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PHYSICAL THEORY OF MEASURING PROCESS 
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Keio University, 3-14-1, Hiyoshi, Kohoku, Yokohama 223 Japan 
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ABSTRACT 

After a survey of the orthodox interpretation of quantum mechanics and von Neumann's 
approach to a measurement theory, the measurement theory of Daneri, Loinger and 
Prosperi is critically reviewed in regard in particular to their aims and assumptions. The 
review will lead us to see what is still desirable of a physical theory of measurement on 
quantum mechanical systems. 

§ 1. Introduction 

Quantum mechanics has many paradoxical aspects. It does not give a self­
consistent and intuitively satisfactory view of the physical world. There remains 
a dualism in the deterministic unitary time-evolution obeying the Schroedinger 
equation and the probabilistic jump of state at " measurement " (sudden reduction 
of wave function). One could wish that the latter also be controlled by the 
Schroedinger equation. In fact, there has been proposed the so-called physical 
theories of measurement, which however, appear to have many points to be 
clarified. In this paper, we shall critically examine the physical theory of meas­
urement by Daneri, Loinger and Prosperi. We note that their theory is restricte::l 
to the measurement of the first kind, which brings or leaves the state of the 
system into the eigenstate of the measured quantity. 

Before starting our analysis of the physical theory of measurement, we must 
briefly review the orthodox intrepretation of quantum mechanics in section 2 and 
von Neumann's theory of measurement in section 3. Then in section 4 the 
measurement theory of Daneri, Loinger and Prosperi will be analyzed and the 
paper will be concluded by critical discussions in section 5. 

§ 2. Measurement Process within the Orthodox Interpretation of Quantum 
Mechanics (See ref. N. Bohr 1935 and M. Jammer 1974) 

The orthodox interpretation of quantum mechanics. i.e., Copenhagen inter-
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pretation of Bohr, treats the measuring process with the concept of complementarity 
as follows. The orthodox interpretation supposes that the measuring apparatus 
is described by classical physics and has interaction with microscopic object that 
brings forth the information of microscopic world. We cannot say anything about 
the microscopic object itself independently from measuring apparatus, but only 
can talk about the pair of the apparatus and the object. They are considered to 
be inseparable one body. Even if objects are identical, one has a different phe­
nomenon when the measuring apparatus are not identical. We see the trace of 
microscopic objects on the classical measuring apparatus, and it is the way of 
appearance of this trace that we can discuss. 

The concept of complementarity enters here. For example, apparatus which 
observes wave property leads to wave aspect of the object and apparatus which 
observes particle property leads to particle aspect of the same object. The wave 
and the particle aspects are complementary to each other : We cannot observe 
both of them at the same time, while the description of the object is not complete 
with just one of them. Microscopic object is something that makes one of such 
complementary trace depending upon the classical apparatus used. Therefore, 
interpretation of Heisenberg's uncertainty relation and of wave function cannot 
be quite like Born's probability interpretation associated with particle image. Thus, 
in the orthodox interpretation, wave function is not regarded as giving the dis­
tribution of measured values which are definite but unknown before measurement. 
The uncertainty relation is interpreted not as a relation between errors of meas­
urement, but as a relation between degrees of indeterminancy of the complementary 
aspects of states. Measurement process leads the indetermined state into the 
more determined one in regard to the measured physical quantity proper to the 
apparatus used. 

Now, measuring apparatus is described by classical physics and microscopic 
object is described by quantum mechanics. Hence, interaction between them is 
inevitably uncontrollable, allowing only statistical statements about the results of 
measurement. 

Even in the orthodox interpretation the boundary between the object and the 
observer can be shifted at one's disposal in so far as the apparatus is classical 
in nature. 

The uncontrollable interaction explains the reduction of wave packets plainly. 
For example, by such an interaction the state 

</Jo=~ Cn</Jn (1) 
n 

with <fin being eigenfunction of measured quantity, is changed into the state 

¢ = ~ Cn</Jn exp(iOn) (2) 
n 

with random phases {On}. (2) may be rewritten in the density matrix form 

1¢> <sbl = ~ CnCm*l<Pn> <<Pmlexp[i(On-Om)J. (3) 
nm 

Quantum mechanics is a theory for ensemble. The ensemble average of exp[i(On 
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-Om)] is Onm, so that the density matrix (3) is reduced as 

1¢> <¢1~ I: lcnl 2 l</Jn> <</Jnl · (4) 
n 

This is the desired form of the reduction of wave packets. If initial state is an 
eigenstate, then (3) is l</Jn> <<Pnl and is not changed by the interaction. 

