慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	On vibration of two circular cilynders，which are immersed in a water region－III
Sub Title	
Author	鬼頭，史城（Kito，Fumiki）
Publisher	慶応義塾大学工学部
Publication year	1979
Jtitle	Keio engineering reports Vol．32，No．6（1979．12），p．57－74
JaLC DOI	
Abstract	This is the continuation of author＇s study about the same theme as the present one．In the former report，the author has given results of his analytical study with regard to vibration of two circular cylinders，which are immersed in a fluid region of infinite extent．Therein，the vibration was assumed to be of finite amplitudes．And，we treated the case of two dimensional problem of an ideal fluid，merely main analytical formula being given there．In the present paper，the author has made，continuing former study，more detailed account about this problem，and also given some numerical examples．It is to be noted that，here，we are concerned about the case in which No． 1 cylinder is moving，while No． 2 cylinder is kept at stand still．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00320006－ 0057

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act

ON VIBRATION OF TWO CIRCULAR CILYNDERS, WHICH ARE IMMERSED IN A WATER REGION-III

Fumiki Kito
Dept. of Engineering, Keio University, Yokohama, 223, Japan

(Received December, 12, 1977)

Abstract

This is the continuation of author's study about the same theme as the present one. In the former report, the author has given results of his analytical study with regard to vibration of two circular cylinders, which are immersed in a fluid region of infinite extent. Therein, the vibration was assumed to be of finite amplitudes. And, we treated the case of two dimensional problem of an ideal fluid, merely main analytical formula being given there. In the present paper, the author has made, continuing former study, more detailed account about this problem, and also given some numerical examples. It is to be noted that, here, we are concerned about the case in which No. 1 cylinder is moving, while No. 2 cylinder is kept at stand still.

1. Statement of the Problem

In Fig. 1, two circular cylinders of radii R_{1} and R_{2} are shown, which represents initial configuration (at time $t=0$). They are immersed in a fluid region of infinite extent, the fluid being considered to be an ideal fluid. Positions of centers of two circular cylinders are here located on the x-axis, and are spaced by a distance of $\mathrm{E}_{0}=\mathrm{D}$ each other. Radii R_{1} and R_{2} are to be kept constant at every subsquent time $t(0 \leq t)$. There is no difficulty in extending the following treatment to cases in which R_{1} and R_{2} varies, (as given function of time t). For $0<t$, positions of two circular cylinders are considered to move in a prescribed manner. Fig. 2 shows us the positions of two circular cylinders at time t. Here, two cylinders have moved by distances a_{1} and a_{2} in angular directions β_{1} and β_{2} respectively. In what follows, we take up the case in which a_{1} and a_{2} are given functions of time t, while β_{1} and β_{2} are kept at constant values. (However, we can treat the case in which β_{1} and β_{2} are also given functions of t, if we wish it.) Displacements a_{1} and a_{2} need not to be taken as small quantities.

The author has made, in the previous report, an analytical study about the fluid motion thus set up, and resulting hydraulic forces acting on walls of two circular cylinders. The surrounding fluid being assumed to be an ideal fluid, we treat the problem as a case of two-dimensional potential flow (but non-stady). In the present paper, which is the continuation of the study, more detailed account

Fumiki Kito

Fig. 1. Position of two Circular Cylinders at initial state. $\quad(t=0)$

Fig. 2. Position of two Circular Cylinders at displaced state (at time t).
will be given, restricting ourselves to special case in which $a_{2} \equiv 0$, while a_{1} varies with time t, in a prescribed manner.

2. Notations

We use the following notations which are the same as in author's previous paper, thus;

On Vibration of two Circular Cylinders, which are Immersed in a Water Region-III
$x, y=$ rectangular coodinates of a point in $x y$ plane,
$z=x+i y$, a complex variable,
$c=$ distance from origin 0 , of radical centers of system of bi-polar coordinates,
$h=$ coefficient of linear element for the case of bi-polar coordinates (ξ, η),
$\xi, \eta=$ a system of bi-polar coordinates, representing any point on the $x y$ plane,
$R_{i}=$ radius of circular cylinder ($i=1,2$),
$E_{i}=$ position of center of ditto,
$p=$ fluid pressure, $\rho=$ density of the fluid,
$\phi=$ velocity potential of fluid motion, giving absolute velocity of flow.
In want follows, several coefficients A_{i}, B_{i}, C_{i} etc., will be used for giving us the solution in form of an infinite series. These coefficients will be defined where they make first appearances. These coefficients A_{i}, B_{i}, etc., are independent of variables x, y (also ξ, η), but they may be functions of time t, because we are treating the case of non-stationary fluid motion. Also, guishing individual cases of application.

3. Main Results obtained in the Previous Paper

In what follows, we shall give values of velocity potential $\dot{\phi}$, hydro-dynamic pressure p, and also hydro-dynamic forces F_{x}, F_{y}, which we obtained in the previous paper. It may be mentioned here that the starting point of our discussion was based upon a system of bi-polar coordinates as sketched in Fig. 3.

