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WEAK AND STRONG CONSISTENCY OF SIMPLE LEAST 
SQUARES ESTIMATORS IN REGRESSION MODELS AND 

UNIFORM STRONG CONSISTENCY OF RESIDUAL 
SAMPLE SPECTRAL DENSITY IN THE ERROR PROCESS 

Y ASUYUKI TOYOOKA 

Dept. of Administration Engineering, Keio University, Yokohama 223, Japan 

(Received Dec. 21, 1977) 

ABSTRACT 

Some conditions for weak and strong consistency of Simple Least Squares Estimators 
for regression parameters are given in the cases where a sequence of the error random 
variables is (i) uncorrelated, (ii) independent, (iii) independentlly identically Normally distri­
buted and (iv) weakly stationary. A set of sufficient conditions for uniform strong consis­
tency of a proposed estimator for the spectral density function of the strictly stationary 
and ergodic error process is given. 

1. Introduction 

In many practical statistical procedures, we often use statistical linear model 
as an approximate model for the statistical phenomenon. Especially in the time 
domain analysis of the model which contains the mean functions (regression func­
tions), we can reduce the original time series to the statistical linear model, Yt = 
fi'xt+Ut,f=l,2, ···,where {yi} is the original time series, fi a pxl vector of un­
known parameters, Xi a px 1 vector of explanatory fixed variates and {ut} the error 
stochastic process which is specified by many probabilistic properties. 

This paper deals with two problems in time and frequency domain analysis of 
the time series. 

The first is to give conditions for weak and strong consistency of Simple Least 
Squares Estimator PT for the regression parameter fi in the case where a sequence 
of error random variables {ut} is ( i) uncorrelated, (ii) independent, (iii) independently 
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identically normally distributed and (iv) weakly stationary. Eicker, F. ([8]) gave a 
necessary and sufficient condition for weak consistency 0£ Pr under the assumption 
that {ut} is a sequence of independently normally distributed random variables. We 
can get the same necessary and sufficient condition under the milder assumption 
of (i) than his. ANDERSON, T.W. and J.B. TAY•LOR ([2]) gave a necessary and suf­
ficient condition for strong consistency of Pr by using a martingale limit theorem 
in the case of (iii). Here we give an another proof of the result and show the 
same result given in the case of (iii) is still valid under the case of (ii) if the 
parameter is one dimensional. While HANNAN, E.J. ([9]) gave a set of sufficient 
conditions for strong consitency of one dimensional Simple Least Squares Estimator 
,Sr in the case of (iv), we show that his result can be naturally extended to the 
multi-dimensional parameter case under the modified so-called Grenander's condition 
for explanatory variates. 

The second is to discuss uniform strong consistency of the estimate of the 
spectral density function. ANDERSON, T.W. ([l]) discussed weak consistency of es­
timates of the spectral density function based on residuals from the mean function 
estimated by least squares without assuming the structure of {ui}. In this paper, 
we give a set of sufficient conditions for uniform strong consistency of the residual 
sample spectral density function under the assumption that {ur} constitutes Auto­
regressive Process of given order. The residual sample spectral density function is 
constructed as a function of Simple Least Squares Estimators for the autoregressive 
parameters by using the information of the estimated residuals. 

2. Conditions for Weak Consistency of PT in the Case of 
Uncorrelated Error Random Variables 

We shall treat the following statistical linear model, 

t=l, 2, ···, (2.1) 

where {yi} is the original time series, fi a p x 1 vector of unknown parameters, Xt 

a pxl vector of explanatory fixed variates and {u1} a sequence of random variables 
specified by some probabilistic properties. In this section, we assume that {ui} is a 

p 

sequence of uncorrelated random variables and A 11 = ~ x1.xt' is a nonsingular matrix. 
t=l 

At first, we shall consider the case where {ui} is a sequence of uncorrelated 
random variables with mean 0 and an equal variance a2

• 

Let us review the following procedure in an ordinary regression analysis. 
(ANDERSON, T.W. and J.B. TAYLOR ([2])) Let, for j=l, 2, ···,P, 

