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WEAK AND STRONG CONSISTENCY OF SIMPLE LEAST
SQUARES ESTIMATORS IN REGRESSION MODELS AND
UNIFORM STRONG CONSISTENCY OF RESIDUAL
SAMPLE SPECTRAL DENSITY IN THE ERROR PROCESS

Yasuyuk! Tovyooka
Dept. of Administration Engineering, Keio University, Yokohama 223, Japan

(Received Dec. 21, 1977)

ABSTRACT

Some conditions for weak and strong consistency of Simple Least Squares Estimators
for regression parameters are given in the cases where a sequence of the error random
variables is (i) uncorrelated, (ii) independent, (iii) independentlly identically Normally distri-
buted and (iv) weakly stationary. A set of sufficient conditions for uniform strong consis-
tency of a proposed estimator for the spectral density function of the strictly stationary
and ergodic error process is given.

1. Introduction

In many practical statistical procedures, we often use statistical linear model
as an approximate model for the statistical phenomenon. Especially in the time
domain analysis of the model which contains the mean functions (regression func-
tions), we can reduce the original time series to the statistical linear model, y,=
B'x.+u,t=1,2,---, where {y,} is the original time series, 8 a px1 vector of un-
known parameters, x, a px1 vector of explanatory fixed variates and {u.} the error
stochastic process which is specified by many probabilistic properties.

This paper deals with two problems in time and frequency domain analysis of
the time series.

The first is to give conditions for weak and strong consistency of Simple Least
Squares Estimator Br for the regression parameter 8 in the case where a sequence
of error random variables {#,} is (i) uncorrelated, (ii) independent, (iii) independently
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identically normally distributed and (iv) weakly stationary. Eicker, F.([8]) gave a
necessary and sufficient condition for weak consistency of Br under the assumption
that {«,} is a sequence of independently normally distributed random variables. We
can get the same necessary and sufficient condition under the milder assumption
of (i) than his. ANDERsoN, T.W. and J.B. TAviLOR ([2]) gave a necessary and suf-
ficient condition for strong consistency of g7 by using a martingale limit theorem
in the case of (iii). Here we give an another proof of the result and show the
same result given in the case of (iii) is still valid under the case of (ii) if the
parameter is one dimensional. While HannaN, E.J. ([9]) gave a set of sufficient
conditions for strong consitency of one dimensional Simple Least Squares Estimator
Er in the case of (iv), we show that his result can be naturally extended to the
multi-dimensional parameter case under the modified so-called Grenander’s condition
for explanatory variates.

The second is to discuss uniform strong consistency of the estimate of the
spectral density function. ANDERsoN, T.W. ([1]) discussed weak consistency of es-
timates of the spectral density function based on residuals from the mean function
estimated by least squares without assuming the structure of {w}. In this paper,
we give a set of sufficient conditions for uniform strong consistency of the residual
sample spectral density function under the assumption that {#,} constitutes Auto-
regressive Process of given order. The residual sample spectral density function is
constructed as a function of Simple Least Squares Estimators for the autoregressive
parameters by using the information of the estimated residuals.

2. Conditions for Weak Consistency of Br in the Case of
Uncorrelated Error Random Variables

We shall treat the following statistical linear model,
n=p'x+u t=1,2,--, (2.1)

where {y,} is the original time series, 8 a px1 vector of unknown parameters, Xx;

a px1 vector of explanatory fixed variates and {«,} a sequence of random variables

specified by some probabilistic properties. In this section, we assume that {#,} is a
¥

sequence of uncorrelated random variables and A,= }; x.x.” is a nonsingular matrix.
t=1

At first, we shall consider the case where {#,} is a sequence of uncorrelated
random variables with mean 0 and an equal variance o>

Let us review the following procedure in an ordinary regression analysis.
(ANDERSON, T.W. and J.B. Tavror ([2))) Let, for j=1,2,---,p,
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Weak and Strong Consistency of Simple Least Squares Estimators

2 . A
where B%® = (81, Bz, ) Bi=1, Bty s Bp)s XD = (X1g, Tat, ** Tjrty Tjiaty s Tpt)y Qror =
(@nr, @jory +, @jjoar, @jjaars 5 Qjpr)y Quar =@y gr, Aajry -+, @j1jr, Ajerjry -+, Apjr)’ and
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Apir Aper - Apjar Apjar - Appr
Then
YjT
r—By=-
ﬂ] ABJ S7T
where

, .