Firstly, the velocity potential ϕ can be written,

$$
\begin{equation*}
\phi=\phi_{1}+\phi_{2} \tag{1}
\end{equation*}
$$

where ϕ_{1} satisfies the boundary condition at wall of No. 1 cylinder ($\xi=\xi_{1}$), while the No. 2 cylinder stands still. On the other hand, ϕ_{2} satisfies the boundary

Fig. 3. Configuration of two circular cylinders, represented by bipolar coordinates
condition at wall of No. 2 cylinder $\left(\xi=\xi_{2}\right)$, while the No. 1 cylinder is kept at stand still. Thus, we have, $(k=1,2)$,

$$
\begin{equation*}
\phi_{k}=\sum_{n=1}^{\infty}\left(A_{n k} \sin n \eta+B_{n k} \cos n \eta\right) \cdot\left(\operatorname{sh} n \xi+C_{n k} \operatorname{ch} n \xi\right) \tag{2}
\end{equation*}
$$

Especially, for the values of $\phi_{s}(s=1,2)$ at two cylindrical walls (at which $p=1,2$) we have

$$
\begin{equation*}
\phi_{s}^{(p)}=\sum_{n=1}^{\infty}\left[A_{n s}^{(p)} \sin n \eta+B_{n s}^{(p)} \cos n \eta\right] \tag{3}
\end{equation*}
$$

Actual values of coefficients $A_{n s}^{(p)}$ and $B_{n s}^{(p)}$ are as follows;

$$
\begin{aligned}
& A_{n 1}^{(1)}=\frac{-1}{n}\left[\frac{c^{2} \dot{a}_{1}}{R_{1}} \sin \gamma_{1}\right] \operatorname{coth} n\left(\xi_{1}-\xi_{2}\right) \cdot\left[K_{n-1}^{(2)}\left(\lambda_{1}\right)-K_{n+1}^{(2)}\left(\lambda_{1}\right)\right] \\
& B_{n 1}^{(1)}=\frac{-2}{n}\left[c a_{1} \cos \gamma_{1}\right] \operatorname{coth} n\left(\xi_{1}-\xi_{2}\right) \cdot\left[\operatorname{sh}^{2} \xi_{1} K_{n}^{(2)}\left(\lambda_{1}\right)-\operatorname{ch} \xi_{1} K_{n}^{(1)}\left(\lambda_{1}\right)\right] \\
& A_{n 1}^{(2)}=\frac{-1}{n}\left[\frac{c^{2} \dot{a}_{1}}{R_{1}} \sin \gamma_{1}\right] \frac{1}{\operatorname{sh} n\left(\xi_{1}-\xi_{2}\right)} \cdot\left[K_{n-1}^{(2)}\left(\lambda_{1}\right)-K_{n+1}^{(2)}\left(\lambda_{1}\right)\right] \\
& B_{n 1}^{(2)}=\frac{-2}{n}\left[c \dot{a} \cos \gamma_{1}\right] \frac{1}{\operatorname{sh} n\left(\xi_{1}-\xi_{2}\right)} \cdot\left[\operatorname{sh}^{2} \xi_{1} K_{n}^{(2)}\left(\lambda_{1}\right)-\operatorname{ch} \xi_{1} K_{n}^{(1)}\left(\lambda_{1}\right)\right] \\
& A_{n 2}^{(1)}=\frac{-1}{n}\left[\frac{c^{2} \dot{a}_{2}}{R_{2}} \sin \gamma_{2}\right] \frac{1}{\operatorname{sh} n\left(\xi_{1}-\xi_{2}\right)} \cdot\left[K_{n-1}^{(2)}\left(\lambda_{2}\right)-K_{n+1}^{(2)}\left(\lambda_{2}\right)\right] \\
& B_{n 2}^{(1)}=\frac{-2}{n}\left[c \dot{a}_{2} \cos \gamma_{2}\right] \frac{1}{\operatorname{sh} n\left(\xi_{1}-\xi_{2}\right)}\left[-\left(\operatorname{sh} \xi_{2}\right)^{2} K_{n}^{(2)}\left(\lambda_{2}\right)+\operatorname{ch} \xi_{2} K_{n}^{(1)}\left(\lambda_{2}\right)\right] \\
& A_{n 2}^{(2)}=\frac{-1}{n}\left[\frac{c^{2} \dot{a}_{2} \sin \gamma_{2}}{R_{2}}\right] \operatorname{coth} n\left(\xi_{1}-\xi_{2}\right) \cdot\left[K_{n-1}^{(2)}\left(\lambda_{2}\right)-K_{n+1}^{(2)}\left(\lambda_{2}\right)\right] \\
& B_{n 2}^{(2)}=\frac{-2}{n}\left[c \dot{a}_{2} \cos \gamma_{2}\right] \operatorname{coth} n\left(\xi_{1}-\xi_{2}\right) \cdot\left[-\left(\operatorname{sh} \xi_{2}\right)^{2} K_{n}^{(2)}\left(\lambda_{2}\right)+\operatorname{ch} \xi_{2} K_{n}^{(1)}\left(\lambda_{2}\right)\right]
\end{aligned}
$$

It will be observed that, infinite solutions (2) and (3) are absolutely convergent. After numerical estimation about several practical cases, we find that the convergence is fairly good, and we may stop at $n=1,2, \cdots, 6$, at least for practical purposes.

In the following treatment, in which we take the case of $a_{2} \equiv 0$, we have

$$
A_{n 2}^{(1)}=0, \quad A_{n 2}^{(2)}=0, \quad B_{n 2}^{(1)}=0, \quad B_{n 2}^{(2)}=0
$$

As to the hydrodynamic pressure p, it is to be obtained from the formula (for the case of moving axes of coordinates),

$$
\begin{equation*}
-\frac{1}{\rho} p+U=\frac{\partial \phi}{\partial t}+\frac{1}{2}\left\{\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}\right\}-\left(c_{x}-\Omega y\right) \frac{\partial \phi}{\partial x}-\left(c_{y}+\Omega x\right) \frac{\partial \phi}{\partial y}+C \tag{4}
\end{equation*}
$$