[ 
j9j J [ Xjt J {i= fjC2) ' Xt= X1(2) 
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where f.JC 2) = (191, /32, ... , 191-1, /31+1, ···, (3p)', Xtcz) = (x1t, xu, ···, x1--1t, x1+1t, ···, Xpt)', a~2r = 
(a11r, a12T, ···, a11-1r, a11+1r, ···, alpT), ll12r=(aur, az11" ···, a1-11r, a1+1Jr, ···, ap1rY and 

Then 

where 

allT a12T ... llJ.i-lT alji !T ··· a1pT 

az1T a22T ... 
(1_2}-17' (1_2}117' ··· a?pT 

a_1;11Ta_j:12T ... a_1+11-1ra_jnj11T ... a;+1pT 
. . . . . . . . . . 

ap1T ap2T ... apj-lT apj' IT ... appT 

T 

Y.ir= I: (XJt -aizrA;;~xt)Ut, 
l=l 

T 

S1r= I: (.XJt-aizTAn~'Xt)2 

t=l 

for j = 1, 2, ... 'p. Define r}1 = Sjp, V1 = Y1p/r,;1 and 

r}t =Sp 1 p-1-Sji, p-2, t=2, 3, ... 

Vt= Y1t I p-1- Yit ']J-2 ' t=2, 3, .... 
i'.it 

(2. 2) 

(2. 3) 

Then V1, V2, ··· constitute a sequence of uncorrelated random variables with mean 
zero and variance a2

• And 

T-p+l T 
:l:: r}r=S.ir= :l:: (XJr-ai2rAn~Xt)2 =aJ.ir-a:2TAn~ll21T, (2.4) 
l=l t=l 

which is the reciprocal of the (j,j)-th element of A].1
• From the above discussion, 

T-p+l 

I: rJtVt 

~lr-/31= ,J-~~+ 1 ~ for j =1, 2, ·· ·, P. (2. 5) 

I: r}i 
t=l 

We remark that A].1~0 as T ~oo if and only if every diagonal elements of A]. 1 

converge to 0 as T ~oo from the positive definiteness of A].1 if T?:cp. 
Then we have the next proposition with respect to a necessary and sufficient 

condition for weak consistency of Simple Least Squares Estimator Pr for f.J by using 
the representation of (2.5). 

THEOREM 1. Let {ut} be a sequence of uncorrelated random variables with an 
equal variance a2 and mean zero. And we assume that AP is a nonsingular matrix. 

Then 
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Pr-fJ in probability as T -co if and only if Ar 1-o as T -co. 

Proof. (Sufficiency) A sufficient condition for Pr-fJ in probability as T -co is 

Cov(pr - fJ) = a2Ar1-0 as T -co 

from Chebychev's inequality. So we obtain that if A7. 1-o as T-co then /lr-fJ in 
probability as T -co. 

(Necessity) The contrapositive proposition of the necessary part is the following; 
if there exists an (i, j)-th element such that a;f-\--+O as T-co, then there exists a 
k-th element such that ~kr- 1Sk-\--+O in probability as T-co, where a1:) denotes the 
(i,j)-th element of A;z,1

• 

From the positive definiteness of Ar1 for T?;,p, the above proposition is equiva­
lent to the following; if there exists a (j, j)-th element such that a?f-\--+O as T-co, 
then there exists a j-th element such that ~jr- 19j-\---+O in probability as T-co by 
choosing j as k. This is equivalent to that 
(i) if a?f----+K~O as T-co, then ~jr-/Sj-\--+O in probability as T-co, or 
(ii) if {a?/} is oscilating, then ~jr-(3j-\--+O in probability as T-co. On the other 
hand, from (2.5), 

a .i.i-__ l__ for T2_p, 
T -7'-p+I 

I: r~c 
I=! 

(2. 6) 

so {a?f, T=p,p+l, ···} is a nonincreasing sequence with respect to T for all j= 
1, 2, ···,p. Therefore there does not happen the situation of (ii). 