Yir=72 (zj—alpAzrX.)u,, (2.2)
t=1
T

Sir= 2, (@~ @ Azyx.)? (2.3)
t=1

for j=1,2,.--,p. Define #5,=S;p, .= Y,/ and
'/'3‘t=sjl»p—x—sjc:p—z,i=2,3,

Yy P17 Yiipo

Vit

=23,

Then »,, v,, -+ constitute a sequence of uncorrelated random variables with mean
zero and variance ¢%. And

Tir=Sw= 2, (xjr—@rAnyX:)* =a;r — @or Azr@ar, (2.4)
t=1 =

_

which is the reciprocal of the (7,7)-th element of Az;'. From the above discussion,

T-p+1
. Z 7tV
Bir—Bi=75 — for j=1,2,-,p. (2.5)

2 5
t=1

We remark that A;'—0 as T—»co if and only if every diagonal elements of Azl
converge to 0 as T—oo from the positive definiteness of Az! if T=p.

Then we have the next proposition with respect to a necessary and sufficient
condition for weak consistency of Simple Least Squares Estimator 8- for 8 by using
the representation of (2.5).

TuroreMm 1. Let {#;} be a sequence of uncorrelated random variables with an
equal variance ¢? and mean zero. And we assume that A, is a nonsingular matrix.

Then
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Br— B in probability as T—oo if and only if A;'—0 as T—»co.
Proof. (Sufficiency) A sufficient condition for fr—@ in probability as T->co is
Cov(Br— B)=0A;'—0 as T—co

from Chebychev’s inequality. So we obtain that if A;'>0 as 7-»co then Br—p in
probability as T-»oo.

(Necessity) The contrapositive proposition of the necessary part is the following;
if there exists an (4,7)-th element such that @i/ ——0 as T—oo, then there exists a
k-th element such that jir— 80 in probability as T-»oco, where @i/ denotes the
(i,7)-th element of A7

From the positive definiteness of A7' for T=p, the above proposition is equiva-
lent to the following; if there exists a (j,7)-th element such that ¢§/——0 as T—oo,
then there exists a j-th element such that §;,— 3;——0 in probability as T-»co by
choosing j as k. This is equivalent to that
(i) if aff—>K=0 as T—oco, then B;7— 8~ >0 in probability as T-»co, or
(ii) if {a#/} is oscilating, then 3;r—j8;——0 in probability as T—co. On the other
hand, from (2.5),

af=g=— for T=p, (2.6)

so {a¥, T=p,p+1,-} is a nonincreasing sequence with respect to 7' for all j=
1,2,---,p. Therefore there does not happen the situation of (ii).

Now we shall prove only the proposition (i). From (2.5), we shall investigate
only

T—p+1
) TtV
Bir—B;=r5S—— ——0 in probability as T—co. -

2 T
t=1

0o T—p+1
Generally if 3 y3,<oco, then Y y,v. converges in probability as T—oco. However
t=1 t=1

o . -
Z 70t zZ 7'?1‘02 o2
t=1 =1 —
E - =—= A >0
207k (Z/?i) 2 i
t=1 t=1 t=1
So we can obtain the desired result. Q.E.D.

In (2.1), let {#;} be a sequence of uncorrelated random variables with variances
which are bounded above and away from zero uniformly in . Then we have the
next theorem.

THEOREM 2. Let {#) be a sequence of uncorrelated random variables with
mean zero and variance ¢,2 such that 0<M, <o, 2<M,<oco for all t=1,2,---, where
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M, and M, are absolute constants and A, be a nonsingular matrix.
Then

Br— B in probability as T—>co if and only if A;'—0 as T->co.
Proof. By transforming the model (2.1) to

,Z’A":,E/ﬂJr W y—1.9

gy gt gy

ey

the desired conditions are reduced to those in the case of a sequence of uncorrelated
random variables with an equal variance.

Generally if A and B are the same order (pXp) square matrices such that
Az=B and B>0, where A=B denotes the positive semidefiniteness of A—B and
B>0 denotes the positive definiteness of B, then B~!=A-'>0. Remark that

BT:i 1 XX = 1 ixzxt’= 1
Pl M, & M,

Ar>0 for T=p.

