
Title An error recovery method for programming languages without separators between statements
Sub Title
Author Nakanishi, Masakazu

Ono, Yoshio
Publisher 慶応義塾大学工学部

Publication year 1979
Jtitle Keio engineering reports Vol.32, No.1 (1979. 3) ,p.1- 5

JaLC DOI
Abstract A new method to handle syntax errors in the programming languages without separators between

statements is proposed. By using this method, we can minimize the printing of causeless error
messages. It does not backtrack and is suitable for small computers.

Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00320001-

0001

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

KEIO ENGINEERING REPORTS
VOL. 32, NO. 1. pp. 1-5, 1979

AN ERROR RECOVERY METHOD FOR PROGRAMMING
LANGUAGES WITHOUT SEPARATORS

BETWEEN STATEMENTS*

MASAKAZu NAKANISHI AND Yosmo 01rno**

Dept. of Mathematics, Keio University, Hiyoshi, Yokohama 223, Japan

(Received December, 18, J 977)

ABSTRACT

A new method to handle syntax errors in the programming languages without
separators between statements is proposed. By using this method, we can minimize the
printing of causeless error messages. It does not backtrack and is suitable for small
computers.

1. Introduction

When a line-free language such as ALGOL is automatically analyzed by a
processor, it is difficult to define how to omit characters following the token in
which a syntax error is detected. The simplest method is one to omit remaining
characters until a deli mi tor is read. For example, " , ", ") ", " ; ", brackets etc. are
delimitors in ALGOL. Let us consider the following compound statement which
includes two illegal statements.

begin

end

i:=a+bt-:--c;

a: =bxc)

When the error beginning with the character "-:-" in the first statement of the
above compound is detected, "-:- ", " - " and "c" are omitted and the processing
of the first statement is finished. But the processing of this compound is not yet
finished and the remaining statement must be analyzed. The delimitor is used
not only for separating statements but also for signalling an end to omitting
characters when a syntax error is detected. Therefore, the delimitor takes an

* The abstract has been published in Keio Mathematical Seminar Report, 2, 1977. This is
partly supported by The Matsunaga Research Grant.

** Keio Institute of Information Science.

1

MAsi\Ki\ZU N i\Ki\NISlll AND Yos1110 0IINO

important part for the processor.
SIMPL* is a programming language which has no delimitors to separate its

statements. The analyzer can detect the end of a statement by reading the first
token of the next statement. But it cannot simply omit characters if an error is
detected, because there is no delimitor to signify an end to the omitting process.

This paper describes an algorithm to handle syntax errors and to de~ermine

which characters have to be omitted after an error is detected for a programming
language without delimitors. It is a simple algorithm which does not backtrack,
and it is suitable for the SIMPL compiler when used by small computers.

2. Syntax Errors of SIMPL

In the SIMPL compiler, the first token of the next statement is used as the
separator of statements.

IF X=Y THEN

A: =B-C*(D-E+F)/G

H: =X-Y*F

END

In the above example, H and END have the roles of separators. If "+" in the
first assignment statement is missing, i.e., A: =B-C*(D-E F)/G, the compiler
usually stops analyzing at token "F ", but "F" is not the first token of the next
statement. Thus, "F)/G" must be omitted. In the second assignment statement
if a "/" is detected following the "* '', i.e., H: =X-Y*/F, then the "*/F" or the
"/" must be omitted.

A primary is the basic unit in syntax error detection, and the primaries in
SIMPL are shown in the following :

i) a constant or a variable; e.g., 3.14159, VAR.
ii) a subscripted variable ; e. g., A(I + J).

iii) a function designator ; e. g., FUNC(X, Y -Z).
iv) an expression enclosed in parentheses; e.g., (X+ Y -Z).
v) a primary with a partial word designator; e.g., (X+ Y -Z) [15, I+2].

In the last primary, 15 is the starting bit number and I +2 is the length of the
bit string.

The SIMPL syntax errors can be classified as follows:

E 1. The position of a right parenthesis is not correct, or there is no right
parenthesis.

E2. A primary is beginning with a delimitor (or a reserved word).
E 3. A primary is beginning with an operator.
E 4. An element in the argument list is not separated by a comma, or there

is no right parenthesis.

* SIMPL has been designed and implemented at University of Maryland for a tool of
system implementation (BASIL!, et al. 1975).

2

An Error Recovery Method For Programming Languages

Each of the above errors is shown in the following statements respectively.

El. A: =B-C*(D-E F)/G Z: =A+l
A: =B-C*(D-E, F)/G Z: =A+l

E2. A: =B-C* IF X=O THEN
A:=END

E3. A: =B-C*/D
E4. A: =F(A+B,C-D E)

A: =F(A+B, C-D$E)

One way to omit characters is to omit some tokens until a ": =" or any
reserved word is read. However a new and different method is proposed in the
next section to reduce the characters to be omitted by inserting an operator or an
operand into the erroneous expression. It can also prevent to print causeless error
messages.

3. The Algorithm

A routine that classifies the statements in the source program and gives
control to their analyzers is usually called a dispatcher. In this algorithm, the
dispatcher uses a word named SYNERR to indicate that some errors are detected
in a statement. It is set by the codes of the errors and the token which causes
the error, and it is reset before the dispatcher calls each analyzer of a statement.