§ 3. Von Neumann's Theory of Measurement 

Von Neumann treated the problem of measurement in his wellknown book 
"Die Mathematische Glundlagen der Quantenmechanik" (J. von Neumann 1932). 
He thought that because of measuring apparatus is composed of microscopic atoms, 
it has also to be described by quantum mechanics and consequently interaction 
between apparatus and object also ought to be described quantum mechanically. 
Whole system of apparatus and object is described by the tensor product of 
Hilbert spaces of each subsystems. 

In the measurement of the first kind, any eigenstate for an object </Jn of measured 
observable A proper to the apparatus is never changed by the interaction with 
the measuring apparatus. On the other hand, for the purpose of our reading out 
the result of the measurement, the state (fJ of the apparatus must be changed into 
the state (/Jn corresponding to the state of the object after the measurement. 
Thus, the state vector of the whole system is transformed as 

(5) 

By the linearity of the equation of motion, (5) implies, for a general state 
¢=I: Cn</Jn of the object, that the measurement induces the transformation 

n 

I; Cn</Jn@(/J~ I; Cn(</Jn@</Jn) • (6) 
n n 

This is called the first stage of the measurement because th~ right-hand side of 
(6) is still a pure state. 

While, mathematically, the transformation (6) exists a· -,-ays as a unitary 
transformation, it is questionable physically wether or not we can really build 
such an apparatus, because it is not true that there exist always the correspondence 
from self-adjoint operators to physical observables. Besides, the transformation 
(6) is incompatible with some kind of conservation law such as the conservation 
of angular momentum. This was noticed by Wigner (E. P. Wigner 1952, H. Araki 
and M. Yanase 1960 and M. Yanase 1961). In general, (6) can hold only in the 
measurement of the observable which commutes with all the a iditive conserving 
observables and otherwise some errors are unavoidable. But if the apparatus is 
sufficiently large, the errors become smaller, so we may avoid this difficulty in 
practice by considering a large apparatus (see ref. 3). 

Then, after the transformation (6) the second stage of measurement must 
take place bringing the pure state (6) into a mixture, so that we need another 
apparatus, which is also described by quantum mechanics. The total system of 
the object, the first and the second apparatus is again described by a tensor 
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product. Denoting the state of the second apparatus by fJ, the total system is 
transformed as 

(,E Cn</in@</Jn)@fJ~ ,E Cn</in@</Jn@Bn. (7) 
n n 

From the right-hand side of (7), we suspect that the statement for the object 
is unchanged under the shift of the boundary between the object and the observer. 
That is, regarding ¢@</J to be the object and fJ to be the apparatus is the same 
as regarding ¢ to be the object and </J@fJ to be the apparatus, because suffices n 
of ¢, </J and fJ are identical. Introduction of the third, fourth·· ·apparatus for 
reduction of wave packets in the preceding system means that we fall into infinite 
regression of the observer. But, measuring process must be a finite chain. There­
fore, von Neumann postulated the reduction of wave packets as the irreducible 
element of quantum mechanics. It is called "Projection Postulate". Thus, the 
time-evolution of the states in his quantum mechanics has a dual character, namely 
unitary time-evolution and the projection. 

In his view, this projection is ultimately caused by the observer's mind or 
self-consciousness which has the ability of introspection. This thought to intro­
duce consciousness into the physical world will easily tend to subjectivism or 
solipsism and causes paradoxes such as "Wigner's friend" (E. P. Wigner 1963). 

By the way, we shall notice that unitary time-evolution will never bring a 
pure state into a mixture in the exact sense. The final mixture must be derived 
from a mixture initial state. Wigner pointed out that assuming an initial state 
of the apparatus to be a mixture is incompatible with the equation of motion 
(E. P. Wigner 1963). Let an initial state of the object be ¢ = ~ a"¢" and the 

apparatus' mixture to be .E Ppl<!JP"> <<!JP"I. The suffix p of the state vector for 
p 

the apparatus represents degeneracy of microscopic state of the apparatus for the 
same macroscopic reading and this reading itself is represented by suffix v, pp is 
mixing probability. Then by the first stage of measurement, whole system 
evolves as 

