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ABSTRACT

The object of this paper is to discuss about the connectivity of a graph G=(X,I') in
relation to its adjacency matrix A.

Proposition 1 and Theorem 1 of this paper provide necessary and sufficient conditions
for a graph G to be strongly and completely connected, respectively. Theorem 2 shows
that there is a critical constant #2—2n+2 for the number of the positive power m, to
judge whether the graph G is completely connected or not.

Thus this paper gives a direct proof of Theorem 2, which is due to WieLanpT (1950)
and later discussed by Horrapay and Varce (1958), Perkins (1961) and DuLmAGE and
MENDELSOHN (1964), on the basis of a new lemma giving a definite insight into the struc-
ture of a completely connected graph.

1. Preliminaey Results

In this paper we consider finite directed graphs which may have some loops.
The notations used in this paper are the same as those used in BERrRGE (1963), for
the most part.

A graph, G=(X, I'), is the pair consisting of the set of points X={xz,, ---, z,}
and the mapping /" from X into X. We definite U as the set of all arcs of the
graph.
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Let us define a;; by
1, if ((l}j, xb) elU,
0, if (xj,xi)_¢ U,

= (1)
and we obtain an nX#zn matrix A=(a;;), which is called the adjacency matrix of the
graph G.

Let E and 1 be the n X » matrix and » vector, respectively, whose every element
is 1 and e; be the »n vector whose i-th element is 1 and the rest are 0.

Thus every vector and matrix we use here is Boolean vector and Boolean
matrix, respectively. The sum and the multiplicity between bectors and matrices,
such as e;+e;, Ae;, A+A, AXA, .-+ means Boolean sum and Boolean multiplicity.

In order to discuss transition aspects among points in our graph, it is con-
venient to represent the points where we are occupying (locating) by means of a
vector. We define a vector y=(yi, - -, y.) as follows: for i=1, ---, » each compo-
nent y; is 1 if we are occupying the point x; and 0 otherwise. We call y the state
vector of the graph. Thus the vector e; is the state vector corresponding one-to-
one to the point z; and we denote this one-to-one correspondence by e;~z;. Similarly
we have a one-to-one correspondence between any subset of X and the sum of state
vectors e;, e.g., {z;, xj -+, xx}~€;+€;+---+e,. Then, Ae; shows the set of all
points where we can go from the point z; through the arc of the graph G in one step.
In general, for y=e;+e;:+ - - - +ey corresponding to the set Y={zu, x, **» T},
A™y shows the set of the points where we can go from a point helonging to the
set Y through the arcs in m steps.

A graph G=(X, ") is said to be strongly comnected if, for any points z;, x;¢€ X,
there is a positive integer m such that /™x;3 x;. Or equivalently, for any e;, e;€ £
there is a positive integer m such that A™e;=e;. Here for n vectors x and y, x=y
means x;=vy; for all i, and otherwise we denote by x*y.

Proposition 1. A graph G is strongly connected if and only if its adjacency
matrix is irveducible.

Proof
Let us assume that A is reducible. Without loss of generality we may con-
sider the case where A is of the form:

{AI:O]
B A,

with the square matrices A, and A,. Then it is obvious that G is not strongly
connected. .

Now let us suppose that G is not strongly connected. We may assume that
there is not a path from z, to z,., Namely,:

an=ai =af =---=afy=---=0 (2)

where @ is the (7,7)-th entry of the matrix A*.
Since

n n-—1
al = kzl len= ’:zjzamakn:O (3
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implies ax@r, =0 for 2<k=<n-—1, for each k at least either a,; or ai, is zero.
Now let us assume that there are g zeros in the s-th column of the matrix A.
By a suitable permutation of the suffices, we have

n—g—1
Pa“ai';---a?flo e 0 ()ﬁ|
ahaf, - a@had. @k 0|
. S . iq
0
(4
1 4)
: ‘n—q—l
a;‘:—u tee a#—lqa;r—lq-l e 1
h(lnl e dﬁq a’l’f‘l:l st Aun D
Let there be g—p zeros in {a¥%, ---,a¥%). By a suitable permutation we have
p n—p
(@ 1-++1 0-+:0)
. : lq
1 (3)
ln—q—l
1
— ann