Now we shall prove only the proposition (i). From (2.5), we shall investigate 
only 

T-p+I 

I: rtjVt 

~jr- 19j=r~~~1-- -\--+O in probability as T-co. 
I: r~j 
t=I 

00 7'-p+l 

Generally if L; r~j <co, then L: f'tjV1 converges in probability as T-co. However 
I=! I=! 

E{,(i:::~)2} =-('~ ::;)'' ={~;;>0. 
t=I I=! /-! 

So we can obtain the desired result. Q.E.D. 

In (2.1), let {ut} be a sequence of uncorrelated random variables with variances 
which are bounded above and away from zero uniformly in t. Then we have the 
next theorem. 

THEOREM 2. Let {u1} be a sequence of uncorrelated random variables with 
mean zero and variance a12 such that O<M1 <at2<M2<co for all t=l, 2, ···, where 
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M1 and M2 are absolute constants and AP be a nonsingular matrix. 
Then 

Pr----+ f3 in probability as T---+oo if and only if Az,1---+0 as T---+oo. 

Proof. By transforming the model (2.1) to 

Yt /3'X1 Ut 
--=-·--+--- t=l,2, ···, 
<1t <1t <1t 

the desired conditions are reduced to those in the case of a sequence of uncorrelated 
random variables with an equal variance. 

Generally if A and B are the same order (p xp) square matrices such that 
A~B and B>O, where A~B denotes the positive semidefiniteness of A-B and 
B>O denotes the positive definiteness of B, then B- 1 ~A- 1 >0. Remark that 

T 1 1 T 1 
Br=~ -

2
- XtXt' ~ -- ~ Xix/= -- Ar> 0 for T~p. 

t=I <1t M2 t=I M2 

By the above discussion, we can get 

So if A7'1---+0 as T---+oo, then H:/---+O as T---+oo. 
Similarly by the fact that B7' 1 ~((l/M1)Ar)- 1 for T~p, if B7'1---+0 as T---+oo, then 

A7'1---+0 as T---+oo. 
Therefore we can get the desired result. Q.E.D. 

3. Conditions for Strong Consistency of Pr in the Case of 
Independent Error Random Variables 

In this section, at first we shall give an another simple proof of ANDERSON, 
T.W. and J.B. TA YLOR's results ([2]) for the necessary and sufficient condition for 
Pr---+ f3 a.e. as T---+ oo without using a martingale limit theorem in the case where 
{ut} is a sequence of independently identically normally distributed random variables. 
In the single parameter case, we shall prove that the necessary and sufficient con-

( 

T )-1 
dition for strong consistency of Sr is t~ xi 2 ----+O as T---+oo without assuming 

identicality and normality of {u1}. This result seems slightly different from Drygas's 
([7]) in the point that we do not assume the boundedness of variances of {ut} away 
from zero. 

Before proving the theorems, we shall refer the following two lemmata in the 
theory of the asymptotic behaviour of a sequence of sum of independent random 
variables without proof. 
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LEMMA 1. Let {ut} be a sequence of independent random variables on a basic 
probability space (Q, ~{, P) such that Eut=O and Eut 2 =at2 <oo for all t=l, 2, ···. Let 

T 

ht( ~O) converge up to oo. Then if 'Lil= 1(at 2/bi 2
) < oo, then Liutf br---+O a.e. as T->oo. 

1~1 

Proof. (See. Brei man, L([ 4 ]) ) 

LEMMA 2. Under the same assumptions on {ut} as those in Lemma 1, if 'Lil=i<Jt 2 

< oo, 'LiT=iUt converges a.e. as T---+oo. 

Proof. (See. Lukacs, E ([12])) 

THEOREM 3. Let AP be nonsingular and {ui} be a sequence of independently 
identically normally distributed random variables. Then 

Pr->{1 a.e. as T---+oo if and only if A7. 1---+0 as T---+oo. 