1¢> <¢1@.E PPl<!JPk> <<!JPkl = .E avaµ *W> <¢µ1®.E PPl<!JPk> <<!JPkl 
p vµ p 

~ .E PplfJP> <fJPJ ' (8) 
p 

with 

(9) 

This fJP is a superposition of the states [¢"®</JP"] by suffix v. So fJP has various 
¢" as components. On the other hand, it is demanded for completing measuring 
process that final state is a mixture of vectors which are superposition within 
each macroscopic component, i.e., mixture of {8µ} which are superposition of the 
states {¢P(i;J<fJPP} by suffix p so that the apparatus part of Bµ is made of one 
macroscopic state <!JP. We cannot, however, rewrite (8) into the desired final 
mixture as mentioned above (E. P. Wigner 1963). Hence it is inconsistent with 
the law of motion to assume initial state of measuring apparatus as mixture. 
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This conclusion is unavoidable if the mixture is taken in the exact sense of 
words, and it may not be forbidden to assume the initial state of the apparatus 
to be a mixture approximately so that it can approximately evolve into a mixture 
as desired. 

Another important remark concerns the so-called " Reduction Formula" (J. M. 
Jauch 1964 and 1968). We describe object-apparatus system with a tensor product. 
From this follows that, even if the total system is a pure state, the state of each 
subsystem is not necessarily pure. In fact, consider a system consisting of two 
subsystems I and II, and let W and W1 be density matrices for the total system 
and the subsystem I respectively. Then, 

W1=tru W (10) 

and this is a mixture in general ; here, trn denotes trace operation in the Hilbert 
space for subsystem II. For example, if Wis a pure state represented by a linear 
combination of tensor products, ¢=I; Cr</J/:/9</Jn i. e., 

r 

W = 1¢> <¢1 =I; CrCs*l</Jr> <</Jsl©l</Jr> <</Jsl, (11) rs 

then subsystem I is a mixture 

W1=tr11 W =I; lcrl 2 l</Jr> <<Prl • (12) 
r 

If we apply this result on the measuring process, the reduction of wave packets 
appears to be achieved without the second stage of measurement if the system 
consists of a pair of subsystems of which only one is subjected to observation. 

The mixture obtained by observing a subsystem only is called the improper 
mixture (B. d'Espagnat 1965 and 1976). On the other hand the proper mixture is 
a real mixture composed of objectively definite vector states. In the case of (12) 
the subsystem I cannot have the corresponding vector. But, when we calculate 
the average of a physical quantity belonging solely to the subsystem I, the for­
mula has the same form as proper mixture of subsystem I has. We cannot 
distinguish them from each other by any experiment on a subsystem only. We 
can distinguish them only by observing two or more quantities pertaining to 
both of the subsystems ; that a measurement of any single quantity does not help 
will be explained in the next section. 

§ 4. Physical Theory of Quantum Measuring Process 

Both the orthodox interpretation and von Neumann's theory can be called the 
orthodox in a wide sense, in which the basic formulation of quantum mechanics 
is not altered. The orthodox interpretation uses another view of the world, clas­
sical mechanics, as a premise in explanation of foundation of quantum mechanics. 
This attitude would not satisfy the majority of people. On the other hand, in 
von Neumann's theory, the problem of infinite regression of observer or the 
reaction of consciousness to physical world remains perhaps as a philosophical 
problem. 
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As other approaches to the measurement problem, there are proposed many 
theories of hidden variables and the many-world interpretation (H. Everette 1957 
and B. S. De Witt and N. Graham 1973). The hidden variable theories aim at 
recovering the deterministic picture of microscopic world in sub-quantum level. 
The many-world interpretation alters the orthodox interpretation in such a way 
that the states are never reduced but our world splits into parallel worlds cor­
responding to each eigenvalue. 

Within the framework of the orthodox interpretation in a wide sense, there 
is a room for conceiving a physical theories of the measuring process. They are 
designed to make, in some sense and with some physically appropriate condition, 
the unitary time-evolution during measuring process and the reduction of wave 
packets give the same prediction in regard to procability interpretation. 

Among such theories, the theory of Daneri, Loinger and Prosperi (A. Daneri, 
A. Loinger and G. M. Prosperi 1962), (D. L. P.), is probably most well-known. 
While the von Neumann theory did not make use of the macroscopic nature of 
measuring apparatus, D. L. P. does thereby terminating the regression before 
measuring apparatus so that the measured cata acquire the objectivity. 