So, we may assume from the beginning that A=(«;;) is of this form.
Then, since

noon n p

n
ay = Z aRan= Z Z A iQrn = Z Z an@uin=0,
k=1 k=10=1 k=gl (=1

and a,;=1 (j=2,---,p) and @;=1 (i=¢+1,---,n—1), it turns out that a@;; must
be zero for 2<i=p, g+1=j=n—1, that is '

p—1 n—q
A=(ay, 11 0---0---0 )
. )1)
0---0
o| [
1 .
. .
: !n~q-1
11l
Ay )
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Since ¢l = Y, @lu@in@na=0, ay=1 (k=2,---,p) and @u,=1 (m=q+1, -, n~1),

k.l1.m.
if a;;=1 for some i,j (g+1=j=n—1,p+1=<i=gq) then a,;=0 for all s (2=s=p).
Accordingly, for example, if @p:;,-1=1 by the permutation (p+1,q), we have

n—g+1

—

Cay, 11 0420 0---0

b

0 00| g

10 ) (7)

1

Ann

-

Repeating in the same manner, we finally obtain

r

~

(a; 1+.-»1 0---0---0)

(8)

1
@nn |

where r—1=s (p+1=r=qg+1, p=s=gq), which shows that A is reducible. Q.E.D.

A graph G is said to be completely conmnected if there exists a positive integer
m such that A"=E.

For a completely connected graph G, if & is the length of a circuit (&, - - -, x;,),
then A*e;=ze; (j=1,---, k).

2. Main Results

Theorem 1. A Graph G is completely conmected if and only if the following
two conditions are satisficd.
(1) G is strongly connected.
(ii) The greatest common measure of lengths of all elementary circuits of G
is 1.
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Proof

Necessity: It is clear that a completely connected graph is strongly connected.
By the strong connectivity of the graph, it is clear that the graph has at least one
circuit. Let Ci,Cs, ---,Cp, be all elementary circuits of the graph G with length
N1, Ma, + + +, Mp, Tespectively. Now we suppose that the greatest common divisor ¢ of
Ny, Ma, + -+, Ny 1S greater than 1. Then for every » and e;e £, if A"e;=e; then A™+e;
*e; must hold.

For, if A"e;=e; then r must be represented by the sum of #; i.e. there are

»
non-negative integers a; (i=1,---,p) such that »= )] a;n;,. Therefore, if A’e;=e;
=1

and A""'e;=e;, there must be @; and 0; such that

D P
r= ), an;, r+1= 7 bn;. (9)
i=1 i=1
Since G.C.M. (n,n,, « -+, np)=q, there are some positive integers # and » such that

r=uq and r+1=vq, and so (v—u)g=1. In order to satisfy this equation, ¢ must
be 1. This contradicts the assumption that q is greater than 1. Therefore, if A"e;=
e; then A""'e;>e; for every r.

On the other hand, for a strongly connected graph G, A"e;=1 implies A" 'e;=1
for any 7.

From these facts, we know that there is not a positive integer m such that
A™e;=1. This contradicts the assumption that the graph is completely connected.
Thus, it is concluded that G.C.M. (#,, 7z, «+ -, ny)=1.

Sufficiency of the condition of Theorem 1 will be evident from the proof of
Theorem 2. It should be noted that in the proof of Theorem 2, we will exclusively
use the necessity of the condition of Theorem 1.

Lemma Let G=(X, 1) be a strongly connzcted graph with n vertices. If G has
two circuits C, and C, with length n, and n., respectively, such as G.C.M. (n,, n,)=p,
then all points of the subset of circuit C, consisting of every p-th point of C, can
be reached by at most 2n—(n,—2n.)+nn.p=! steps for any starting point.