Here we denote by $\left(c_{x}, c_{y}\right)$ linear velocity of motion of origin of our moving axes, while Ω is angular velocity of rotation of this frame of axes. U is the potential of field of gravitation, but here we take $U \equiv 0$.
(1) The resultant force $\left(F_{x}, F_{y}\right)$, exerted by pressure p, upon wall surface of No. 1 circular cyliner is given by;

$$
\begin{align*}
& F_{x}=\int_{0}^{2 \pi}[-p]\left[\left(\frac{c}{R_{1}}\right)^{2} \frac{1}{\operatorname{ch} \xi_{1}+\cos \eta}-\operatorname{ch} \xi_{1}\right] \cdot \frac{c}{\operatorname{ch} \xi_{1}+\cos \eta} d \eta \tag{5}\\
& F_{y}=\int_{0}^{2 \pi}[-p]\left[\frac{c^{2}}{R_{1}} \frac{\sin \eta}{\left(\operatorname{ch} \xi_{1}+\cos \eta\right)^{2}}\right] d \eta \tag{6}
\end{align*}
$$

(2) Hydrodynamic Force acting upon will of No. 2 circular cylinder, is given by ;

$$
\begin{align*}
& F_{x}=\int_{0}^{2 \pi}[+p]\left[\left(\frac{c}{R_{2}}\right)^{2} \frac{1}{\left(\operatorname{ch} \xi_{2}+\cos \eta\right)}-\operatorname{ch} \xi_{2}\right] \cdot\left[\frac{c}{\operatorname{ch} \xi_{2}+\cos \eta}\right] d \eta \tag{7}\\
& F_{y}=\int_{0}^{2 \pi}[-p]\left[\frac{c^{2}}{R_{2}} \frac{\sin \eta}{\left(\operatorname{ch} \xi_{2}+\cos \eta\right)^{2}}\right] d \gamma_{y} \tag{8}
\end{align*}
$$

4. Detailed Discussion for the Case in which $a_{2} \equiv 0$

In what follows, we shall show actual exoressions of hydrodynamic forces F_{x}, F_{y} for the case in which $a_{1} \neq 0, a_{2} \equiv 0$, this being done for presenting simpler expressions. Task of evaluation of F_{x}, F_{y} may be done conveniently, in following four steps.
(A) Effect of the Term $\partial \phi / \partial t$

As we see from eq. (4), we must first evaluate the effect of term $\partial \phi / \partial t$ upon F_{x} and F_{y}. This is done, for No. 1 cylinder, by evaluating following definite integrals;

$$
\begin{align*}
& \left(F_{x}\right)=\rho \int_{0}^{2 \pi} \frac{\partial \phi}{\partial t}\left[\frac{c}{R_{1}} \frac{\operatorname{sh} \xi_{1}}{\operatorname{ch} \xi_{1}+\cos \eta}-\frac{E_{1}}{R_{1}}\right] \cdot\left[\frac{c}{\operatorname{ch} \xi_{1}+\cos \eta}\right] d \eta \tag{9}\\
& \left(F_{y}\right)=\rho \int_{0}^{2 \pi} \frac{\partial \phi}{\partial t}\left[\frac{c^{2}}{R_{1}} \frac{\sin \eta}{\left(\operatorname{ch} \xi_{1}+\cos \eta\right)^{2}}\right] d \eta \tag{10}
\end{align*}
$$

Value of velocity potential ϕ, contained in these definite integrals, being the value at $\xi=\xi_{1}$, we take it in form of eq. (3), in which we have $s=1, p=1$. Moreover, differentiation $\partial / \partial t$, with respect to time t, must be carried out in two ways. The first one is with regard to \dot{a}_{1}, and write

$$
\frac{d}{d t}\left(\dot{a}_{1}\right)=\ddot{a}_{1}
$$

The second is with respect to a_{1} which is contained implicitly in coefficients $A_{n s}^{(p)}$ and $B_{n s}^{(p)}$ (which contain such factors as c, E_{1}, etc.). And, this term may conveniently be expressed formally, as

$$
\frac{\partial \phi}{\partial a_{1}} \frac{d a_{1}}{d t}=\frac{\partial \phi}{\partial a_{1}} \dot{a}_{1}
$$

We may express the above-mentioned fact by writing;

$$
\frac{d \phi}{d t}=\frac{\partial \phi}{\partial \dot{a}_{1}} \ddot{a}_{1}+\frac{\partial \dot{\phi}}{\partial a_{1}} \dot{a}_{1}
$$

The author finds it more convenient to put

$$
A_{n 1}^{(1)}=\left[D \dot{a}_{1}\right] a_{n 1}^{(1)}, \quad B_{n 1}^{(1)}=\left[D \dot{a}_{1}\right] b_{n 1}^{(1)}
$$

etc., etc., where $a_{n 1}^{(1)}, b_{n 1}^{(1)}$ are numerical (non-dimensional) coefficients, which depend implicitly on a_{1}. Further, we have

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[a_{n 1}^{(1)}\right]=\frac{\partial}{\partial a_{1}}\left[a_{n 1}^{(1)}\right] \dot{a}_{1}=\alpha_{n 1}^{(1)} \dot{a}_{1} \\
& \frac{\partial}{\partial t}\left[b_{n 1}^{(1)}\right]=\frac{\partial}{\partial a_{1}}\left[b_{n 1}^{(1)}\right] \dot{a}_{1}=\beta_{n 1}^{(1)} \dot{a}_{1}
\end{aligned}
$$