Their apparatus is composed of a detector which directly interacts with 
microscopic object and an amplifier or a memory, whose state changes upon the 
interaction from the initial metastable state to a state having impression of the 
information of the object, and then goes over to a state of thermal equilibrium. 
The irreversible part of the process prepares the apparatus in such a state that 
we can read off the record classically. 

The position of the pointer of a measuring apparatus that we can read is a 
macroscopic state which is enormously degenerate in regard to the microscopic 
states ; such microscopic states cannot be distinguished by any observations of 
macroscopic observables. Similar indistinguishability exists also between some 
pure state and mixture. 

In order to formulate this concept of indistinguishability put forward by 
D. L. P. more precisely we follow Jauch (J.M. Jauch 1964 and 1968) to define 
equivalence relation among the density matrices of measuring apparatus in regard 
to some set of macroscopic observables. We say that the state W i and W 2 are 
equivalent under the set of observables S if 

(13) 
(S) 

for all A belonging to S. This equivalence is denoted by W1/'"""'._/W2. With this 
definition we can classify (microscopic) states of the measuring apparatus into 
equivalence classes, which we call the macroscopic state. Namely, the macro­
scopic state [WJ is a set of those microscopic states which are equivalent to a 
microscopic state W. The condition that {[W]} are not changed by measurement 
of all observables in S (classical measurement) is that S is abelian. The concept 
of the classical quantity cannot be defined without specifying the set of observa­
bles S (See ref. 5). In particular, it is the same as classical measurement to 
discuss only one quantity. 

One may wonder that the set of all macroscopic observables is not abelian. 
It is true that some macroscopic observables do not commute each other, but the 
commutator of the macroscopic observables (each of order N, the particle number) 
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is often of the order lower than N. 
Now, if we assume that only the macroscopic measurements S are all com­

mutable with each other, then there exists at least one mixture equivalent to a 
given pure state. Namely 

I: CrCs*laJr> <aJsl~L:[crl 2 l$r> <aJr[, (14) 
n r 

where {$r} are simultaneous eigenvector of S. However, one cannot be satisfied 
with this result, because the equivalence relation (14) is broken down by the 
unitary time-evolution after measurement. 

superposition - superposition 

time-evolution another mixture 

mixture mixture 

At this point, statistical mechanical property of the apparatus should be taken 
into consideration. 

In the D. L. P. theory, the macroscopic nature of apparatus leads to the ex­
pression 

(15) 

for the state of the whole system, the object and the apparatus, after the first stage 
of measurement, where I: Cr</lr is the initial state of the object and {$rib=1.2,. .. ,nr 

r 

are the bases for the r-th macroscopic state of the apparatus. D. L. P. call this 
set of the macroscopic states (except the difference of the value of non-conserva­
tive macroscopic quantities) the r-th channel. 

Their theory is based upon the following assumptions : 
1] One considers some macroscopic measurements upon the apparatus which 

are commutable each other. 
2] The channel is conserved under the time-evolution due to the Schroedinger 

equation. 
3] The microscopic states behave ergodically in each channel. More precisely, 

there exists in each channel k a shell Ckek corresponding to the thermal equili­
brium state. 

Assumption 1] means that the S in (13) is abelian. A set of some macro­
scopic quantities is not abelian, but we can often approximate them by an abelian 
set, and it is appropriate to think one macroscopic quantity which couples with 
and represents certain aspect of complementarity of the object in the spirit of 
the orthodox interpretation. 

From this assumption interference terms do not arise. In fact, as· in the 
classical system, there is no room for measurements requiring superposition of 
states from different channels. 

Assumption 2] guarantees that the absence of the interference terms at the 
instant of the interaction remains even after the time-evolution due to the Schro­
edinger equation ; the breaking down of the equivalence (13) due to the time­
evolution is thus avoided. 
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D. L. P. use ergodic property to eliminate the possibility that the result of the 
measurement should depend upon the microscopic details of the apparatus. They 
divide the Hilbert space of the states of the apparatus into subspaces each cor­
responding to the macroscopic quantum numbers. First, they consider the energy 
shells Ca which are the subspaces spanned by all the energy eigenstates with the 
eigenvalues belonging to interval (Ea, Ea+i =Ea+ .JE) ; the dimension of Ca is 
denoted by Sa. Then similarly in regard to other macroscopic conserved observ­
ables, they subdivide the energy shell Ca into the subspaces {Cak}k, each of 
dimension Sak· The set Cak defines the channels. Further, Cak is subdivided into 
{Cak"}" in regard to the other macroscopic but non-conserving observables. Then 
finally the basis vectors in the Cakv are the microscopic vectors {Qakvi}i. The 
quantum number J.J is used for describing the change of the state into the thermal 
equilibrium. 