By the above discussion, we can get

1o\
(MAT> =B,

So if A7'—0 as T—oo, then B;'—0 as T—oo.

Similarly by the fact that B;'=((1/M,)Ar)~! for T=p, if B;'—0 as T—oo, then
A7'—0 as T—oo.

Therefore we can get the desired result. QED.

3. Conditions for Strong Consistency of ﬁT in the Case of
Independent Error Random Variables

In this section, at first we shall give an another simple proof of ANDERSON,
T.W. and J.B. TavyLor’s results ([2]) for the necessary and sufficient condition for
Br— B ae. as T— co without using a martingale limit theorem in the case where
{us} is a sequence of independently identically normally distributed random variables.
In the single parameter case, we shall pTrove that the necessary and sufficient con-
dition for strong consistency of §r is (Y] x:? ' —0 as T—oo without assuming
identicality and normality of {s«,}. This rgslult seems slightly different from Drygas’s
([7]) in the point that we do not assume the boundedness of variances of {u«,} away
from zero.

Before proving the theorems, we shall refer the following two lemmata in the
theory of the asymptotic behaviour of a sequence of sum of independent random
variables without proof.
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LemmAa 1. Let {#,} be a sequence of independent random variables on a basic
probability space (2,%, P) such that Eu,=0 and Eul=¢*<co for all £=1,2,---. Let

b(=0) converge up to co. Then if X7 ,(¢,%*/02)<oco, then f}ui/bTHO a.e. as T—oo,
7=1

Proof. (See. Breiman, L([4)))

Lemma 2. Under the same assumptions on {#;} as those in Lemma 1, if {20,
<co, 3 I,u, converges a.e. as T—oo,

Proof. (See. Lukacs, E ([12]))

Turorem 3. Let A, be nonsingular and {z,} be a sequence of independently
identically normally distributed random variables. Then

Br—B ae. as T—oo if and only if A;'-0 as T-»co.

Proof. (Sufficiency) From the discussion of the section 2, A;'!—0 as T—oco if
and only if any diagonal elements of A;'—0 as T—oo, and

T—p+1
. 7tV
Bir—Bi=rps1 > )3.1)
167

t=1

T—p+1
where 3, 7% is the reciprocal of the (j,7)-th element of Az! and {;} is a sequence
t=1

of independently identically normally distributed random variables with mean zero
and variance ¢°

T ~
Setting bjr= ), % in Lemma 1, a sufficient condition for 3,7 —p,—0 a.e. as T—
t=1

oo for j=1,2,.-,p is

ST o for j=1,2, - p. (3.2)
o ZT§1>
i=1
On the other hand,
il P 0 1 1 1
P AT =142 T?T(T—l — > -
T:l( T?’t) T=2 Z 7/?1'2 Z Tj',: 7iT
t=1 = =
e 1 1
5 (g ) (3.3
A D 9.

for each j=1,2,---, p.

r
So the r.h.s. of (3.3) is convergent because ] y3,—o0 as T—oo for j=1,2, -, p.
t=1
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Then we can obtain the desired result.
(Necessity) Similarly to the necessary part of Theorem 1., we can show the
contrapositive proposition by using Lemma 2. From the representation of (3.1), it

is only sufficient to prove that for some j=1,2,---,p, if ¥ % =K(x0)<co,
t=1

T—p+1
7t
Tt——:;;-l:l HL(#O) a.s. as T—oo.
2 T
t=1

By Lemma 2,

> yav. converges as. and consequently converges in L.(£)-norm.
t=1

So
T--p+1 o
7t 2 i
T a.s. as Ico and in L,()-norm as T—oo,
2 TR T
t=1 t=1
while
i 2
7l 2
ElE ) =T 50
2T 2 7

Hence we can get the desired result. Q.ED.

In the case of p=1, it is not necessary to assume normality and identicality
except for independence of a sequence of random variables {#;}. ANDERSON, T.W.
and J.B. TavyrLor ([2]) showed the sufficient part of the next theorem in the case
where the error random variable is martingale difference.