The names of the rules to handle syntax errors correspond to the classification
of errors de:::cribed in the previous section. If the error El is detected, the rule El
is applied. The symbols r/J and <ft in the following rules are called the imaginative
operand and the imaginative operator respectively. They do not exist in the source
program but are assumed by the processor in order to recover syntax errors. The
imaginative operator can be regarded as the operator with lowest priority.
Rule El:

i) If an identifier or a constant is detected instead of a right parenthesis, the
process of analyzing the expression is repeated. The effect of this action
corresponds to the insertion of an imaginative operator before the identifier
or the constant. Then an error code is set in SYNERR.
Example: A: =B-C*(D-E F)/G is analyzed as if it is A: =B-C*(D
E<PF)/G.

ii) If a delimitor (or a reserved word) is detected, the process of scanning the
expression is ended and an error code is set in SYNERR.
Example: A: =B-C*(D-E IF X=O is analyzed as if it is A:=
B-C*(D-E) IF X=O

iii) ": =" is the only operator which can be detected in El, because the other
operators must be included in the expression which has already been
analyzed. In this case, the scanning of the expression before the " : =" is
ended, an error code is set in SYNERR, and then the expression after the
" : =" is analyzed.
Example: A:=B-(C*(D-E)/G:=G+l is analyzed as if it is A:=B
(C*(D-E)/G) (/J: =G+l.

3

MASAKAZU NAKANISIII AND YosHro OHNO

iv) If a special character (not the operator) is detected, it is removed. Then
an error code is set in SYNERR and the rule El is applied again.
Example: A: =B-C*(D-E, F)/G is analyzed as same as the example of
i) because in the first application of rule El, the comma is removed, and
then in the second application of El, an imaginative operator is assumed
before " F " by i).

Rule E2:
An error code is set in SYNERR. The new token is never read if this error

is detected in the primary analyzer. It means that there exists a primary that
consists of the empty string, or the imaginative operand.

Example: A: =B-C* IF X=O ... is analyzed as if it is A: =B-C*W IF
X=O

Rule E3:
Rule E3 is the same as E2. In this case, an imaginative operand is assumed

between operators.
Example: A: =B-C*/D is analyzed as if it is A: B-C*W/D.

Rule E4:
This is similar to the rule El except for a few points.
i) If an identifier or a constant is detected, a comma is assumed instead of

some blanks. A warning message rather than an error message is printed.
Example: A: =F(A+B,C-D E) is compiled the same as A: =F(A+B,C
-D,E).

ii) If a delimitor is detected, the right parenthesis is assumed. That is, the
primary analyzer ends the scanning of this designator and an error code
is set in SYNERR.
Example: A: =F(A+B, C-0 IF A=B THEN ... is analyzed as if it is
A: =F(A+B,C-D) IF A=B THEN

iii) If a " : =" is detected, the right parenthesis is assumed, and an error code
is set in SYNERR. Then the rule E3 is applied.
Example: A:=F(A+B:=A+lisanalyzed as if it isA:=F(A+B) r/J:
=A+l.

iv) If a special character is detected, it is removed and an error code is set
in SYNERR. Then the rule E4 is applied again.
Example: The last example of the previous section, i.e., A: =F(A+B,
C-D$E), is analyzed as if it is A: F(A + B, C-D, E) because in the second
application of rule E4, a comma is assumed before "E" by i).

The error message is printed when a statement has been completely compiled.
If an error code is set in SYNERR, the message is constructed by the information
in SYNERR. In this algorithm, two or more errors may be detected in a statement.
For A:=B-C*(D-E F:=F+l, the case i) of rule El is applied first and the
statement is analyzed as if it is A: =B-C*(D-E~ F: =F+l. When the second
": =" is encountered in the analysis of this statement, the case ii) of the rule El
is applied. Two error codes are set in SYNERR. The error message is generated
by the several codes included in SYNERR. For the above example, the message
"A right parenthesis is missing in the expression" may be printed. On the other
hand, for A: =B-C*(D-E F) G: =G + 1, "An operator is missing" is printed,
because only the case i) of El has been found.

4

An Error Recovery Method For Programming Languages

The dispatcher may find the statement beginning with ": =" when error codes
have been set in SYNERR during compilation of the last s~atement. This can be
considered the assignment statement with the imaginative operand in the left hand
part to it. Similarly the illegal statement which does no~ begi_n wirh an identifier
nor a reserved word is detected as an error by the dispatcher. The error message
is printed and illegal tokens are omitted until an identifier or a reserved word is
found. While error codes are set in SYNERR, the compiler must be inhibited
from detecting semantic errors in order to suppress inadequate error messages.

4. Conclusion

It is not desirable to have many causeless error messages printed for only one
syntax error. At the present time the 1108 SIMPL compiler prints 6 error messages
for the statement "A: =B+C*(D-E F +G)/2 ". On the other hand, if after
detecting one error and skipping the following tokens, that is to say, not checking
for other errors, often one must recompile ones program many times to finally get
rid of all the errors. This also is undesirable. ("A: =B C*(D-E*F +G) 2" has
two errors which would take two compilations to detect them both.)

There are many reports (e.g., WILCOX, et al. 1976) about error recovery methods
and almost all of them use the backtracking technique. They are often complicated
and use large amounts of memory space and time. In compilers for small com
puters, so much work on recovering errors cannot be spent. Therefore, we cannot
help but to adopt the simple method of error recovery.

This method is now built into the SIMPL implemented on a PDP-11 by K.
MocmzuKI and K. TATSUMI. Total size of the SIMPL processor is about 20K
words, and the error recovery program occupies about 0.5K words in it.

REFERENCES

[1] V. R. BASIL! and A. J. TURNER (1975): SIMPL-T: A Struc'ured Programming Language,
Computer Science Center, University of Maryland, Computer CN-14.1.

[2] T. R. WILCOX, A. M. DA vis ar~d M. H. TINDALL, The Design and Im,!Jlemen!a;ion of a
Table Drit:en, Interactive Diagnostic Programming System, 1976, Communications of
the ACM, 19, 609-616.

5