Now, we restrict our attention to an energy shell and drop the suffix a. Let 

M[ · · ·] = lim(l/T) [Tdt[ · · ·] 
T-oo Jo (16) 

be the time average and let m denote the ensemble average with respect to the 
initial states of the apparatus. Then, the ergodicity condition 

(17) 

where Skv and sk are dimensions of Ckv and ck respectively, has been established 
in several cases (L. van Hove 1959, G. M. Prosperi and A. Scotti 1960 and P. 
Bocchieri and A. Loinger 1959). The left-hand side of (17) is the transition pro­
bability into the subspace Ck" as averaged all over the initial states in channel k. 
The ergodicity (17) says that the averaged transition probability is given simply 
by the ratio of the dimensions of channel k and the final subspace Ck" independ­
ently from initial state. We notice that the description of apparatus by mixture, 
as was criticized by Wigner (J. M. Jauch, E. P. Wigner and M. M. Yanase 1967), 
is assumed. Nevertheless, the D. L. P. theory can be accepted as an approximate 
theory, although Wigner was right in the rigorous sense of the term. 

The subspace Ckek' that corresponds to thermal equilibrium state, has a 
dimension enormously larger than that of subspaces Ck" (J.J=\=ek), so that the pro­
bability Ukv(f) for the state of apparatus to be in Ck"' becomes 

(18) 

after sufficiently long time t irrespective of the initial value Ukv(fo), if the initial 
state belonged to one channel. Thus, the apparatus spends almost all its time in 
a macroscopic state Ckek· If the initial state ¢0 is a superposition of the states 
from different channels, i e., ¢0= "£ <Dkµi, ¢0> Qkµi, then (18) must be replaced by 

kµi 

Ukv(f)~ I; I <Dkµi, <Po> l
2o"ek. (19) 

µi 

Having made the assumptions of D. L. P. clear, we now wish to go into 
their theory of measurement process. After the first stage of measurement, the 
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interaction between object and apparatus is cut off. If this is followed by a 
measurement of another observables, non-commutable with the previous one, the 
result will in general be different depending upon whether the first measurement 
has resulted in a pure state or a mixture. But with the above assumptions l] 
and 2], interference terms vanish and they give the same prediction for second 
measurement, where dependence on microscopic state is wiped out by 3]. 

In fact, if the interaction time for the measurement of an observable A is ti, 
then the measurement changes the initial state at t=O into some other state at 
t1. Namely, 

(20) 

note that the initial state of the apparatus is assumed to be in the channel 0. 
What value do we get now if, upon the state (20), we make the measurement of 
B which is non-commutable with A? The probability of obtaining the eigenvalve 
b, of B under the condition that previous observation of A gave the value ak is 
given by 

(21) 

where U(t2-t1) and at2 represent time-evolution, from the time of the interaction 
to the time of the second measurement, of the object and apparatus respectively. 
Because of the orthogonality <<lh"i' <l>rµj> =0, k~r, (21) becomes 

(22) 

which depends still upon the microscopic details of the state of the apparatus. 
By the ergodicity assumption 3], however, the probability (21) tends in a suffici­
ently long, but not macroscopically long time after the interaction for the 
measurement of A to 

(23) 

This result is in accord with the view of the orthodox interpretation that the 
state of the object undergoes the reduction of wave packets, going thereby over 
to 

(24) 

in that both (23) and (24) give the same prediction about the measurement of B. 

§ 5. Discussion 

As we have seen in the previous section, the D. L. P. theory as well as other 
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physical theories of measurement shows only that the prediction about the second 
measurement is the same whether or not the reduction of wave packets is 
assumed for the first measurement. That is, they never de::'.uce the reduction of 
wave packets from some other principles of the quantum mechanics in any sense. 
Within the framework of quantum mechanics, it seems to be inevitable to use 
the protability interpretation in some form. But, it causes a problem because it 
demands measurement process for itself. We can shift the use of probability 
interpretation for defining the equivalence between the pure state and the mixture 
to the later stage by introducing an additional measurement which is to be carried 
out after the measurements we are interested in and to which the probability 
interpretation is applied. But, in order to analyse the last measurement, we must 
have one more measurement. This is a kind of infinite regression like von 
Neumann's case. We must reflect on our method of recognition of our world 
here. 