Strictly speaking, values of coefficients $\alpha_{n 1}^{(1)}, \beta_{n 1}^{(1)}$, etc., are to be obtained by actuating process of differentiation, which is very complicated. However, the author has found a practical method of estimating them, approximately, which will be reported, in what follows. Under these preparatory consideration, we obtain;

$$
\begin{align*}
& F_{x}=\sum_{n} \rho n \pi\left(\frac{c}{D}\right)\left(\frac{D}{R_{1}}\right)\left(\frac{D}{\cos \gamma_{1}}\right) \cdot \frac{\tanh n\left(\xi_{1}-\xi_{2}\right)}{\operatorname{sh} \xi_{1}} \cdot\left[b_{n 1}^{(1)}\right]\left[d B_{n 1}^{(1)} / d t\right] \tag{11}\\
& F_{y}=\sum_{n} \rho \frac{\rho \pi \pi D}{\sin \gamma_{1}} \cdot \tanh n\left(\xi_{1}-\xi_{2}\right) \cdot\left[a_{n 1}^{(1)}\right]\left[d A_{n 1}^{(1)} / d t\right] \tag{12}
\end{align*}
$$

Therein, we have,

$$
\begin{aligned}
& \frac{d B_{n 1}^{(1)}}{d t}=D \ddot{a}_{1} b_{n 1}^{(1)}+D \frac{\partial b_{n 1}^{(1)}}{\partial a_{1}}\left(\dot{a}_{1}\right)^{2} \\
& \frac{d A_{n 1}^{(1)}}{d t}=D \ddot{a}_{1} a_{n 1}^{(1)}+D \frac{\partial a_{n 1}^{(1)}}{\partial a_{1}}\left(\dot{a}_{1}\right)^{2}
\end{aligned}
$$

Summing up these results, we see that hydrodynamical forces F_{x}, F_{y} may be expressed in following form;

$$
\left.\begin{array}{l}
F_{x}=K_{x} \ddot{a}_{1}+S_{x}\left(\dot{a}_{1}\right)^{2} \tag{13}\\
F_{y}=K_{y} \ddot{a}_{1}+S_{y}\left(\dot{a}_{1}\right)^{2}
\end{array}\right\}
$$

We observe that, coefficients K_{x}, K_{y} of acceleration term \ddot{a}_{1} just coincide with those values obtained (in Report I) for the case of small vibration. Terms $S_{x}\left(\dot{a}_{1}\right)^{2}, S_{y}\left(\dot{a}_{1}\right)^{2}$ are newly added terms representing non-linearity for the case of vibration at finite applitudes.

On Vibration of two Circular Cylinders, which are Immersed in a Water Region-III
(B) Contribution by the Term $\left[(\partial \phi / \partial x)^{2}+(\partial \phi / \partial y)^{2}\right]$

Here we have

$$
\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}=\frac{1}{h^{2}}\left[\left(\frac{\partial \phi}{\partial \xi}\right)^{2}+\left(\frac{\partial \phi}{\partial \eta}\right)^{2}\right]
$$

Also we have, on the wall surface,

$$
-\frac{1}{h} \frac{\partial \phi}{\partial \xi}=V_{\nu}
$$

And, total effect of the term $\left(1 / h^{2}\right)\left[(\partial \phi / \partial \xi)^{2}\right]$ on F_{x}, F_{y}, is null, due to consideration of symmetry. So that we need only to put

$$
\frac{1}{2} \rho \frac{1}{h^{2}}\left[\left(\frac{\partial \phi}{\partial \eta}\right)^{2}\right]
$$

into formulae (5) and (6), instead of p there. We thus obtain the following values; for force $\left(F_{x}, F_{y}\right)$ which act on wall of No. 1 cylinder, $(k=1)$,

$$
\begin{align*}
F_{x}= & \frac{\rho}{2 c} \int_{0}^{2 \pi}\left[\sum_{n}\left\{n A_{n} \cos n \eta-n B_{n} \sin n \eta\right\}\right. \\
& \left.\cdot\left\{\operatorname{sh} n \xi_{k}+C_{n} \operatorname{ch} n \xi_{k}\right\}\right]^{2}\left[\frac{c}{R_{k}} \operatorname{sh} \xi_{k}-\frac{E_{k}}{R_{k}}\left(\operatorname{ch} \xi_{k}+\cos \eta\right)\right] d \eta \tag{14}\\
F_{y}= & \frac{\rho}{2} \int_{0}^{2 \pi}\left[\sum_{n}\left\{n A_{n} \cos n \eta-n B_{n} \sin n \eta\right\} \cdot\left\{\operatorname{sh} n \xi_{k}+C_{n} \operatorname{ch} n \xi_{k}\right\}\right]^{2} \frac{\sin \eta}{R_{k}} d \eta \tag{15}
\end{align*}
$$

Thus, actual values of F_{x}, F_{y} can be obtained in form of infinite series, consisting of each term in form of squares and products of $A_{n_{1}}^{(1)}$ and $B_{n_{1}}^{(1)}$. We observe that this component part of forces F_{x}, F_{y} are proportional to $\left(\dot{a}_{1}\right)^{2}$. Carrying out this estimation of infinite series expansion, we obtain the result as given below, which is the value for No. 1 cylinder wall;

$$
\begin{align*}
F_{x}= & \frac{\rho}{2 c} \int_{0}^{2 \pi}\left[\sum_{n}\left\{n A_{n 1}^{(1)} \cos n \eta-n B_{n 1}^{(1)} \sin n \eta\right\}\right]^{2} \\
& \cdot\left[\frac{c}{R_{1}} \operatorname{sh} \xi_{1}-\frac{E_{1}}{R_{1}}\left(\operatorname{ch} \xi_{1}+\cos \eta\right)\right] d \eta \tag{16}\\
= & \frac{\rho}{2 c} I
\end{align*}
$$

where we have

$$
\begin{aligned}
I= & \pi M\left[\sum_{n}\left\{n A_{n 1}^{(1)}\right\}^{2}+\sum_{n}\left\{n B_{n 1}^{(1)}\right\}^{2}\right] \\
& -\pi N\left[\sum_{n}\left\{n A_{n 1}^{(1)}\right\}\left\{(n+1) A_{n+11}^{(1)}\right\}\right] \\
& -\pi N\left[\sum_{n}\left\{n B_{n 1}^{(1)}\right\}\left\{(n+1) B_{n+11}^{(1)}\right\}\right]
\end{aligned}
$$

