conditions for Pn(an). Accordingly, under the assumption that (/) be 
monotone increasing function with respect to f, the direction-finding problem (27) 
becomes as follows in a final form. 

. ~ [ o(/)(/(Xn°), a) ofn(Xn°) o(/)(f(Xn°), a) J 
mm L..J Zn+ Yn 
Z, y n=l ofn OXn oan 

N N 
subj. to ~ Yni~O, iEB={ilbi- ~ ani=O} 

n=l n=l 

~~ 8 a Zn~Yni, iECn={ilUni(Xn°)-ani=0}' n=l, ···, N (2 ) 
Xn 

-l~Yni~l, i=l, .. ., dim an, n=l, ... , N 

-l~Zni~l, i=l, ···, dimxn, n=l, ... , N 

We obtain the locally best y by solving the above LP. Given a usable feasible 
direction yk, a new point ak+i is generated by solving a one-dimensional convex 
problem to determine a step size : 

min{(f)(w(ak+oyk), ak+oyk)jak+oyk satisfies (25b, c)}, 
0 

where k is an iteration number. 

4. Numerical Example 

Let us consider the following numerical example of the hierarchical multi-
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objective system. 

min r/J=(/1(:i(a))+ l0)2+20/2(x(a)) +(a1 -l0)2+(a2-5)2 
a,x(a) 

(29) 

where /1(x), x1 and ai are an objective function, a decision variable and resource 
allocation for the local system 1, respectively and /2(x), X2 and a2 are for local 
system 2, respectively. The true values for the above problem are known as 
follows. 

Optimal resource allocation a 0 =(a1°, a2°)=(10.00, 5.00) 
Best noninferior solution :i0 (a0 )=(x1°(a0),x2°(a0 ))=(10.00, 5.00) 
Best noninferior local objective value 

f(x 0
( a 0

)) = U1 (x0
( a 0

) ), f2(:i0 (a0
))) = (0.00, 15.00) 

Optimal central objective value r/J(f(x0 (a0
)), a 0

) =400.0 
Those values can be easily obtained by analytical and geometrical investiga­

tions. 
We apply the feasible direction method to solve the above problem. So, 

transforming the problem (29) into the problem (4), we have the following. 

The upper level problem min iP(a, c1)=(c1 +10)2+20/2(X0 (a, c1)) 
a.ei 

+(a1 -l0)2+(a2-5)2 

Ce-constraint problem) 

At first, an initial trial point (a/, a21, c1 1) is set at (0.00, 0.00, 15.00) by the 
upper level, to which the lower level responds by obtaining the optimal solution 

27 



KIYOT AKA SHIMIZU AND EIT ARO AIYOSHI 

x 01 =(x1°1, x2°1)=(0.00, 0.00) with some nonlinear programming code. Then the 
lower level objective values (/1(x01), / 2(x01

)) are obtained as (45.0, 21.3). 
Next, based on the above values, the derivatives of(x01 )/ox and so on, we 

construct the direction-finding problem (18) for the central, and find a direction 
(y/, Y21, si1) = (1.00, 1.00, -1.00) improving the current central objective value i/J(a/, 
a2 1

, c1 1) =7050. Then, the objective value of the direction-finding problem is -130.0. 
A change of /2, S21 = -2.5, caused by a displacement (y/, Y21, s1 1

), is calculated by 
the eqn. (19). By the linear search (20) in the direction (y11, Y21, s11, s21

), a new 
point (a12, a22, c12)=(7.50, 7.50, 7.50) is generated. 

After the parameters (ai, a2, c1) were updated five times in the similar manner, 
the following values were obtained. 

f(x05)=(/1(X05
), /2(X05))=(-0.05, 15.05) 

f/>(f(x05
), a 5

) =400.0 

They nearly coincide with the true values. And each of the solutions x 0
k for 

the lower level problem in iteration process could be confirmed to be one of the 
noninferior solutions x(a) for the multi-objective problem. 

5. Conclusion 

We have studied the hierarchical planning problem for multi-objective systems 
in which there exist plural semi-autonomous local systems subordinated to a 
central system that determines optimal resource allocations. In this problem, the 
coordinating center allocates scarce resources so as to optimize the central objec­
tive function and the local ones optimize their own local objective with use of 
the given resources. 

At first, we formulated two-level planning problems for multi-objective systems 
in which the lower level composes a vector minimization problem and proposed a 
computational method such as a feasible direction method by use of directional 
derivatives. Next, we specialized this to the decentralized systems where the 
local systems were separated with respect to local decision variables. 

The proposed methods can be extended to more general cases such as an 
objective function f and constraint g are arbitrary functions of (x, a) and/or the 
resource constraint G(a) is nonlinear. 

The systems as newly formulated here exist in many real and important 
organizations. 
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