THOREM 4. Let {#,} be a sequence of independent random variables with
variances ¢,2 bounded above uniformly in ¢#=1,2,.--. And let assume that there
exists at least one ¢ such that z,x0, £=1,2, ---.

Then

. r -1
Br—p ae. as T—co if and only if <Z xﬂ)#‘*o as T—co.

t=1

Proof. The logical aspect of this theorem is the same as that of Theorem 3.
(Sufficiency) From the definition of ﬁT,

7

Br—p=} . By using Lemma 1, a sufficient condition for fr—j3—0 a.e. as
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T—o0 is

2

i m”T"EZLAi 2" < OO) (3 4)
T=1 2 .
()

where we consider 12@-,2 as by in Lemma 1 and use the boundedness above of ¢
uniformly in ¢. F r[(;r;l the discussion of the sufficient part in Theorem 3, a sufficient
condition for (3.4) is i zP—oo as T—co.

(Necessity) We 5;1;11 prove the contrapositive proposition. By applying Lemma
2, if i}lVar(xtuL)<M E}l x> <oo, then LZTJI x4, converges a.e.,, where M is an absolute

constant.
On the other hand,

o 2 co
> methy zlo®
Elel =l >0,
Yar | (5a)
t=1 =1
T
Z Xl
This contradicts “% —0 a.e. as T—>co. Q.E.D.
2 @t

t

1

4. Uniform Strong Consistency of the Sample Spectral Density
Function Based on the Estimated Residuals

In this section we shall treat the model (2.1) in the case where the error random
variable {«,} is a sequence of a weakly stationary stochastic process.

At first, we shall investigate a set of sufficient conditions for strong consistency
of Simple Least Squares Estimator Br for B and make the estimated residuals u*
=y — ,§’Tx, t=1,2,---, T, where ,§T is a strongly consistent estimator for B (for
example fr).

Second, under the assumption that {«,} is an Autoregressive Process of given
order K, we shall estimate the autoregressive parameters by the solutions of the
system of Normal equations which is constructed by the information of the estimated
residuals.

In the last, we shall show that the sample spectral density function which is
given as the function of these solutions is uniformly strongly consistent for the
true spectral density function under the some regularity conditions for {z,} and x,.

Now let us assume that {#,} is a real valued and weakly stationary stochastic
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process with mean zero and has a covariance function o¢(4), #=0, =1, +2,--- and a
spectral density function f(2).

Then we can get a set of sufficient conditions for strong consistency of Simple
Least Squares Estimator 8r for 8. In the case of p=1, Hannan, EJ. ([10]) gave a
set of sufficient conditions for this. But in the case of p>1, a set of these condi-
tions is naturally extended under the modified Grenander’s condition for the explana-
tory variates. The modified Grenander’s condition reduces the multidimensional
case to the single parameter case, so Hannan’s method of proof can be straightfor-
ward applied.

THroOREM 5. Suppose that the following three conditions hold :

T
Z it jt
R.1 For any i,j=1,2, -, p, there exists lim

=1 — and we shall put this
oo ||@allrllwsile

T 1/2

limit as p;;, where HxiHT:(Z x§t> i=1,2,---,p. And R is a nonsingilar
t=1

matrix, where R=[p;;,¢,j=1,2, ., p] is a matrix of order pxp.

T T
Z x5 Z XT3
R.2 0O<liminf “i— =limsup &kz— <oo for i=1,2,--,p and a>1/2.
Tsoo T Toreo T
R.3 0=fW)<C<oo for —z=1=n, where C is an absolute constant.

Then Simple Least Squares Estimator BT is a strongly consistent estimator for 8.

Proof. From the definition of Ar,

” T -1 T
pr-p=(Zxw) ' 3w
t=1 t=1
T -1 7
=D'T‘(D;1 2 X D;‘) D' Y xuu, 4.1
t=1 i=1
where Dy =diag (|[z:llr, [|%2llz, -+, [|zpl|).
By R.1,

1
—R"' as T—oo,

T
<D;v1 Z x¢x/ D}l>
t=1
T -1
so, for a sufficient large T, KT“:(D;1 > xix) D;‘) is a matrix of which all ele-
t=1
ments are bounded. Therefore the structure of the r.h.s. of (4.1) is
kP .. ] r
e s g =1, 2, e, X0y, 4.2
[ fadiagte 7 b & xan “.2
where k{7 denotes the (i, j)-th element of a matrix K;'. By R.2, the order of the

increase of ||z;||» is the same as that of ||zl for all ¢,7=1,2, .- p.
From this fact we may only investigate the asymptotic behaviour of the scalor

..o 1z .
statistic a 2. xu, in the almost everywhere sense.
=1
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Then the rest of the proof of this theorem is the same as that of HANNAN,
E.J. ([10]). QED.