Fumiki Kito

with

$$
M=-\frac{1}{2 c}, \quad N=\frac{1}{2 c} \operatorname{ch} \xi_{1}
$$

The summations Σ are to be made for $n=1,2, \cdots$.
Also, we have;

$$
\begin{align*}
F_{y} & =\frac{\rho}{2} \int_{0}^{2 \pi}\left[\sum_{n}\left\{n A_{n 1}^{(1)} \cos n \eta-n B_{n 1}^{(1)} \sin n \eta\right\}\right]^{2} \cdot \frac{\sin \gamma_{y}}{R_{1}} d \eta \tag{17}\\
& =\frac{\rho}{2} J
\end{align*}
$$

in which we put,

$$
\begin{equation*}
\left.J=\pi M^{\prime}\left[\sum_{n}\left\{n A_{n 11}^{(1)}\right\}(n+1) B_{n 1}^{(1)}\right\}\right]+M^{\prime}\left[\sum_{n}\left\{n B_{n}^{(1)}\right\}\left\{(n+1) A_{n+11}^{(1)}\right\}\right] \tag{17}
\end{equation*}
$$

with

$$
M^{\prime}=\frac{\left|\operatorname{sh} \hat{\xi}_{1}\right|}{c}
$$

(C) Effect of Term which contain the Factor Ω in Eq. (4).

For this purpose, we have to put

$$
\rho \Omega\left[y \frac{\partial \dot{\varphi}}{\partial x}-x \frac{\partial \phi}{\partial y}\right]=\rho \Omega\left[\frac{\partial \phi}{\partial \xi} \operatorname{ch} \xi_{k} \sin \eta-\frac{\partial \phi}{\partial \eta} \operatorname{sh} \xi_{k} \cos \eta\right]
$$

in place of $(-p)$ in eqs. (5) and (6). Firstly, we note that, for $\xi=\xi_{1}$ we have

$$
\begin{align*}
\frac{\partial \phi}{\partial \xi} & =\sum_{n}\left[A_{n 1} \sin n \eta+B_{n 1} \cos n \eta\right] \cdot n\left[\operatorname{ch} n \xi_{1}+C_{n 1} \operatorname{sh} n \xi_{1}\right] \\
& =\sum_{n} n\left[A_{n 1}^{(1)} \sin n \eta+B_{n 1}^{(1)} \cos n \eta\right] \tag{18}\\
\frac{\partial \phi}{\partial \eta} & =\sum_{n}\left[A_{n 1} \cos n \eta-B_{n 1} \sin n \eta\right] \cdot n\left[\operatorname{sh} n \xi_{1}+C_{n 1} \operatorname{ch} n \xi_{1}\right] \\
& =\sum_{n} n\left(\frac{E_{n 1}}{D_{n 1}}\right)\left[A_{n 1}^{(1)} \cos n \eta-B_{n 1}^{(1)} \sin n \eta\right] \tag{19}
\end{align*}
$$

Putting these values into eq. (5) and (6), we find:-
(a) For F_{x}, aggregate of terms, which consist of ; as multiplier of $A_{n 1}^{(1)}$,

$$
\begin{align*}
& -\rho\left(\frac{c}{R_{1}}\right)^{2}(c n)\left[\operatorname{ch} \xi_{1} I_{1 n}-\left(\frac{E_{n 1}}{D_{n 1}}\right) \operatorname{sh} \xi_{1} I_{3 n}\right] \\
& -\rho\left(\operatorname{ch} \xi_{1}\right)(c n)\left[\operatorname{ch} \xi_{1} I_{2 n}-\left(\frac{E_{n 1}}{D_{n 1}}\right) \operatorname{sh} \xi_{1} I_{4 n}\right] \tag{20}
\end{align*}
$$

while we have, for factor of $B_{n 1}^{(1)}=0$.

On Vibration of two Circular Cylinders, which are Immersed in a Water Region-III
(b) For, F_{y}, aggregate of terms, which consist of ; as multiplier of $A_{n 1}^{(1)}=0$, while we have, for multiplier of $B_{n 1}^{(1)}$,

$$
\begin{equation*}
\rho\left(\frac{c^{2}}{R_{1}}\right)(n)\left[\operatorname{ch} \xi_{1} J_{1 n}+\left(\frac{E_{n 1}}{D_{n 1}}\right) \operatorname{sh} \xi_{1} J_{2 n}\right] \tag{21}
\end{equation*}
$$