Even if we accept the probability interpretation, the consequence of the D. L. 
P. theory or other physical theories of measurement are only approximate, so 
that they do not fill up the gap between the concepts of classical and quantum 
physics. If we do not regard the state vector as merely a carrier of information, 
or find it as real, approximate identification does not make much sense. If the 
state vector is given a reality, it ought to evolve continuously during measuring 
process into sorr:e eigenvector even though its selection is probabilistic (See ref. 
12). Pursuit of this line of thought would inevitably lead to theories of hidden 
variables. 

Let us now critically examine the assumptions of the D. L. P .. theory and try 
to see if this theory can resolve the measurement problem. 

On the assumption l]: It is quite natural to assume that apparatus has a 
macroscopic scale. But, is there a clear-cut boundary between macroscopic and 
microscopic systems? No, the boundary may be shifted continuously to some 
extent, and in fact there are macroscopic quantum phenomena such as super­
conductivity. Even if we could define a boundary we cannot prohibit the super­
position of different macroscopic states by any principles of quantum mechanics. 
If we cannot find a reason for prohibition of superposition, we fall into von 
~eumann's infinite regression again. On this point D. L. P.'s view seems to partially 
resemble with Bohr's which presupposes c'.assical apparatus for objectivity. 

Moreover, from assumption 1], we cannot substitute for the left-hand member 
of (21) an eigenstate of total angular momentum of the apparatus, if the state of 
the api:;aratus carrying the information of the object is an eigenstate of the total 
momentum of the apparatus which is not commutative with the total angular 
momentum. That the substitution in (21) is not allowed implies that (23) is no 
longer valid, and hence interference terms arise in regard to the state of the 
apparatus and consequently to those of the object, if the measurement is made of 
the angu~ar momentum state of the apparatus despite the fact that the object has 
interacted with the macroscopic apparatus. 

On the assumption 2]: Preservation of channels is satisfied during a meas­
urement process so that we can read out the information of the object by the 
channels. As other quantum mechanical theories, the D. L. P. theory does not 
describe the whole universe with one state vector. They take account of only 
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those systems which are coupled physically with the very measuring apparatus. 
So if there exists some system which interacts with the apparatus after the 
measurement and destroys the channels before our second measurement on the 
apparatus, the consequence of the D. L. P. theory cannot hold any longer, for 
vanishing of the interference terms is due to the macroscopic commuting obser­
vation on the apparatus and not due to any affair on the side of the object itself. 
Thus, it is still to be desired that reduction of wave packets of the object is not 
affected by whatever happens to the apparatus after the cut off of interaction 
(See ref. 13). 

On the assumption 3]: On the basis of ergodic behaviour, the states can 
interfere again at the Poincare recurrence time. However, the recurrence time 
is much too longer than the time scale of human sense. 

The ergodicity condition is not used in the D. L. P. theory in accounting for 
vanishing of the interference terms; it is used only to guarantee the wiping out 
of the dependence on the microscopic states. But, it is more desirable that the 
interference terms are eliminated by the ergodic or the irreversible processes. 

Further, the ensemble average and the time average is taken in (17). The 
time average is reasonable if we take into account the time duration of our 
reading the pointer position of the apparatus. However, the ensemble average 
means to describe the initial state of the apparatus with mixture, i.e., our ignor­
ance. However, it should not be allowd in the fundamental theory treating the 
irreducible probability that the procabilities due to our ignorance are mingled 
(See ref. 14). 

In general, procabilistic description seems to have limitation that it cannot 
describe the whole universe because it takes an outer world which picks a sample 
world up. We cannot pick a sample up because we are also described by the 
theory itself. In other words, the probabilistic description is for the open systems. 

In conclusion, we have seen that the D. L. P. theory explains measuring process 
under the peculiar assumption 1] which contains a grave problem. Moreover the 
D. L. P. theory has the aspect of infinite regression in being a theory which use 
the probability interpretation. The measurement process in quantum mechanics 
are still to be studied more deeply and thoroughly. 
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