慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Complete connectivity of a graph
Sub Title	
Author	竹中，叔子（Takenaka，Yoshiko） Kitagawa，Genshiro
Publisher	慶応義塾大学工学部
Publication year	1978
Jtitle	Keio engineering reports Vol．31，No． 12 （1978．8），p．131－138
JaLC DOI	
Abstract	The object of this paper is to discuss about the connectivity of a graph $\mathrm{G}=(\mathrm{X}, \mathrm{l}$＇）in relation to its adjacency matrix A． Proposition 1 and Theorem 1 of this paper provide necessary and sufficient conditions for a graph G to be strongly and completely connected，respectively．Theorem 2 shows that there is a critical constant $n^{2}-2 n+2$ for the number of the positive power m ，to judge whether the graph G is completely connected or not． Thus this paper gives a direct proof of Theorem 2，which is due to WIELANDT（1950）and later discussed by HOLLADAY and VARGE（1958），PERKINS（1961）and DULMAGE and MENDELSOHN（1964），on the basis of a new lemma giving a definite insight into the structure of a completely connected graph．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00310012－ 0131

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

COMPLETE CONNECTIVITY OF A GRAPH

Yoshiko Takenaka
Dept. of Administration Engineering, Keio University, Yokohama 223, Japan
Genshiro Kitagawa
The Institute of Statistical Mathematics, Tokyo, Japan

(Received March 9, 1978)

Abstract

The object of this paper is to discuss about the connectivity of a graph $G=(X, \Gamma)$ in relation to its adjacency matrix A .

Proposition 1 and Theorem 1 of this paper provide necessary and sufficient conditions for a graph G to be strongly and completely connected, respectively. Theorem 2 shows that there is a critical constant $n^{2}-2 n+2$ for the number of the positive power m, to judge whether the graph G is completely connected or not.

Thus this paper gives a direct proof of Theorem 2, which is due to Wielandt (1950) and later discussed by Holladay and Varge (1958), Perkins (1961) and Dulmage and Mendelsohn (1964), on the basis of a new lemma giving a definite insight into the structure of a completely connected graph.

1. Preliminaey Results

In this paper we consider finite directed graphs which may have some loops. The notations used in this paper are the same as those used in Berge (1963), for the most part.

A graph, $G=\left(X, I^{\prime}\right)$, is the pair consisting of the set of points $X=\left\{x_{1}, \cdots, x_{n}\right\}$ and the mapping I from X into X. We definite U as the set of all arcs of the graph.

Let us define $a_{i j}$ by

$$
a_{i j}= \begin{cases}1, & \text { if }\left(x_{j}, x_{i}\right) \in U, \tag{1}\\ 0, & \text { if }\left(x_{j}, x_{i}\right) \notin U,\end{cases}
$$

and we obtain an $n \times n$ matrix $A=\left(a_{i j}\right)$, which is called the adjacency matrix of the graph G.

Let E and 1 be the $n \times n$ matrix and n vector, respectively, whose every element is 1 and \boldsymbol{e}_{i} be the n vector whose i-th element is 1 and the rest are 0 .

Thus every vector and matrix we use here is Boolean vector and Boolean matrix, respectively. The sum and the multiplicity between bectors and matrices, such as $\boldsymbol{e}_{i}+\boldsymbol{e}_{j}, A \boldsymbol{e}_{j}, A+A, A \times A, \cdots$ means Boolean sum and Boolean multiplicity.

In order to discuss transition aspects among points in our graph, it is convenient to represent the points where we are occupying (locating) by means of a vector. We define a vector $\boldsymbol{y}=\left(y_{1}, \cdots, y_{n}\right)^{t}$ as follows: for $i=1, \cdots, n$ each component y_{i} is 1 if we are occupying the point x_{i} and 0 otherwise. We call \boldsymbol{y} the state vector of the graph. Thus the vector \boldsymbol{e}_{i} is the state vector corresponding one-toone to the point x_{i} and we denote this one-to-one correspondence by $\boldsymbol{e}_{i} \sim x_{i}$. Similarly we have a one-to-one correspondence between any subset of X and the sum of state vectors \boldsymbol{e}_{i}, e.g., $\left\{x_{i}, x_{j}, \cdots, x_{k}\right\} \sim \boldsymbol{e}_{i}+\boldsymbol{e}_{j}+\cdots+\boldsymbol{e}_{k}$. Then, $A \boldsymbol{e}_{i}$ shows the set of all points where we can go from the point x_{i} through the arc of the graph G in one step. In general, for $\boldsymbol{y}=\boldsymbol{e}_{i 1}+\boldsymbol{e}_{i 2}+\cdots+\boldsymbol{e}_{i k}$ corresponding to the set $Y=\left\{x_{i 1}, x_{i 2}, \cdots, x_{i k}\right\}$, $A^{m} \boldsymbol{y}$ shows the set of the points where we can go from a point belonging to the set Y through the arcs in m steps.