It is to be noted that, we use here (and hereafter) following temporary notations;

$$
\begin{aligned}
& I_{1 n}=\int_{0}^{2 \pi} \frac{\sin \eta \sin n \eta}{N^{2}} d \eta \\
& I_{2 n}=\int_{0}^{2 \pi} \frac{\sin \eta \sin n \eta}{N} d \eta \\
& I_{3 n}=\int_{0}^{2 \pi} \frac{\cos \eta \cos n \eta}{N^{2}} d \eta \\
& I_{4 n}=\int_{0}^{2 \pi} \frac{\cos \eta \cos n \eta}{N} d \eta \\
& J_{1 n}=\int_{0}^{2 \pi} \frac{\sin ^{2} \eta \cos n \eta}{N} d \eta \\
& J_{2 n}=\int_{0}^{2 \pi} \frac{\sin \eta \cos \eta \sin \eta \eta}{N^{2}} d \eta \\
& L_{3 n}=\int_{0}^{2 \pi} \frac{\cos n \eta}{N^{2}} d \eta \\
& L_{4 n}=\int_{0}^{2 \pi} \frac{\cos n \eta}{N}
\end{aligned}
$$

In these formulae, we have put, for shortness,

$$
N=\operatorname{ch} \xi_{1}+\cos \eta
$$

It will be seen that these values of definite integrals may easily be expressed as linear combinations of following definite integrals ($m=0,1,2, \cdots$), which were used in author's previous papers.

$$
\begin{aligned}
& K_{m}^{(s)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\cos m \eta}{N^{s}} d \eta \\
& K_{m}^{(1)}=\frac{(-)^{m} 2 \varepsilon^{m+1}}{\left(1-3^{2}\right)}, \\
& K_{m}^{(2)}=\frac{(-)^{m} 4(m+1) \varepsilon^{m+2}}{\left(1-\varepsilon^{2}\right)^{2}}+\frac{(-)^{m} 8 \varepsilon^{m+4}}{\left(1-\varepsilon^{2}\right)^{3}}
\end{aligned}
$$

(D) Effect of Term which contain c_{x}, c_{y} in eq. (4).

For this effect, we put

$$
\begin{aligned}
& \rho\left[c_{x} \frac{\partial \phi}{\partial x}+c_{y} \frac{\partial \phi}{\partial y}\right](-1) \\
&=\rho \frac{\partial \phi}{\partial \xi}\left[\frac{c_{x}}{c}\left(1+\operatorname{ch} \xi_{1} \cos \eta\right)-\frac{c_{y}}{c} \operatorname{sh} \xi_{1} \sin \eta\right](-1) \\
&+\rho \frac{\partial \phi}{\partial \eta}\left[\frac{c_{x}}{c} \operatorname{sh} \xi_{1} \sin \eta-\frac{c_{y}}{c}\left(1+\operatorname{ch} \xi_{1} \cos \eta\right)\right](-1)
\end{aligned}
$$

in place of $(-p)$ in eq. (5) and (6).
For $\partial \phi / \partial \xi$ and $\partial \phi / \partial \eta$ the values as given by eqs. (18) and (19) are to be used. Actuating this process of estimation, we obtain following results;
(a) For F_{x}, it consists of aggregates of terms of following four kinds;

A multipler of $A_{n 1}^{(1)}$,

$$
+\rho n \frac{c_{y}}{c} \operatorname{sh} \xi_{1}\left[\left(\frac{c}{R_{1}}\right)^{2} c I_{1 n}-c \operatorname{ch} \xi_{1} I_{2 n}\right]
$$

As multiplier of $B_{n 1}^{(1)}$,

$$
-\rho n \frac{c_{x}}{c}\left[\left(\frac{c}{R_{1}}\right)^{2} c L_{3 n}-c \operatorname{ch} \xi_{1} L_{4 n}\right]-\rho n \frac{c_{x}}{c}\left[\left(\frac{c}{R_{1}}\right)^{2} c I_{3 n}-c \operatorname{ch} \xi_{1} I_{4 n}\right]\left(\operatorname{ch} \xi_{1}\right)
$$

As multiplier of $\left(E_{n 1} / D_{n 1}\right) A_{n 1}^{(1)}$,

$$
+\rho \frac{c_{y}}{c}(n c)\left[\left(\frac{c}{R_{1}}\right)^{2} L_{3 n}-\operatorname{ch} \xi_{1} L_{4 n}+\operatorname{ch} \xi_{1}\left\{\left(\frac{c}{R_{1}}\right)^{2} I_{3 n}-\operatorname{ch} \xi_{1} I_{4 n}\right\}\right]
$$

and, as pultiplier of $\left(E_{n 1} / D_{n 1}\right) B_{n 1}^{(1)}$,

$$
n c_{x} \operatorname{sh} \xi_{1}\left[\left(\frac{c}{R_{1}}\right)^{2} I_{1 n}-\operatorname{ch} \xi_{1} I_{2 n}\right]
$$

(b) For F_{y} it is made up of aggregate of terms of following three kinds;

As multiplier of $A_{n_{1}}^{(1)}$,

$$
-\rho\left(\frac{c_{x}}{c}\right)\left(\frac{c^{2} n}{R_{1}}\right)\left[I_{1 n}+\operatorname{ch} \xi_{1} J_{2 n}\right]
$$

As multiplier to $B_{n 1}^{(1)}$,

$$
+\rho \frac{c_{y}}{c} \operatorname{sh} \xi_{1}\left(\frac{n c^{2}}{R_{1}}\right) J_{1 n}
$$

Lastly, as multiplier to $A_{n 1}^{(1)}$,

$$
-\rho \frac{c_{x}}{c} \operatorname{sh} \xi_{1}\left[n \frac{E_{n 1}}{D_{n 1}}\right]\left(\frac{c^{2}}{R_{1}}\right) J_{1 n}
$$

(E) Values of c_{x}, c_{y} and Ω.