Proof

Starting from an arbitrary point xz;€X, we can reach the circuit C, within n—z,
steps. From the circuit C, we can reach circuit C, within #—#, steps, and after
that we can reach C, at every #. step. As G.C.M. (m, n,)=p, and

(n—nz)+m—n)+(mp~' —Dne=2n—(n,—2n) + mna p7" (10

so all points of the subset of circuit C, consisting every p-th point of C, can be
reached within 2n— (s, —2n,) +n,m.p~! steps. Q.E.D.

Theorem 2. If a graph G whose adjacency matrix is A is completely connected,
then there is a positive integer m such that
(i) A™=FE
(i) m=n*—2n+2. (11)
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Proof

From Theorem 1, we may suppose that the graph is strongly connected. More-
over, according to Theorem 1, the existence of circuits C;,C,, - -+, C,, such that G.C.M.
(%5, %3, - -+, m,)=1 is assured. Here, #; is the length of the circuit C,.

Let us choose a subset {C;} of the circuits so that G.C.M. (n,, #, « - -, ) =1 with

the smallest number & We define m to be the smallest number which satisfies
A"=E.

Now let us prove the Theorem for each case of k.

Case 1: k=1 (i.e. the graph has a loop)
Let z; be a point which has a loop. For arbitrary i, there exists an integer s

(0=s=n—1) such that A’e;=e;. Accordingly, since Ae;=e;,
As‘leiéAej:ej—l—Aej
A“‘2ei§Aej+A2ej=e,+Aej+Azej »
........... (12)

n—1
A "le;ze;+Aej+ - -+ A" ej= 3, AMe;=Fe;=1
m=0
Since we take e; arbitrary, A**"*~! must be E. Therefore, m=s+n—1=2(n—1).

Case 2: k=2 (i.e. the graph has two circuits)

Let us denote the two circuits by C,,C, and its lengths by #n;, #,, respectively.
In this case G.C.M. (ny, n:)=1, (n,>n,).

(i) The case when n,=n—2 (na=<n—3).

According to Lemma, we know by at most 2x#—(#, +2n.)+#,%, steps, all points
of the circuit C, are occupied. Therefore, after that, by n—mn, steps all points of
the graph G are occupied. This gives us that

m=2n—n,+2n:)+nmn+n—mn
=3n—2(n,+n,)+n.n,
=3n—2124-3)+(n—2)(n—3)
=n*—2n—4 (13)
(ii) The case when n,=n.

Let us assume C,DC; and the number of points which belong to C, and do not
belong to C; be k. Then for any n (=2)

m=k+m—1)(n—k)=n*—2n+2 (14)

(iii) The case when n,=n—1.
In this case we hav n,=n—2 and

m=(n—1)+(n—2)n—2)=n*—2n+2 (15
Case 3: Lastly we prove the assertion of Theorem 2 for the case when the graph
has neither a loop nor a pair of circuits such that G.C.M. (i, n:)=1: i.e. k=3. To

prove this we firstly show the fact that in such a case #» must be considerably large.
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(i) If k=3, then G.CM. (ny, ny, n)=1, G.CM. (m1,m)=ps, G.C.M. (n,, ns)=ps,
G.C.M. (P2, ps)=1 must hold. Therefore the smallesi triplet which satisfy this con-
dition is #,=2x3, #:=2x5, #;=3x5 and minimum of # is 3x5=15.

(ii) If k=4, then G.C.M. (ny, 1y, My, my)=1, G.C.M. (11, m2)=ps, G.C.M. (ny, 15)=
D5y GC.M. (my, n)=ps, G.C.M. (P2, s, ps)=1 must hold. Moreover, G.C.M. (P, ps)=
qs, GC.M. (P, 0)=qs, G.C.M. (gs,9.)=1 must be satisfied. Consequently, we know
that p.=ca.gsqs, ps=cCsqsrs, pa=caqsts, here c; (i=2,3,4) are some constants, 7; is a
prime such that s+ ps, 7, is a prime such that »,-+p,. It is possible that r;=7,.