Rimark 1: In fact, this result is valid in the case where {#,} belongs to a
class of nonstationary stochastic processes such that

u = SK eMe(HdZ (1),

where c¢(¢) is a bounded function of ¢ and Z(4) is a stochastic process with orthogonal
increments. But in the case of

U, = S ee(t, NdZ (2),

-7

where c(¢, 2)e Lo(dF(4)) for each ¢ such that dF(2)=FE|dZ(4)|?, we can not prove this
proposition because of the influence of the non-orthogonality of c¢(¢, )dZ(2). (See.
PriestLEY, M.B. ([13})).

It is meaningful to investigate a set of sufficient conditions for strong consis-
tency of the residual sample mean because we shall not assume the ergodicity of
the original error time series {z,}.

Let define the estimated residuals as

uL*Zyl—B'['/xlyt:1127 ] Ty

where @7 (of course gy in Theorem 5) is a strongly consistent estimator for B-
. 1 Z . .
The residual sample mean T > w,* is naturally an estimator for Eu,=0.
t=1

LeEMMA 3. Suppose that the following three conditions hold:
1. All element of x;=(xy,xa, -+, xp)’ are the bounded functions of #.
2. Br is a strongly consistent estimator for 8.

T T

There exists K>0 such that 71; >, Zfr(t43)§%;, where a>0.
t=1 s=1

Then

,
- 2 w*—0 ae. as T-»oo.
t=1

N

r
Proof. The condition 3 for $ >, u—0 ae. as T—co is given by Doos, J. L.

T =1
(16]). Of course, if f(4) satisfies R.3 in Theorem 5, then the condition 3 is automa-
tically satisfied. .

Now

T

1 g 5
= L; = > (ye— Br'xr)

=1
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1 r - 1 r
= Lt (B—Bn) o 2 x
T t=1 t=1

=0(1)4+0(1)0(1) as T—oo
=0(1) as T—o0,

where o(1) denotes lim o(1)=0 a.e.. Q.E.D.

T—o0

Next we shall consider a set of sufficient conditions for strong consistency of
the sample autocovariance function based on the estimated residuals for the true

autocovariance function. The sample autocovariance function based on the estimated
residuals is defined as

T-h

CHUn=—pL - T o=t = ),

1
where u"T‘:T ; u*.

LEMMA 4. Suppose that the following three conditions hold:

1. All elements of x,=(x, &2, -, )’ are the bounded functions of £
1. Br is a strongly consistent estimator for B.
3.

{u;} is an ergodic and strictly stationary process.
Then

C*¥(h)—o(h) ae. as T—oo for £=0, =1, +2,---.

Proof. By Condition 3, the asymptotic behaviour of C*(%) is equivalent to that
of

1 T-h
C**(h)= T LZI uxul

in almost everywhere sense.
On the other hand,

C**(h)= ’T—l——k El{”t'i‘(.éT*ﬁ)’xz}{%r n +(1§7'—;19)/sz, n}

:ﬁTi}h’{um“h-l—(‘aq‘—ﬂ)/x‘u‘ i +(1§T'ﬁ)’x¢ +nlht
Tz
+(Br— B X Br—B)'x: 1. (4.3)

By Condition 1 and Condition 2, the asymototic behaviour of the r.h.s. of (4.3) is
equivalent to that of

1 Ton
Ch)= T—h r; Uelhs vn
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in almost everywhere sense.
Since C(h)—ao(h) a.e. as T—oo for £=0, +1, +2, .-, we obtain

C*(h)—o(h) a.e. as T—oo for =0, =1, +2, -,

from the fact of the asymptotic equivalence of C*(k) to C(h). Q.E.D.