As we see, by referring to Figs. 1 and 2, and by geometrical consideration, we have following expressions for c_{x}, c_{y} and Ω. The coordinates of origin of

On Vibration of \mathfrak{q} wo Circular Cylinders, which are Immersed in a Water Region-III
frame of axes (at time t), as referred to initial frame of axes (at time $t=0$), are given by

$$
\begin{aligned}
& \alpha_{x}=H_{1}+a_{1} \cos \beta_{1}-\left|E_{1}\right| \cos \mu \\
& \alpha_{y}=a_{1} \sin \beta_{1}-\left|E_{1}\right| \sin \mu
\end{aligned}
$$

in which we have

$$
\tan \mu=\frac{a_{1} \sin \beta_{1}}{D+a_{1} \cos \beta_{1}}
$$

(as we are taking the case of $a_{2} \equiv 0$).
From these values of α_{x}, α_{y} we obtain, for linear velocity c_{x}, c_{y} of motion of origin of moving axes as referred to initial frame of axes;

$$
c_{x}=\frac{d \alpha_{x}}{d a_{1}} \dot{a}_{1}, \quad c_{y}=\frac{d \alpha_{y}}{d a_{1}} \dot{a}_{1}
$$

in which the differentiation $d / d a_{1}$ is to be understood as the differentiation with respect to the variable a_{1} which are contained both explicitly and implicitly, therein. Moreover, we obtain by differentiation of the eq.

$$
\tan \mu=\frac{a_{1} \sin \beta_{1}}{D+a_{1} \cos \beta_{1}}
$$

the value of Ω (angular velocity of rotation of moving axes, as referred to initial frame of axes),

$$
\begin{aligned}
\Omega & =\frac{d \mu}{d t} \\
& =\dot{a}_{1} \frac{D \sin \beta_{1}}{\left(D+a_{1} \cos \beta_{1}\right)^{2}+\left(a_{1} \sin \beta_{1}\right)^{2}}
\end{aligned}
$$

5. Numerical Example

In order to show us the application of above-mentioned analytical theory, let us take up following cases about relative configurations of two circular cylinders under consideration ;
(1) " A ", $\quad R_{1}=R_{2}=\frac{1}{4} D$
(2) " B ", $\quad R_{1}=\frac{1}{5} D, \quad R_{2}=\frac{2}{5} D$
(3) " $\mathrm{C} ", \quad R_{1}=\frac{1}{6} D, \quad R_{2}=\frac{1}{2} D$

Fig. 4. Configurations of two Circular Cylinders.

For every one of these series, we take $a_{2} \equiv 0, \beta_{1}=\pi / 4$, and make a_{1} vary in five steps such that $a_{1} / R=0,1 / 4,1 / 2,3 / 4$ and 1 . Rough sketch of these three configurations A, B and C at the initial state at which $a_{1}=0, a_{2}=0$ are shown in Fig. 4.

Fundamental factors for our treatments are coefficients $A_{n_{1}}^{(1)}$ and $B_{n 1}^{(1)}$ which appear in infinite series expansion of the solution. Numerical values of these coefficients $A_{n 1}^{(1)}$ and $B_{n 1}^{(1)}$ obtained by numerical estimation are shown in Table 1 and 2, whose general tendency of variation are shown as a graph in Fig. 5.

As to coordinates (α_{x}, α_{y}) of origin of our moving frame of axes, as referred to original coordinate axes, are shown in Fig 6. We could deduce values (c_{x}, c_{y}) of linear velocity of motion of origin of moving axes, by the relation

On Vibration of two Circular Cylinders, which are Immersed in a Water Region-III

Table 1. Values of $a_{n 1}^{(1)}=A_{n 1}^{(1)} /\left[D \dot{a}_{1}\right]$

	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
$A-0$	-0.16578502	+0.04391565	-0.01178075	+0.00315664	-0.00084582
$A-1$	-0.15793956	+0.04163701	-0.01102305	+0.00291826	-0.00077259
$A-2$	-0.15220776	+0.03949451	-0.01034394	+0.00270929	-0.00071198
$A-3$	-0.14590565	+0.03751422	-0.00973239	+0.00252500	-0.00065509
$A-4$	-0.12747997	+0.03538793	-0.00912753	+0.00235166	-0.00060554

Fig. 5. Values of coefficients $A_{n 1}^{(1)}$ and $B_{n 1}^{(1)}$.

Fumiki Kito

Table 2. Values of $b_{n 1}^{(1)}=B_{n 1}^{(1)} /\left[D \dot{a}_{1}\right]$

	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
$A-0$	+0.16578491	-0.04396866	+0.01178074	-0.00315664	+0.00084582
$A-1$	+0.17188157	-0.04531499	+0.01199742	-0.00371622	+0.00084087
$A-2$	+0.17911725	-0.04647658	+0.01217257	-0.00318824	+0.00083506
$A-3$	+0.18459473	-0.04746099	+0.01231305	-0.00319453	+0.00082880
$A-4$	+0.18608650	-0.04789946	+0.01235460	-0.00318310	+0.00088695

Fig. 6. Position of Origin of Moving Axes (Values of $\left.\alpha_{x} / D, \alpha_{y} / D\right)$.

$$
c_{x}=\frac{d \alpha_{x}}{d t}=\frac{d \alpha_{x}}{d a_{1}} \dot{a}_{1}, \quad c_{y}=\frac{d \alpha_{y}}{d t}=\frac{d \alpha_{y}}{d a_{1}} \dot{a}_{1}
$$