Proof. (Sufficiency) From the discussion of the section 2, Ar1 ---+ 0 as T---+ oo if 
and only if any diagonal elements of Ar1---+0 as T---+oo, and 

T-p+l 

T-p+I 

I: rjtVt 
s jT- /3 j = --f;~-h-1- ' 

I: rit 
l=l 

)3.1) 

where Li rit is the reciprocal of the (j,j)-th element of Ar 1 and {vt} is a sequence 
t=l 

of independently identically normally distributed random variables with mean zero 
and variance a2

• 

T 

Setting bjr= Li rii in Lemma 1, a sufficient condition for ~jr-f3j---+O a.e. as T---+ 
t=l 

oo for j = 1, 2, · · ·, p is 

On the other hand, 

for each j =l, 2, ···,p. 

CXJ v2. a'!. 
I: -(-i,.z_r __ )2 <oo for j=l,2, ···,p. 
7'=

1 I: rii 
t=I 

00 

( 1 1 ) =l+I: ~--i'-
T=2 I: r~j I: rii 

l=l t=l 

T 

(3. 2) 

(3. 3) 

So the r.h.s. of (3.3) is convergent because Li r}t---+oo as T---+oo for j = 1, 2, · · ·, p. 
t=l 
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Then we can obtain the desired result. 
(Necessity) Similarly to the necessary part of Theorem 1., we can show the 

contrapositive proposition by using Lemma 2. From the representation of (3.1), it 
co 

is only sufficient to prove that for some j=l,2, ···,p, if .L; /ji=K(~O)<CXJ, 
t~t 

7'-fl+l 

I: f'jtVt 

/:J+1 -+L( ~O) a.s. as T-+CXJ. 
I: i'Jt 
t=l 

By Lemma 2, 

I: rJtV1 converges a.s. and consequently converges in L2(!J)-norm. 
t=I 

So 

7'--p+t 

I: rJtVt I: f'jtVt 

)::~+i ---+ J:1 
-- a.s. as 1'-+CXJ and in L2(!J)-norm as T-+CXJ, 

I: r}t I: r}i 
l=l t=l 

while 

Hence we can get the desired result. 

'\' .,2 
L..J I jt 
l=l 

Q.E.D. 

>0. 

In the case of P=l, it is not necessary to assume normality and identicality 
except for independence of a sequence of random variables {ui}. ANDERSON, T. W. 
and J.B. TAYLOR ([2]) showed the sufficient part of the next theorem in the case 
where the error random variable is martingale difference. 

THOREM 4. Let {ut} be a sequence of independent random variables with 
variances at2 bounded above uniformly in t = 1, 2, .. ·. And let assume that there 
exists at least one t such that Xt~O, t=l, 2, ···. 

Then 

Proof. The logical aspect of this theorem is the same as that of Theorem 3. 
(Sufficiency) From the definition of fir, 

7' 

I: XtUt 

13r- 13=~. By using Lemma 1, a sufficient condition for ~r- 13-+0 a.e. as 
I: Xt

2 

l=l 
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T-HXJ is 

C<J 2 I: -- :J}_T__ - .. < 00 

r=1 (± Xt2)
2 

' 
l=l 

(3.4) 

T 

where we consider I: xt 2 as bT in Lemma 1 and use the boundedness above of <lt 2 

t=l 

uniformly in t. From the discussion of the sufficient part in Theorem 3, a sufficient 
1' 

condition for (3.4) is I: xi2--*oo as T--*oo. 
t=l 

(Necessity) We shall prove the contrapositive proposition. By applying Lemma 
= = 1' 

2, if I: Var(xiUt) <M I: xi2 < oo, then I: .rtUt converges a.e., where M is an absolute 
t=l t=l t=l 

constant. 
On the other hand, 

r 
I: XtUt 

This contradicts ~ --*O a.e. as T--*oo. 
I: Xt 2 

t=l 

Q.E.D. 

4. Uniform Strong Consistency of the Sample Spectral Density 
Function Based on the Estimated Residuals 

In this section we shall treat the model (2.1) in the case where the error random 
variable {ut} is a sequence of a weakly stationary stochastic process. 