A graph $G=\left(X, I^{\prime}\right)$ is said to be strongly connected if, for any points $x_{i}, x_{j} \in X$, there is a positive integer m such that $l^{m l} x_{i} \ni x_{j}$. Or equivalently, for any $\boldsymbol{e}_{i}, \boldsymbol{e}_{j} \in E$ there is a positive integer m such that $A^{n} \boldsymbol{e}_{i} \geqq \boldsymbol{e}_{j}$. Here for n vectors \boldsymbol{x} and $\boldsymbol{y}, \boldsymbol{x} \geqq \boldsymbol{y}$ means $x_{i} \geqq y_{i}$ for all i, and otherwise we denote by $\boldsymbol{x} \nexists \boldsymbol{y}$.

Proposition 1. A graph G is strongly connected if and only if its adjacency matrix is irreducible.

Proof

Let us assume that A is reducible. Without loss of generality we may consider the case where A is of the form:

$$
\left[\begin{array}{c:c}
A_{1} & 0 \\
\hdashline \cdots & \cdots \\
B & A_{2}
\end{array}\right]
$$

with the square matrices A_{1} and A_{2}. Then it is obvious that G is not strongly connected.

Now let us suppose that G is not strongly connected. We may assume that there is not a path from x_{n} to x_{1}. Namely,

$$
\begin{equation*}
a_{1 n}=a_{1 n}^{(2)}=a_{1 n}^{(3)}=\cdots=a_{1 n}^{(k)}=\cdots=0 \tag{2}
\end{equation*}
$$

where $a_{i j}^{(k)}$ is the (i, j)-th entry of the matrix A^{k}.
Since

$$
\begin{equation*}
a_{1 n}^{(2)}=\sum_{k=1}^{n} a_{1 k} a_{k n}=\sum_{k=2}^{n-1} a_{1 k} a_{k n}=0 \tag{3}
\end{equation*}
$$

implies $\alpha_{1 k} a_{k n}=0$ for $2 \leqq k \leqq n-1$, for each k at least either $a_{1 k}$ or $a_{k n}$ is zero.
Now let us assume that there are q zeros in the n-th column of the matrix A. By a suitable permutation of the suffices, we have

Let there be $q-p$ zeros in $\left\{a_{12}^{*}, \cdots, a_{1 q}^{*}\right\}$. By a suitable permutation we have

So, we may assume from the beginning that $A=\left(a_{i j}\right)$ is of this form.
Then, since

$$
a_{1 n}^{(3)}=\sum_{k=1}^{n} a_{1 k}^{(2)} a_{k n}=\sum_{k=1}^{n} \sum_{l=1}^{n} a_{11} a_{l k} a_{k n}=\sum_{k=q+1}^{n} \sum_{l=1}^{p} a_{11} a_{l k} a_{k n}=0,
$$

and $a_{1 j}=1(j=2, \cdots, p)$ and $a_{i n}=1(i=q+1, \cdots, n-1)$, it turns out that $a_{i j}$ must be zero for $2 \leqq i \leqq p, q+1 \leqq j \leqq n-1$, that is

Since $a_{1 n}^{(4)}=\sum_{k .1, m .} a_{1 k} a_{k 1} a_{1 m} a_{m n}=0, a_{1 k}=1(k=2, \cdots, p)$ and $a_{m n}=1(m=q+1, \cdots, n-1)$, if $a_{i j}=1$ for some $i, j(q+1 \leqq j \leqq n-1, p+1 \leqq i \leqq q)$ then $a_{s i}=0$ for all $s(2 \leqq s \leqq p)$. Accordingly, for example, if $a_{p+1 n-1}=1$ by the permutation $(p+1, q)$, we have

Repeating in the same manner, we finally obtain
where $r-1=s(p+1 \leqq r \leqq q+1, p \leqq s \leqq q)$, which shows that A is reducible. Q.E.D.
A graph G is said to be completely connected if there exists a positive integer m such that $A^{m}=\mathrm{E}$.

