慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Convergence of power series solutions of a linear Pfaffian system at an irregular singularity
Sub Title	
Author	渋谷，泰隆（Shibuya，Yasutaka）
Publisher	慶応義塾大学工学部
Publication year	1978
Jtitle	Keio engineering reports Vol．31，No． 7 （1978．3），p．79－86
JaLC DOI	
Abstract	In this paper，we shall prove the existence and uniqueness of a convergent power series solution of a linear Pfaffian system at an irregular singularity．Our method is similar to the method given by W．A．HARRIS，JR．，Y．SIBUYA and L．WEINBERG［2］．We do not utilize the theory of asymptotic solutions．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00310007－ 0079

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたつては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

CONVERGENCE OF POWER SERIES SOLUTIONS OF A LINEAR PFAFFIAN SYSTEM AT AN IRREGULAR SINGULARITY

Yasutaka Sibuya**
School of Math., Univ. of Minnesota, Minneapolis, Minn. 55455, USA

(Received Dec. 12, 1977)

Abstract

In this paper, we shall prove the existence and uniqueness of a convergent power series solution of a linear Pfaffian system at an irregular singularity. Our method is similar to the method given by W.A. Harris, JR., Y. Sibuya and L. Weinberg [2]. We do not utilize the theory of asymptotic solutions.

1. Introduction

We consider two n-by-n matrices $A(x, y)=\sum_{h, k=0}^{\infty} A_{l k} x^{h} y^{k}$ and $B(x, y)=\sum_{h, k=0}^{\infty} B_{h k} x^{h} y^{k}$ whose components are convergent power series in two variables (x, y), where the $A_{h k}$ and $B_{h k}$ are n-by-n (complex) constant matrices. Let p and q be two positive integers, and set $D_{1}=x^{p+1}(\partial / \partial x), D_{2}=y^{q+1}(\hat{\sigma} / \partial y)$, and $V=\boldsymbol{C}^{n} \ll x, y \gg$, where $\boldsymbol{C}^{n} \ll x, y \gg$ is the set of all convergent power series $\sum_{h, k=0}^{\infty} c_{h k} x^{h} y^{k}$ in (x, y) whose coefficients $c_{h k}$ are n dimensional constant vectors.

We introduce in V a structure of a vector space over \boldsymbol{C} in a natural way, and define two linear operators

$$
L(u)=D_{1} u-A(x, y) u \quad \text { and } \quad K(u)=D_{2} u-B(x, y) u, \quad u \in V .
$$

* Visiting Professor of Keio University from July 1977 to August 1977.
** Partially supported by NSF MSC 76-06003 and Department of Mathematics, Faculty of Engineering, Keio University, Japan.

If $A_{00} \in G L(n ; \boldsymbol{C})$ and $B_{00} \in G L(n ; \boldsymbol{C})$, then L and K are injective. The main result of this paper is the following theorem.

Theorem A. Suppose that

$$
\begin{align*}
& A_{00} \in G L(n ; \boldsymbol{C}) \quad \text { and } B_{00} \in G L(n ; \boldsymbol{C}) \text {, and } \tag{i}\\
& L K=K L . \tag{ii}
\end{align*}
$$

Then, for $u \in V$, we have $u \in \operatorname{range}(L)$ if and only if $K(u) \in \operatorname{range}(L)$.

2. An application

As an application, we consider a linear Pfaffian system
(E)

$$
\left\{\begin{array}{l}
D_{1} u=A(x, y) u+f(x, y), \\
D_{2} u=B(x, y) u+g(x, y),
\end{array}\right.
$$

where $f \in V$ and $g \in V$.