Now suppose that {«,} satisfies

K
w— Y, ajit-j=elay=—1), 4.4)

Jj=1
where the innovation {¢,} is a sequence of independently identically distributed ran-
dom variables with mean zero and variance % Further suppose that the associated

K
polynomial Z¥— 3" @;Z¥-7=0 has all roots inside the unit circle in the complex
Jj=1
plane. Under these assumptions, Condition 3 in Lemma 4 is automatically satisfied,
that is, {#,} is an ergodic, strictly stationary stochastic process.
We shall consider the estimation procedure for {ai,as, ---,ax} and ¢* by using
the information of the estimated residuals {#,*}. The criterion is the least squares
principle, that is, {&,*, d@.*, .-, @%} is obtained by minimizing

T K 2
2 jut— T oaful (4.5)
t=k+1 Jj=1
1 7 K 2
with respect to {a.*, a.*, ---, a¥}, and &*2:7; Z <u¢*—Z sz*uz’i]) . (4.6)
t=1 Jj=1

In the following theorem, we shall shall show that

P &*2
f”(’{):v\”‘* , converges

2 | 2o @ *etti

1 J=0 i
to
a* , :
fy=—— 3" ae as T—oo in C[—r, 7],
2r| 25 a0t
j=0

where C[—r, ] is the space of continuous functions with the topology of uniform
convergence.

THEOREM 6. Suppose that the following three conditions hold:

1. All elements of x;=(x1, s, -, Tp:) are the bounded functions of ¢

‘éT is a strongly consistent estimator for 8.

3. {u} is the stationary Autoregressive Process of given order where the innova-
tion is a sequence of independently identically distributed random variables.
Then

b

fr(A)—>f(2) a.s. as T—oo in C[—=, x].
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Proof. The system of normal equations is given by

1 Z K
T > (uz*— Z&j*ui“,f) w*_r=0,k=1,2, - K.
(=k+1 i=o

4.7
Let
C*=[C*h, 1), h, W =1,2, -, K,
C*=[C*(0,1),C*0,2), -, C¥(0, K )7,
and
@* =[a,*, o*, -, 42,
where C*(&, h/)z,,l_l éﬂu*t,hu*t_h/. Then (4.7) is represented by
Cra*=C*. (4.8)
And let
C=lo(li—j), 4j=1,2, -, K],
Co=[o(1),0(2), -, 0(K)],
a=[a, a, -, ag],
then, in the relation of parameters,
Ca=C,. 4.9)
From Lemma 4,
C*C ae. as T—co
and
é‘o*aC(, a.e. as T—oo,
so we obtain
a*—a a.e. as T—oo. (4.10)

On the other hand,

K 2
02=Eef=E(ut - a,-ut_j>
J=1
K K .
= Z Z ajalo(]_l))
j=0 =0
where a¢,=—1. From (4.6),
1 T K 1 T 1 K K T
&*2:— Z u,*2—2 Z dj* e Z u*tfjut* + Z Z dj*&L* Z u*t—ju*t—ly
T & =1 T = T j

1l
-
i
—-
-~
I
-

119



Y asuyukl Tovyooka

pie
where the first term converges to ¢(0) a.e. as T—co, the second term to —2 }; ajo(j)
J=1

K K
a.e. as T—oo and the last term to ), ) «@;awe(j—{) a.e. as T—co. Then
j=11=1

d*2—g® ae. as T—co, (4.11)

Because of (4.10), (4.11) and the fact that the associated polynomial of {#«;} has
all roots inside the unit circle,

Plsup|f2() = (R0 as T-»ce]

\ a*? g !
::}’[Sup‘ K 7 K » 0 as YL*CO]
‘ ‘27:32[1*9“]" 27r1 2iaet :
=0 i 1Jj=0
- 22 Y are! 2z 3, agre, 2z )L aet !
J=0 | L J=0 i LJ=0

RemARK 2. In the case where {#,} is a finite moving average process, that is,
K

=3, bje,—;, where {¢} is a sequence of independently identically random variables
Jj=0

with mean zero and variance 1, we can show, from the result of CLEVIENSON, M.
({5]), that

~ Iy
f’;(l):fL > CHhye*"—f(2) a.e. as T—co in C[—x, =],
T h=—K
1 K
where f(/l):Z > a(h)eth.
T he—K
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