For a completely connected graph G, if k is the length of a circuit ($x_{i_{1}}, \cdots, x_{i_{k}}$), then $A^{k} \boldsymbol{e}_{j} \geqq \boldsymbol{e}_{j}(j=1, \cdots, k)$.

2. Main Results

Theorem 1. A Graph G is completely connected if and only if the following two conditions are satisficd.
(i) G is strongly connected.
(ii) The greatest common measure of lengths of all elementary circuits of G is 1 .

Proof

Necessity: It is clear that a completely connected graph is strongly connected. By the strong connectivity of the graph, it is clear that the graph has at least one circuit. Let $C_{1}, C_{2}, \cdots, C_{p}$ be all elementary circuits of the graph G with length $n_{1}, n_{2}, \cdots, n_{p}$, respectively. Now we suppose that the greatest common divisor q of $n_{1}, n_{2}, \cdots, n_{p}$ is greater than 1. Then for every r and $\boldsymbol{e}_{i} \in E$, if $A^{r} \boldsymbol{e}_{i} \geqq \boldsymbol{e}_{i}$ then $A^{r+1} \boldsymbol{e}_{i}$ $\notin \boldsymbol{e}_{i}$ must hold.

For, if $A^{\tau} \boldsymbol{e}_{i} \geqq \boldsymbol{e}_{i}$ then r must be represented by the sum of n_{i}, i.e. there are non-negative integers $a_{i}(i=1, \cdots, p)$ such that $r=\sum_{i=1}^{p} a_{i} n_{i}$. Therefore, if $A^{r} \boldsymbol{e}_{i} \geqq \boldsymbol{e}_{i}$ and $A^{r+1} \boldsymbol{e}_{i} \geqq \boldsymbol{e}_{i}$, there must be a_{i} and b_{i} such that

$$
\begin{equation*}
r=\sum_{i=1}^{p} a_{i} n_{i}, \quad r+1=\sum_{i=1}^{p} b_{i} n_{i} . \tag{9}
\end{equation*}
$$

Since G.C.M. $\left(n_{1}, n_{2}, \cdots, n_{p}\right)=q$, there are some positive integers u and v such that $r=u q$ and $r+1=v q$, and so $(v-u) q=1$. In order to satisfy this equation, q must be 1. This contradicts the assumption that q is greater than 1 . Therefore, if $A^{*} \boldsymbol{e}_{i} \geqq$ \boldsymbol{e}_{i} then $A^{r+1} \boldsymbol{e}_{i} \neq \boldsymbol{e}_{i}$ for every r.

On the other hand, for a strongly connected graph $G, A^{r} \boldsymbol{e}_{i}=\mathbf{1}$ implies $A^{r+1} \boldsymbol{e}_{i}=\mathbf{1}$ for any r.

From these facts, we know that there is not a positive integer m such that $A^{m} e_{i}=1$. This contradicts the assumption that the graph is completely connected. Thus, it is concluded that G.C.M. $\left(n_{1}, n_{2}, \cdots, n_{p}\right)=1$.

Sufficiency of the condition of Theorem 1 will be evident from the proof of Theorem 2. It should be noted that in the proof of Theorem 2, we will exclusively use the necessity of the condition of Theorem 1.

Lemma Let $G=\left(X, I^{\prime}\right)$ be a strongly connected graph with n vertices. If G has two circuits C_{1} and C_{2} with length n_{1} aild n_{2}, respectively, such as G.C.M. $\left(n_{1}, n_{2}\right)=p$, then all points of the subset of circuit C_{1} consisting of every p-th point of C_{1} can be reached by at most $2 n-\left(n_{1}-2 n_{2}\right)+n_{1} n_{2} p^{-1}$ steps for any starting point.

Proof

Starting from an arbitrary point $x_{i} \in X$, we can reach the circuit C_{2} within $n-n_{2}$ steps. From the circuit C_{2} we can reach circuit C_{1} within $n-n_{1}$ steps, and after that we can reach C_{1} at every n_{2} step. As G.C.M. $\left(n_{1}, n_{2}\right)=p$, and

$$
\begin{equation*}
\left(n-n_{2}\right)+\left(n-n_{1}\right)+\left(n_{1} p^{-1}-1\right) n_{2}=2 n-\left(n_{1}-2 n_{2}\right)+n_{1} n_{2} p^{-1} \tag{10}
\end{equation*}
$$

so all points of the subset of circuit C_{1} consisting every p-th point of C_{1} can be reached within $2 n-\left(n_{1}-2 n_{2}\right)+n_{1} n_{2} p^{-1}$ steps.
Q.E.D.