Lemma 2.1: Ifaffian system (E) is completely integrable if and only if
(i) $L K=K L$, and (ii) $K(f)=L(g)$

Proor: Pfaffian system (E) is completely integrable i: and only if
(C_{1})

$$
D_{2} A(x, y)+A(x, y) B(x, y)=D_{1} B(x, y)+B(x, y) A(x, y)
$$

and
$\left(\mathrm{C}_{2}\right) \quad A(x, y) g(x, y)+D_{2} f(x, y)=B(x, y) f(x, y)+D_{1} g(x, y)$.
Conditions $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$ can be written as
($\mathrm{C}_{1}{ }^{\prime}$)

$$
K(A)=L(B)
$$

and
($\mathrm{C}_{2}{ }^{\prime}$)

$$
K(f)=L(g)
$$

respectively. Note that

$$
L K(u)=D_{1} D_{2} u-B D_{1} u-A D_{2} u-L(B) u,
$$

and

$$
K L(u)=D_{2} D_{1} u-B D_{1} u-A D_{2} u-K(A) u .
$$

Hence $\left(\mathrm{C}_{1}{ }^{\prime}\right)$ and (i) are equivalent. This completes the proof of Lemma 2.1.
Theorem B: If Pfaffian system (E) is completely integrable, and if $A_{\mathrm{v} \varphi} \in G L(n ; \boldsymbol{C})$ and $B_{00} \in G L(n ; \boldsymbol{C})$, then system (E) has a solution u in V. Moreover, this solution is unique.

Proof: Condition (ii) of Lemma 2.1 implies that $K(f) \in \operatorname{range}(L)$. Therefore, by virtue of Theorem A, it follows from condition (i) of Lemma 2.1 that $f \in \operatorname{range}(L)$. This means that $L(u)=f$ for some $u \in V$. Hence,

$$
L(g)=K(f)=K L(u)=L K(u) .
$$

Since L is injective, we have $K(u)=g$. This proves the existence of a solution u of (E) in V. The uniqueness follows from the injectivity of L and K.

Remark: Theorem B is a special case (i.e. the linear case) of a theorem which was proved by R. Gerard and Y. Sibuya [1; Théorème 3, p. 58]. Their proof was, however, based on the theory of asymptotic solutions and connection problems of nonlinear ordinary differential equations containing parameters at an irregular singular point. (Cf. Y. Sibuya [3].) The proof of Theorem B in this paper is entirely different from their proof.

3. A characterization of range(L)

We shall characterize range (L) in a way similar to the idea given by W.A. Harris, JR., Y. Sibuya and L. Weinberg [2].

Let us fix two positive numbers $\grave{\delta}_{0}$ and $\bar{\delta}$. Set

$$
\mathscr{D}=\left\{y ;|y|<\delta_{0}\right\},
$$

and denote by Ω the set of all mappings from \mathscr{D} to \boldsymbol{C}^{n} which are holomorhic and bounded in \mathscr{D}. For $c \in \Omega$, the notation $|c|$ denotes $\sup _{\mathscr{D}}|c(y)|$. For a power series

$$
\varphi=\sum_{m=0}^{\infty} c_{m} x^{m} \quad\left(c_{m} \in \Omega\right),
$$

we set

$$
\begin{aligned}
& \|\varphi\|_{\bar{o}}=\sum_{m=0}^{\infty}\left|c_{m}\right| \dot{\sigma}^{m}, \\
& \mathscr{B}_{\bar{o}}=\left\{\varphi ; \|\left.\varphi\right|_{i}<+\infty\right\}, \text { and } \\
& \mathscr{B}_{\bar{o}, M}=\left\{x^{M} \varphi ; \varphi \in \mathscr{B}_{\bar{o}}\right\},
\end{aligned}
$$

where M is a positive integer.
Let $A(x, y)$ be the matrix which was given in $\S 1$. Set

$$
A(x, y)=\sum_{m=0}^{\infty} A_{m}(y) x^{m} \text { and }\|A\|_{\delta}=\sum_{m=0}^{\infty}\left|A_{m}\right| \delta^{m},
$$

where $\left|A_{m}\right|=\sup _{\mathscr{\Omega}}\left|A_{m}(y)\right|$. Assume that $\|A\|_{\partial}<+\infty$. Choose M so that

$$
\frac{\|A\|_{\delta}}{\delta^{p} M}<1
$$

where p is the integer which was given in $\S 1$. We define a mapping $A: \mathscr{B}_{\bar{\delta}, M} \rightarrow$ $\mathscr{B}_{\sigma, M}$ by $A(\varphi)(x, y)=A(x, y) \varphi(x, y)$. Then, $\|A(\varphi)\|_{\delta} \leqq\|A\|_{\sigma}\|\varphi\|_{\dot{\sigma}}$.