At first, we shall investigate a set of sufficient conditions for strong consistency 
of Simple Least Squares Estimator Pr for {) and make the estimated residuals ui* 
=yi-'fJ' rXt t=l, 2, ... , T, where PT is a strongly consistent estimator for {) (for 
example Pr). 

Second, under the assumption that {ui} is an Autoregressive Process of given 
order K, we shall estimate the autoregressive parameters by the solutions of the 
system of Normal equations which is constructed by the information of the estimated 
residuals. 

In the last, we shall show that the sample spectral density function which is 
given as the function of these solutions is uniformly strongly consistent for the 
true spectral density function under the some regularity conditions for {ut} and Xt. 

Now let us assume that {ut} is a real valued and weakly stationary stochastic 
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process with mean zero and has a covariance function a( h ), h = 0, ± 1, ± 2, .. · and a 
spectral density function /().). 

Then we can get a set of sufficient conditions for strong consistency of Simple 
Least Squares Estimator Pr for p. In the case of P=l, HANNAN, E.J. ([10]) gave a 
set of sufficient conditions for this. But in the case of P> 1, a set of these condi­
tions is naturally extended under the modified Grenander's condition for the explana­
tory variates. The modified Grenander's condition reduces the multidimensional 
case to the single parameter case, so Hannan's method of proof can be straightfor­
ward applied. 

THEOREM 5. Suppose that the following three conditions hold: 
r 
I: XitXjt 

R.1 For any i,j=l, 2, ... ,p, there exists i~~ ll~:llrllxJllr and we shall put this 

limit as Pih where llxillr=(~ x~i)1
12 

i=l, 2, ... ,p. And R is a nonsingilar 

matrix, where R=[piJ, i,j=l, 2, ... ,p] is a matrix of order pxp. 
1' 1' 

I: X~t I: X~t 
R. 2 0 < limin/ t=T1 ~ ~ limsup t=T1 

" < oo for i = 1, 2, .. ·, p and a> 1/2. 
T_,,,,oo T--:i-oo 

R.3 0~/(J..)<C<oo for -r.:~J..~n:, where C is an absolute constant. 
Then Simple Least Squares Estimator Pr is a strongly consistent estimator for p. 

Proof. From the definition of Pr, 

Pr-P =(~ Xtxt'f

1 

t~ XtUt 

= D·r1(D-:/ £ xtxt' n·:J.1)-
1 

Dr1 £ xtui. 
l=l l=l 

where DT=diag(llx1ll1" llx2ll1" ... , llxvllr). 

By R.1, 

(4. l) 

so, for a sufficient large T, Ki 1 = ( Dr 1 t~ XtXt' Dr 1 )--l is a matrix of which all ele­

ments are bounded. Therefore the structure of the r.h.s. of (4.1) is 

[ 

k(i,j) J T 

-11·-:1_1r_l_I_ ~II ; i, j = 1, 2, ... , p I: XtUt, 
Xi r X1 1' t=J 

(4. 2) 

where k5J·il denotes the (i,j)-th element of a matrix Ki 1
• By R.2, the order of the 

increase of llxillT is the same as that of 11.rEllr for all i,j=l, 2, ... ,p. 
From this fact we may only investigate the asymptotic behaviour of the scalor 

1 T 
statistic T" t~ xiui in the almost everywhere sense. 
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Then the rest of the proof of this theorem is the same as that of HANNAN, 
E.J. ([10]). Q.E.D. 

REMARK 1: In fact, this result is valid in the case where {ut} belongs to a 
class of nonstationary stochastic processes such that 

where c(t) is a bounded function of t and Z(A) is a stochastic process with orthogonal 
increments. But in the case of 

where c(t, J.)EL2(dF(J.)) for each t such that dF(J.)=EldZ().)i",,, we can not prove this 
proposition because of the influence of the non-orthogonality of c(t, J.)dZ(J.). (See. 
PRIESTLEY, M.B. ([13])). 