(iii) Similarly, generally if G.C.M. (n,,#,, - -+, ne)=1 and G.C.M. (n,, n))=p; (i=
2,-++,k), then p; (i=2;+--, k) must have at least k—2 different primes as divisor.
On the other hand, since G.C.M. of succeeding any two natural number is 1, if we
take #,,#,, - - -, 7 in descending order of its value, 2k=n,=n, 2k—1)<n,<n-2,
2k—2)=n;=n—4, ---, 2=n,=n—2(k—1) must be satisfied.

According to Lemma, we know that by at most 2#—(n,+2n.)+nm,p,~" steps,
circuit C, is occupied every p,-th point. After that, by at most 2n—(n,+2ns)+
mnspy ' steps, circuit C, is occupied by every G.C.M. (ps, ps)=G.C.M. (n,, 15, ns)-th
point. Consequently, by at most

{2%"(”1 +27l2) +7’l1”2p2_1} +--- +{2n—(n1 +2nk) +ﬂ1nkplc_l}
=(k—1)2n—n)—2(n2+ 15+ - - - +0i) F 0 (Bapa F 035 4 +meprt)  (16)

steps every point of circuit C, is occupied, because of the fact that G.C.M. (n,, n.,
-+-,nx)=1. Therefore, after that by at most n—#n, steps, every point of the graph
G is occupied.

Therefore the evaluation of m is now obtained as follows.

(i) For k=3, we have
n—2 n—4

R

m§2(2n-—6)—2(2+4)+n< )+n——6

=%n2+—2~n—32, an
which is smaller than M(n)=n*—2n+2 for n=12.

Now the condition =12 is not restrictive. In fact n,=d,pq, n.=d,pr, ns=dsgs,
where d; are some positive integers and p,q,r and s are primes which are different
with each other. (However, it is possible that 7=s.) Therefore, n=max (n,, #,, 7;)=
max (pg, pr, qgs)=3x5=15.

(ii) For k=4, we have

m=2k—1)n—k)—4((k—1)+(k—2)+---+1)
+2% fp((n—2)+(n—4)+ - - - +(n—2k—2))
=22"%k—1n*+(2k—2+2**R(k—1))n—3k(1—k) (18)
which is smaller than M(n) for »>8k (as shown in Note).
Now the condition #>8% is not restrictive. In fact, as before if k=4, n=3X

5x7=105, and if £=5, n=3x5x7x11=1155, and generally n=3*"1>8k for k=4.
Consequentry, in this case, we have

m=Mmn)=n*—2n+2. Q.E.D.
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3. Applications

We define an nx#xn matrix B=(b;;) to be non-negative (positive) if all of its
elements b;; are non-negative (positive). Now as an immediate consequence of
Theorem 2 we have

Theorem 3. Let B be a non-negative matrvix. If B™ is not positive for m=
1,2, ,n*=2n+2 then B™ is not positive for all positive integer m.

It is remarked that this result is given by WIELANDT (1950) without proof.

Corollary 1. Let B be a non-negative matrix. If B”-*"? is not positive then
there is no positive integer m such that B™ is positive.

Note

(n*—2n+2)— {22 k—1)n*+(2k—2+2**k(k—1))n—3k(1—k)}
=(1-2%k—1)n*—(2k—2**k(k—1))n+3k*—3k+2
=an’—bn+c (19)

is positive for #>ba~! because «,b, and ¢ are positive for k=4 and we have

b (b*—dac) b _ 2k—2"""k(k—1) —B(h—
T < = i) <A@k k(= 1) <8k (20)

as 0<22""(k—1)<% for k=4.
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