Let us define a mapping $P: \mathscr{B}_{\delta, M} \rightarrow \mathscr{B}_{\delta, M ; p}$ by

$$
P(\varphi)=\sum_{m=n+p}^{\infty} c_{m} \cdot x^{m},
$$

where

$$
\varphi=\sum_{m}^{\infty} c_{m} \cdot x^{m} .
$$

Then

$$
\|P(\varphi)\|_{\Delta} \leqq\|\varphi\|_{i} .
$$

We also define a mapping $T: \mathscr{\mathcal { B }}_{\delta, M \mid p} \rightarrow \mathcal{B}_{\delta, M}$ by

$$
T(\varphi)=\sum_{m=M}^{\infty} \frac{c_{m}}{m} x^{m}
$$

where

$$
\varphi=\sum_{m=M}^{\infty} c_{m} x^{m \cdot p}
$$

Then

$$
\|T(\varphi)\|_{\dot{\delta}} \leqq \frac{1}{\delta^{p} M}\|\varphi\|_{\delta}
$$

It is easy to prove that

$$
D_{1} T(\varphi)=\varphi \text { for } \varphi \in \mathscr{B}_{\delta, M ; p},
$$

and that

$$
T\left(D_{1} \varphi\right)=\varphi \text { for } \varphi \in \mathscr{B}_{\delta, M} \text { if } D_{1} \varphi \in \mathcal{B}_{\delta, M ; p} .
$$

Since

$$
\|T P A(\varphi)\|_{\delta} \leqq \frac{\|A\|_{\delta}}{\delta^{p} M}\|\varphi\|_{\delta} \quad \text { for } \varphi \in \mathcal{B}_{\delta, M},
$$

the mapping $I-T P A: \mathscr{B}_{\delta, M} \rightarrow \mathscr{B}_{B}$ is an isomorphism, where I is the identity map. Set

$$
\begin{equation*}
\Phi=(I-T P A)^{-1} T P \tag{3.1}
\end{equation*}
$$

Then the mapping $\Phi: \mathscr{B}_{\delta, M} \rightarrow \mathscr{B}_{\delta, M}$ satisfies the identity

$$
\begin{equation*}
L \Phi(\varphi)=\varphi-Q(\varphi) \quad\left(\varphi \in \mathscr{B}_{\delta, M}\right), \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=(I-P)(I+A D) . \tag{3.3}
\end{equation*}
$$

In fact, note that

$$
\begin{gathered}
(I-T P A) \Phi=T P, \\
D_{1}(I-T P A) \Phi(\varphi)=D_{1} \Phi(\varphi)-P A \Phi(\varphi), \text { and } \\
D_{1} T P(\varphi)=P(\varphi) .
\end{gathered}
$$

Hence

$$
D_{1} \Phi(\varphi)=P A \Phi(\varphi)+P(\varphi)
$$

and

$$
L \phi(\varphi)=P A \Phi(\varphi)+P(\varphi)-\Lambda \Phi(\varphi)=\varphi-(I-P)(I+A \phi)(\varphi) .
$$

This proves (3. 2).
Suppose that $\varphi \in \mathscr{B}_{\bar{\sigma}, M}$ and $D_{1} \varphi \in \mathscr{B}_{\bar{\sigma}, M, p}$. Then

$$
\begin{equation*}
\phi L(c)=\varphi . \tag{3.4}
\end{equation*}
$$

In fact,

$$
P\left(D_{1} \varphi\right)=D_{1} \varphi \quad \text { and } \quad T P\left(D_{1} \varphi\right)=\varphi
$$