Values of angular velocity Ω of frame of moving axes has been obtained, whose

On Vibration of two Circular Cylinders, which are Immersed in a Water Region-III

Fig. 7. Angular Velocity of Rotation Moving Axes. (Values of $\Omega /\left[a_{1} / D\right]$)
values are shown as graph in Fig. 7.
Using the set of values of these numerical factors, we could obtain the value of forces $\left(F_{x}, F_{y}\right)$ exerted by fluid upon the circular cylinders. Summation of infinite series was made for $n=1$ to $n=5$. In what follows, we shall list up the result of numerical estimation for the case of series " A ".
(a) Contribution by the term in $d \phi / d t$:

$$
\begin{align*}
& (A-0) \\
& F_{x}=0.13946223\left[\rho D^{2} \ddot{a}_{1}\right]+0.06558306\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.13998789\left[\rho D^{2} \ddot{a}_{1}\right]-0.0975099\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \tag{A-1}
\end{align*}
$$

$$
\begin{aligned}
& F_{x}=0.14411681\left[\rho D^{2} \ddot{a}_{1}\right]+0.06539150\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.13267401\left[\rho D^{2} \ddot{a}_{1}\right]-0.09703973\left[\rho D\left(\dot{a}_{1}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (A-2) \\
& \quad F_{x}=0.15085330\left[\rho D^{2} \ddot{a}_{1}\right]+0.06577557\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.12818901\left[\rho D^{2} \ddot{a}_{1}\right]-0.09749165\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-3) \\
& \quad F_{x}=0.15652941\left[\rho D^{2} \ddot{a}_{1}\right]+0.06608083\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.12271835\left[\rho D^{2} \ddot{a}_{1}\right]-0.09747292\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-4) \\
& F_{x}=0.15396191\left[\rho D^{2} \ddot{a}_{1}\right]+0.06472541\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.11374446\left[\rho D^{2} \ddot{a}_{1}\right]-0.09587596\left[\rho D\left(\dot{a}_{1}\right)^{2}\right]
\end{aligned}
$$

(b) Contribution by the term in $\left[(\partial \phi / \partial x)^{2}+(\partial \phi \mid \partial y)^{2}\right]$

$$
\begin{aligned}
& (A-0) \\
& F_{x}=-0.00214436\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0 \\
& (A-1) \\
& F_{x}=-0.00182738\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=+0.00000799\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-2) \\
& F_{x}=-0.00186137\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=+0.00004147\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-3) \\
& F_{x}=-0.00188155\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=-0.00004136\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-4) \\
& F_{x}=+0.00156060\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=+0.00003984\left[\rho D\left(\dot{a}_{1}\right)^{2}\right]
\end{aligned}
$$

(c) Contribution by the term in Ω.

$$
\begin{aligned}
& (A-0) \\
& F_{x}=+0.09945096\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=-009946432\left[\rho D\left(\dot{a}_{1}\right)^{2}\right]
\end{aligned}
$$

On Vibration of two Circular Cylinders, which are Immersed in a Water Region-III

$$
\begin{aligned}
& (A-1) \\
& F_{x}=+0.08664210\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=-0.09652688\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-2) \\
& F_{x}=+0.07619551\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=-0.089679112\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-3) \\
& F_{x}=+0.07151467\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=-0.08474334\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-4) \\
& F_{x}=+0.05792686\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=-0.07937163\left[\rho D\left(\dot{a}_{1}\right)^{2}\right]
\end{aligned}
$$

(d) Contribution by the term in $\left(c_{x}, c_{y}\right)$

$$
\begin{aligned}
& (A-0) \\
& F_{x}=-0.00016004\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=+0.00123553\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-1) \\
& F_{x}=-0.00026714\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=+0.00143589\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-2) \\
& F_{x}=+0.00028822\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=+0.00115134\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-3) \\
& F_{x}=+0.00019341\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=+0.00110641\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-4) \\
& F_{x}=+0.00054768\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=+0.00101246\left[\rho D\left(\dot{a}_{1}\right)^{2}\right]
\end{aligned}
$$

(e) The total algebraic sum of the above four items:

$$
\begin{aligned}
& (A-0) \\
& F_{x}=0.13946223\left[\rho D^{2} \ddot{a}_{1}\right]+0.16272962\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.13998789\left[\rho D^{2} \ddot{a}_{1}\right]-0.19573869\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-1) \\
& F_{x}=0.14411681\left[\rho D^{2} \ddot{a}_{1}\right]+0.14993908\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.13267401\left[\rho D^{2} \ddot{a}_{1}\right]-0.19212282\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-2) \\
& F_{x}=0.15085330\left[\rho D^{2} \ddot{a}_{1}\right]+0.14039793\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.12818901\left[\rho D^{2} \ddot{a}_{1}\right]-0.18597795\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-3) \\
& F_{x}=0.15652941\left[\rho D^{2} \ddot{a}_{1}\right]+0.13590736\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.12271835\left[\rho D^{2} \ddot{a}_{1}\right]-0.18115121\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& (A-4) \\
& F_{x}=0.15396191\left[\rho D^{2} \ddot{a}_{1}\right]+0.12476055\left[\rho D\left(\dot{a}_{1}\right)^{2}\right] \\
& F_{y}=0.1137446\left[\rho D^{2} \ddot{a}_{1}\right]-0.17419529\left[\rho D\left(\dot{a}_{1}\right)^{2}\right]
\end{aligned}
$$

It is observed that item (a) (which gives effect of term in $d \phi / d t$), and item (c) which relates to term in Ω, play more important part, while other two items (b) and (d) are of rather minor importance, so far as we are concerned about present range of estimation.

REFERENCE

[1] Kıto, F. (1967): On Vibration of two Circular Cylinders which are immersed in a Water Region, Keio Engineering Reports, 20, No. 77, pp. 27-38.
[2] Kıto, F. (1979): Ditto-II, Keio Engineering Reports, 32, No. 5, pp. 45-56.