Theorem 2. If a graph G whose adjacency matrix is A is completely connected, then there is a positive integer m such that
(i) $A^{m}=E$
(ii) $m \leqq n^{2}-2 n+2$.

Proof

From Theorem 1, we may suppose that the graph is strongly connected. Moreover, according to Theorem 1, the existence of circuits $C_{1}, C_{2}, \cdots, C_{h}$ such that G.C.M. $\left(n_{1}, n_{2}, \cdots, n_{h}\right)=1$ is assured. Here, n_{i} is the length of the circuit C_{i}.

Let us choose a subset $\left\{C_{i}\right\}$ of the circuits so that G.C.M. $\left(n_{1}, n_{2}, \cdots, n_{k}\right)=1$ with the smallest number k. We define m to be the smallest number which satisfies $A^{m}=\mathrm{E}$.

Now let us prove the Theorem for each case of k.
Case 1: $k=1$ (i.e. the graph has a loop)
Let x_{j} be a point which has a loop. For arbitrary i, there exists an integer s ($0 \leqq s \leqq n-1$) such that $A^{s} \boldsymbol{e}_{i} \geqq \boldsymbol{e}_{j}$. Accordingly, since $A \boldsymbol{e}_{j} \geqq \boldsymbol{e}_{j}$,

$$
\begin{align*}
& A^{s-1} \boldsymbol{e}_{i} \geqq A \boldsymbol{e}_{j}=\boldsymbol{e}_{j}+A \boldsymbol{e}_{j} \\
& A^{s-2} \boldsymbol{e}_{i} \geqq A \boldsymbol{e}_{j}+A^{2} \boldsymbol{e}_{j}=\boldsymbol{e}_{j}+A \boldsymbol{e}_{j}+A^{2} \boldsymbol{e}_{j} \\
& \quad \cdots \cdots \cdots \tag{12}\\
& A^{s+n-1} \boldsymbol{e}_{i} \geqq \boldsymbol{e}_{j}+A \boldsymbol{e}_{j}+\cdots+A^{n-1} \boldsymbol{e}_{j}=\sum_{m=0}^{n-1} A^{m} \boldsymbol{e}_{j}=E \boldsymbol{e}_{j}=\mathbf{1}
\end{align*}
$$

Since we take \boldsymbol{e}_{i} arbitrary, $A^{s i n-1}$ must be E. Therefore, $m \leqq s+n-1 \leqq 2(n-1)$.
Case 2: $k=2$ (i.e. the graph has two circuits)
Let us denote the two circuits by C_{1}, C_{2} and its lengths by n_{1}, n_{2}, respectively. In this case G.C.M. $\left(n_{1}, n_{2}\right)=1,\left(n_{1}>n_{2}\right)$.
(i) The case when $n_{1} \leqq n-2\left(n_{2} \leqq n-3\right)$.

According to Lemma, we know by at most $2 n-\left(n_{1}+2 \mathrm{n}_{2}\right)+n_{1} n_{2}$ steps, all points of the circuit C_{1} are occupied. Therefore, after that, by $n-n_{1}$ steps all points of the graph G are occupied. This gives us that

$$
\begin{align*}
m & \leqq 2 n-\left(n_{1}+2 n_{2}\right)+n_{1} n_{2}+n-n_{1} \\
& =3 n-2\left(n_{1}+n_{1}\right)+n_{1} n_{2} \\
& \leqq 3 n-2(2+3)+(n-2)(n-3) \\
& =n^{2}-2 n-4 \tag{13}
\end{align*}
$$

(ii) The case when $n_{1}=n$.

Let us assume $C_{1} \supset C_{2}$ and the number of points which belong to C_{1} and do not belong to C_{2} be k. Then for any $n(\geq 2)$

$$
\begin{equation*}
m \leqq k+(n-1)(n-k) \leqq n^{2}-2 n+2 \tag{14}
\end{equation*}
$$

(iii) The case when $n_{1}=n-1$.