Hence

$$
\Phi\left(D_{1} \varphi\right)=(I-T P A)^{-1}(\varphi) .
$$

Since

$$
\Phi A(\varphi)=(I-T P A)^{-1} T P A(\varphi),
$$

we have

$$
\Phi L(\varphi)=(I-T P A)^{-1}(I-T P A)(\varphi)=\varphi .
$$

Lemma 3.1: Suppose that $A_{00} \in G L(n ; \boldsymbol{C})$. Then, if

$$
\psi=\sum_{m=M}^{M+p-1} c_{m} x^{m} \in L\left(\mathcal{B}_{i}\right)
$$

it follows that $\psi=0$.
Proof: Let $\psi=L(u)$ for some $u \in \mathscr{B}_{\dot{j}}$. Then $u \in \mathscr{B}_{\overline{0}, M}$ and hence $D_{1} u \in \mathscr{B}_{\delta, M: p}$. Therefore, $\Phi(\phi)=u$. On the other hand, $P(\psi)=0$ and hence $\Phi(\phi)=0$. This proves that

$$
\psi=L(0)=0 .
$$

Lemma 3.2: Suppose that $A_{00} \in G L(n ; \boldsymbol{C})$. Then, for $\varphi \in \mathscr{B}_{\overline{0}, \boldsymbol{M}}$, we have $\varphi \in L\left(\mathscr{B}_{\overline{0}}\right)$ if and only if $Q(\varphi)=0$.

Proof: If $Q(\varphi)=0$, then (3.2) implies that $\varphi=L \Phi(\varphi) \in L\left(\mathcal{B}_{\boldsymbol{o}}\right)$. If $\varphi=L(u)$ for some $u \in \mathscr{B}_{0}$, then

$$
Q(\varphi)=\varphi-L \Phi(\varphi)=L(u-\Phi(\varphi)) \in L\left(\mathscr{B}_{0}\right) .
$$

Hence, by virtue of Lemma 3.1, we have $Q(\varphi)=0$.
Lemma 3.3: Suppose that $A_{00} \in G L(n ; \boldsymbol{C})$. Then, there exists a mapping S : $\mathscr{B}_{\bar{i}}$ $\rightarrow \mathscr{B}_{\text {o }}$ such that

$$
\begin{gather*}
D_{1} S\left(\mathscr{B}_{\hat{\gamma}}\right) \subset \mathscr{B}_{\bar{b}} \tag{i}\\
(I-L S)\left(\mathscr{B}_{\hat{\jmath}}\right) \subset \mathscr{B}_{\hat{j}, M} \tag{ii}
\end{gather*}
$$

Remark: An easy (formal) computation would determine $S(\varphi)$ as a polynomial
in x with coefficients in $!$.

Lemma 3.4: Suppose that $A_{00} \in G L(n ; \boldsymbol{C})$. Then, for $\varphi \in \mathscr{B}_{\hat{i}}$, we have $\varphi \in L\left(\mathscr{B}_{0}\right)$ if and only if

$$
\begin{equation*}
Q(I-L S)(\zeta)=0 \tag{3.5}
\end{equation*}
$$

Proof: Suppose that (3.5) is satisfied. Then $(I-L S)(\underset{S}{ }) \in L\left(\mathscr{B}_{\bar{a}}\right)$, and hence $\varphi \in L\left(\mathscr{G}_{\vec{i}}\right)$. If $\varphi \in L\left(\mathscr{\mathscr { M } _ { n }}\right)$, then $(I-L S)(\mathscr{S}) \in L\left(\mathscr{B}_{\bar{a}}\right)$. Hence, (3.5) must be satisfied.

4. An important lemma.

Throughout this section, we assume that
(ii)

$$
\begin{gather*}
A_{00} \in G L(n ; \boldsymbol{C}) \text { and } B_{00 n} \in G L(n ; \boldsymbol{C}), \text { and } \tag{i}\\
\|A\|_{\dot{\partial}}<+\infty \text { and }\|B\|_{{ }_{\partial}}<+\infty .
\end{gather*}
$$

We also utilize notations and results of $\S 3$.
Lemma 4.1: If $;=\sum_{m=n}^{M+n-1} c_{m} x^{m}$, and if $D_{2} \zeta^{\prime} \in \mathscr{B}_{0}$ and

$$
\begin{equation*}
K\left(\varphi^{\prime}\right) \in L\left(\mathscr{G}_{i}\right), \tag{4.1}
\end{equation*}
$$

then $\zeta^{\prime}=0$.
Proof: Since $K\left(\xi^{\prime}\right) \in \mathcal{B}_{0, M}$ and $A_{00} \in G L(n ; \boldsymbol{C})$, we have

$$
Q K(\psi)=0 .
$$

This means that

$$
\begin{equation*}
Q\left(D_{2} \psi^{\prime}\right)-Q B\left(\dot{\varphi}^{\prime}\right)=0 \tag{4.2}
\end{equation*}
$$