It is meaningful to investigate a set of sufficient conditions for strong consis­
tency of the residual sample mean because we shall not assume the ergodicity of 
the original error time series {ut}. 

Let define the estimated residuals as 

where PT (of course PT in Theorem 5) is a strongly consistent estimator for fJ. 
1 T 

The residual sample mean f t~ u1* is naturally an estimator for Eut =0. 

1. 
2. 

3. 

LEMMA 3. Suppose that the following three conditions hold: 
All element of Xt=(X1t, xu, ···, Xpt)' are the bounded functions of t. 
for is a strongly consistent estimator for fJ. 

1 T T K 
There exists K>O such that -

2
- I; I; a(t-s) ~ -;;-, where a>O. 

T 1=1 .<=1 T 
Then 

1 T 
L: u/-+0 a.e. as T -+co. 

T t=1 

1 7' 

Proof. The condition 3 for -,I' t~ Ut-+O a.e. as T-+co is given by DooB, J. L. 

([6]). Of course, if /()..) satisfies R.3 in Theorem 5, then the condition 3 is automa-
tically satisfied. ' 

Now 
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1 T - 1 T =-- I; Ut+ (/3-f)r)' -- -- I; Xt. 
T t=1 T t=1 

=o(l) +o(l)O(l) as T--+cxi 

=o(l) as T--+cxi, 

where o(l) denotes lim o(l) =0 a.e .. Q.E.D. 
T~co 

Next we shall consider a set of sufficient conditions for strong consistency of 
the sample autocovariance function based on the estimated residuals for the true 
autocovariance function. The sample autocovariance function based on the estimated 
residuals is defined as 

LEMMA 4. Suppose that the following three conditions hold : 
1. All elements of Xi=(xit, xu, .. ., Xpi)' are the bounded functions of t. 
1. flr is a strongly consistent estimator for f3. 
3. {ui} is an ergodic and strictly stationary process. 

Then 

C*(h)--+a(h) a.e. as T--+cxi for h=O, ±1, ±2, .... 

Proof. By Condition 3, the asymptotic behaviour of C*(h) is equivalent to that 
of 

1 T-h 

C**(h)= T-h t~ ui*ut,1i 

in almost everywhere sense. 
On the other hand, 

1 T-h - -
C**(h) = T-h t~ {Ut +(/3r- /3)'xi}{uu + (/3r-JJ)'Xt, Ji} 

(4. 3) 

By Condition 1 and Condition 2, the asymptotic behaviour of the r.h.s. of (4. 3) is 
equivalent to that of 

] T--h 

C(h)= T- T I; UtUt1-h 
fl 1~1 
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in almost everywhere sense. 
Since C(h)-+a(h) a.e. as T-+oo for lz=0,±1,±2, ... , we obtain 

C*(h)-+a(h) a.e. as T-+oo for h=0,±1,±2,···, 

from the fact of the asymptotic equivalence of C*(h) to C(h). 

Now suppose that {ut} satisfies 

K 

Ui- ~ ajZlt-j=ci(ao=-1), 
j=l 

Q.E.D. 

(4. 4) 

where the innovation {.::i} is a sequence of independently identically distributed ran­
dom variables with mean zero and variance a 2

• Further suppose that the associated 
K 

polynomial ZK - ~ ajZK-j =0 has all roots inside the unit circle in the complex 
}=1 

plane. Under these assumptions, Condition 3 in Lemma 4 is automatically satisfied, 
that is, {ui} is an ergodic, strictly stationary stochastic process. 