In this case we hav $n_{2} \leqq n-2$ and

$$
\begin{equation*}
m \leqq(n-1)+(n-2)(n-2) \leqq n^{2}-2 n+2 \tag{15}
\end{equation*}
$$

Case 3: Lastly we prove the assertion of Theorem 2 for the case when the graph has neither a loop nor a pair of circuits such that G.C.M. $\left(n_{1}, n_{2}\right)=1$: i.e. $k \geqq 3$. To prove this we firstly show the fact that in such a case n must be considerably large.
(i) If $k=3$, then G.C.M. $\left(n_{1}, n_{2}, n_{3}\right)=1$, G.C.M. $\left(n_{1}, n_{2}\right)=p_{2}$, G.C.M. $\left(n_{1}, n_{3}\right)=p_{3}$, G.C.M. $\left(p_{2}, p_{3}\right)=1$ must hold. Therefore the smalle $3 t$ triplet which satisfy this condition is $n_{1}=2 \times 3, n_{2}=2 \times 5, n_{3}=3 \times 5$ and minimum of n is $3 \times 5=15$.
(ii) If $k=4$, then G.C.M. $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=1$, G.C.M. $\left(n_{1}, n_{2}\right)=p_{2}$, G.C.M. $\left(n_{1}, n_{3}\right)=$ p_{3}, G.C.M. $\left(n_{1}, n_{4}\right)=p_{4}$, G.C.M. $\left(p_{2}, p_{3}, p_{4}\right)=1$ must hold. Moreover, G.C.M. $\left(p_{2}, p_{3}\right)=$ q_{3}, G.C.M. $\left(p_{2}, p_{4}\right)=q_{4}$, G.C.M. $\left(q_{3}, q_{4}\right)=1$ must be satisfied. Consequently, we know that $p_{2}=c_{2} q_{3} q_{4}, p_{3}=c_{3} q_{3} r_{3}, p_{4}=c_{4} q_{4} r_{4}$, here $c_{i}(i=2,3,4)$ are some constants, r_{3} is a prime such that $r_{3}+p_{3}, r_{4}$ is a prime such that $r_{4}+p_{4}$. It is possible that $r_{3}=r_{4}$.
(iii) Similarly, generally if G.C.M. $\left(n_{1}, n_{2}, \cdots, n_{k}\right)=1$ and G.C.M. $\left(n_{1}, n_{i}\right)=p_{i}(i=$ $2, \cdots, k)$, then $p_{i}(i=2, \cdots, k)$ must have at least $k-2$ different primes as divisor. On the other hand, since G.C.M. of succeeding any two natural number is 1 , if we take $n_{1}, n_{2}, \cdots, n_{k}$ in descending order of its value, $2 k \leqq n_{1} \leqq n, 2(k-1) \leqq n_{2} \leqq n-2$, $2(k-2) \leqq n_{3} \leqq n-4, \cdots, 2 \leqq n_{k} \leqq n-2(k-1)$ must be satisfied.

According to Lemma, we know that by at most $2 n-\left(n_{1}+2 n_{2}\right)+n_{1} n_{2} p_{2}^{-1}$ steps, circuit C_{1} is occupied every p_{2}-th point. After that, by at most $2 n-\left(n_{1}+2 n_{3}\right)+$ $n_{1} n_{3} p_{3^{-1}}$ steps, circuit C_{1} is occupied by every G.C.M. $\left(p_{2}, p_{3}\right)=$ G.C.M. $\left(n_{1}, n_{2}, n_{3}\right)$-th point. Consequently, by at most

$$
\begin{align*}
& \left\{2 n-\left(n_{1}+2 n_{2}\right)+n_{1} n_{2} p_{2}^{-1}\right\}+\cdots+\left\{2 n-\left(n_{1}+2 n_{k}\right)+n_{1} n_{k} p_{k}^{-1}\right\} \\
& \quad=(k-1)\left(2 n-n_{1}\right)-2\left(n_{2}+n_{3}+\cdots+n_{k}\right)+n_{1}\left(n_{2} p_{2}^{-1}+n_{3} p_{3}^{-1}+\cdots+n_{k} p_{k}{ }^{-1}\right) \tag{16}
\end{align*}
$$

steps every point of circuit C_{1} is occupied, because of the fact that G.C.M. $\left(n_{1}, n_{2}\right.$, $\left.\cdots, n_{k}\right)=1$. Therefore, after that by at most $n-n_{1}$ steps, every point of the graph G is occupied.

Therefore the evaluation of m is now obtained as follows.
(i) For $k=3$, we have

$$
\begin{align*}
m & \leqq 2(2 n-6)-2(2+4)+n\left(\frac{n-2}{2}+\frac{n-4}{3}\right)+n-6 \\
& =\frac{5}{6} n^{2}+\frac{8}{3} n-32 \tag{17}
\end{align*}
$$

which is smaller than $M(n)=n^{2}-2 n+2$ for $n \geqq 12$.
Now the condition $n \geqq 12$ is not restrictive. In fact $n_{1}=d_{1} p q, n_{2}=d_{2} p r, n_{3}=d_{3} q s$, where d_{i} are some positive integers and p, q, r and s are primes which are different with each other. (However, it is possible that $r=s$.) Therefore, $n \geqq \max \left(n_{1}, n_{2}, n_{3}\right) \geqq$ $\max (p q, p r, q s) \geqq 3 \times 5=15$.
(ii) For $k \geqq 4$, we have

$$
\begin{align*}
m \leqq & 2(k-1)(n-k)-4((k-1)+(k-2)+\cdots+1) \\
& +2^{2-k} n((n-2)+(n-4)+\cdots+(n-2 k-2)) \\
= & 2^{2-k}(k-1) n^{2}+\left(2 k-2+2^{2-k} k(k-1)\right) n-3 k(1-k) \tag{18}
\end{align*}
$$

which is smaller than $M(n)$ for $n>8 k$ (as shown in Note).
Now the condition $n>8 k$ is not restrictive. In fact, as before if $k=4, n \geqq 3 \times$ $5 \times 7=105$, and if $k=5, n \geqq 3 \times 5 \times 7 \times 11=1155$, and generally $n \geqq 3^{k-1}>8 k$ for $k \geqq 4$.

Consequentry, in this case, we have

$$
m \leqq M(n)=n^{2}-2 n+2
$$

Q.E.D.

3. Applications

We define an $n \times n$ matrix $B=\left(b_{i j}\right)$ to be non-negative (positive) if all of its elements $b_{i j}$ are non-negative (positive). Now as an immediate consequence of Theorem 2 we have

Theorem 3. Let B be a non-nogative matrix. If B^{m} is not positive for $m=$ $1,2, \cdots, n^{2}-2 n+2$ then B^{m} is not positive for all positive integer m.

It is remarked that this result is given by Wielandt (1950) without proof.
Corollary 1. Let B be a non-negative matrix. If ${B^{n^{2}-2 n+2}}^{\text {is }}$ not positive then there is no positive integer m such that B^{m} is positive.

Note

$$
\begin{align*}
& \left(n^{2}-2 n+2\right)-\left\{2^{2-k}(k-1) n^{2}+\left(2 k-2+2^{2-k} k(k-1)\right) n-3 k(1-k)\right\} \\
& \quad=\left(1-2^{2-k}(k-1)\right) n^{2}-\left(2 k-2^{2-k} k(k-1)\right) n+3 k^{2}-3 k+2 \\
& \quad \equiv a n^{2}-b n+c \tag{19}
\end{align*}
$$

is positive for $n>b a^{-1}$ because a, b, and c are positive for $k \geqq 4$ and we have

$$
\begin{equation*}
\frac{b+\left(b^{2}-4 a c\right)}{2 a}<\frac{b}{a}=\frac{2 k-2^{2-k} k(k-1)}{1-2^{2-k}(k-1)}<4(2 k-k(k-1))<8 k \tag{20}
\end{equation*}
$$

as $0<2^{2-k}(k-1)<\frac{3}{4}$ for $k \geqq 4$.

Acknowledgment

The authors would like to thank Prof. Hisakazu Nishino of Keio Univ. for his suggestions for refining the proof of (ii) and (iii) for the case of $k=2$ in Theorem 2.

REFERENCES

Berge, C. (1963): Théorie des graphes et ses applications, Dunod, Paris.
Dulmage, A. L. \& Mendelsohn (1964): Gaps in the exponent set of primitive matrices, Illinois J. Math. 8, pp. 642-656.
Harary, F. (1969): Graph theory, Addison-Wesley, Massachusetts.
Holladay, J. C. \& Varge, R.S. (1958): On powers of non-negative matrices, Proc. Amer. Math. Soc. 9, pp. 631-634.
Perkins, P. (1961): A theorem on regular matrices, Pacific J. Math. 11, pp. 1529-1533.
Wielandt, H. (1950): Unzerlegbare, nicht negative matrizen, Math. Zeitsch, 52, pp. 642-648.