We shall consider the estimation procedure for {a1, a2, ···, aK} and a 2 by using 
the information of the estimated residuals {ui*}. The criterion is the least squares 
principle, that is, {a1*, a2*, ···, afr:} is obtained by minimizing 

T { K }2 ~ Ut*- ~ a/ut-j 
t=k+l J=l 

* * * "*2 - 1 T ( * K A * * )2 with respect to {a1 , a2 , ···, aK}, and a - -T- ~ Ut - ~ aj Ut-j 
l=l J=l 

to 

In the following theorem, we shall shall show that 

A ' 8*2 f r(A) = ~--K----2 con verges 
2rr ! " tl ·*eiAj i 

I Li .I 
1J=O I 

f(J.)=- K!_~--- 2-- a.e. as T-+oo in C[-rr,rr], 

2rr I ~ aJeiAJ I 
J=O 

(4. 5) 

(4. 6) 

where C[ -rr, rr] is the space of continuous functions with the topology of uniform 
convergence. 

THEOREM 6. Suppose that the following three conditions hold: 
1. All elements of Xt =(xit, u, · · ·, Xpt)' are the bounded functions of t. 
2. fir is a strongly consistent estimator for fl. 
3. {ui} is the stationary Autoregressive Process of given order where the innova­

tion is a sequence of independently identically distributed random variables. 
Then 

fr(2)~f(A) a.s. as T-+oo in C[-rr,r-]. 
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Proof. The system of normal equations is given by 

1 T ( K ) -T L: Ut*- L: a/ ut-j U*t-k =0, k = 1, 2, .. ., K. 
l=A·+J J=O 

Let 

C* =[C*(h, h'), lz, lz' = 1, 2, ... 'KJ, 

Cn* =[C*(O, 1), C*(O, 2), ···, C*(O, K)]', 

and 

1 T 
where C*(h, h') = --T-- L: u*t-hU*t-h'· Then (4.7) is represented by 

l=K+I 

And let 

C*a* =Co*· 

C=[a([i-j[), i,j=l, 2, ···, KJ, 

Co =[a(l), a(2), · · ·, a(K)]', 

then, in the relation of parameters, 

From Lemma 4, 

C*-+C a.e. as T-+oo 

and 

Co*-+Co a.e. as T-+oo, 

so we obtain 

On the other hand, 

a*-+a a.e. as T-+oo. 

a 2 =Ect2 =E(ut - £ ajUt-.i)
2 

j=I 

K K 

= _L: _L: a Jaia( j -l), 
j=O l=O 

where ao = -1. From ( 4.6), 

1 T K 1 T 1 KK T 

iJ*2=- L: Ut* 2 -2 L: Ctj* - L: U*t-jUt* +- L: L: Ctj*Cti* L: U*t-jU*t-l, 
T t=I j=I T t=l T J=l l=l t=l 
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(4. 7) 

(4. 8) 

(4. 9) 

(4.10) 



YAsUYtJKI TovooKA 

K 

where the first term converges to a(O) a.e. as T---+oo, the second term to -2 L: a p( j) 
j=l 

K K 
a.e. as T---+oo and the last term to L: L: a Ja1a( j-l) a.e. as T---+oo. Then 

J=l /=] 

8*2---+a2 a.e. as T ---+oo. (4.11) 

Because of (4.10), (4.11) and the fact that the associated polynomial of {u,} has 
all roots inside the unit circle, 

P[supl J r(.i.)- /(-1) 1---+0 as T---+oo] 
; 

[ 

I 8* 2 

=P sup: . K i2 
;. I 2 : '\' ~ * i'jl rcL.JaJ e · 

:j=Q I 

~P[sup{ K 1 12l8*2-a2l+a21 x_l '2 
- ; 2;r I: ft/e/.i' 2rr:

1 

I: ft/eU/I 
j=O ; j=O 

---+O as T ---+oo J = 1. Q.E.D. 

REMARK 2. In the case where {ut} is a finite moving average process, that is, 
K 

Ui= L: b.isi- 1 , where {st} is a sequence of independently identically random variables 
i=O 

with mean zero and variance 1, we can show, from the result of CLE\'ENSON, M. 
([5]), that 

~ 1 ]\' 
Ff.(A)=-- I; C*(h)eiJ.11---+f(J.) a.e. as T---+oo m C[ -::, ::] , 

2rr 11 =-K 

where f (i.) = ~ f a(h)ew. 
2;r 11~-K 
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