We shall prove first that

$$
\begin{equation*}
Q\left(D_{2} \psi\right)=D_{2} \psi \tag{4.3}
\end{equation*}
$$

Note that $D_{2} \psi=\sum_{m=M}^{M+p-1}\left(D_{2} c_{m}\right) x^{m}$. Hence $P\left(D_{2} \xi^{\prime}\right)=0$. Therefore $\Phi\left(D_{2} \psi^{\prime}\right)=0$, and hence (4.3) follows from (3.3).

By utilizing (4.3), we write (4.2) as

$$
\begin{equation*}
D_{2} \psi=Q B\left(\psi^{\prime}\right) . \tag{4.4}
\end{equation*}
$$

This means that

$$
\begin{equation*}
D_{2} c_{m}={ }_{k:=M}^{M+p-1} \gamma_{m k} c_{k}, \quad m=M, \cdots, M+p-1, \tag{4.5}
\end{equation*}
$$

where the $i_{m i k}$ are n -by-n matrices whose components are in Ω. Set

We shall prove that $\Gamma^{\prime}(0) \in G L(n p ; \boldsymbol{C})$.
The quantities $A, B, L, K, \Phi, Q, \varphi$ etc depend on y. We denote by $A_{0}, B_{0}, L_{0}, K_{v}$, $\phi_{0}, Q_{0}, \varphi_{0}$ etc those quantities at $y=0$. Then,

$$
\begin{aligned}
& K_{0}\left(\varphi_{0}\right)=-B_{0}\left(\varphi_{0}\right), \\
& L_{0}\left(B_{0}\left(\varphi_{0}\right)\right)=B_{0}\left(L_{0}\left(\varphi_{0}\right)\right), \text { or } B_{0}{ }^{-1} L_{0} B_{0}\left(\varphi_{0}\right)=L_{0}\left(\varphi_{0}\right),
\end{aligned}
$$

and

$$
L_{0}\left(\phi_{0}\left(\varphi_{0}\right)=\varphi_{0}-Q_{0}\left(\varphi_{0}\right) .\right.
$$

Hence, if $Q_{0} B_{0}\left(\psi_{0}\right)=0$, we have

$$
\begin{aligned}
& B_{0}\left(\psi_{0}^{\prime}\right)=L_{0} \phi_{0}\left(B_{0}\left(\psi_{\prime_{0}}\right)\right) \text {, or } \\
& \varphi_{0}^{\prime}=B_{0}{ }^{-1} L_{0} B_{0} B_{0}{ }^{-1} \phi_{0} B_{n}\left(\xi_{0}^{\prime}\right)=L_{n} B_{n}{ }^{-1}\left(\phi_{0} B_{n}\left(\xi^{\prime}\right) .\right.
\end{aligned}
$$

This means that

$$
\psi_{10}=L_{0}\left(u_{1}\right),
$$

where

$$
u_{0}=B_{0}{ }^{1} \phi_{0} B_{0}\left(\xi^{\prime}{ }^{\prime}\right)
$$

Since $\phi_{0} L_{0}\left(u_{0}\right)=u_{0}$, we have $\phi_{0}\left(\psi_{0}\right)=u_{0}=0$, and hence $\psi_{0}=0$. This proves that $I^{\prime}(0) \epsilon$ $G L(n p ; \boldsymbol{C})$.

Finally, it follows from (4.5) that $\psi=0$.

5. Proof of Theorem A.

Set $K(u)=L(v)$. Note that

$$
K(I-L S)(u)=L(v-K S(u)),
$$

and hence

$$
\begin{aligned}
K Q(I-L S)(u) & =K(I-L S)(u)-L K D(I-L S)(u) \\
& =L(v-K S(u)-K D(I-L S)(u)) .
\end{aligned}
$$

Therefore,

$$
Q(I-L S)(u)=0 \quad \text { (cf. Lemma 4.1) }
$$

and

$$
u \in L\left(\mathscr{B}_{\bar{i}}\right) \quad \text { (cf. Lemma 3.4). }
$$

Yasutaka Sibuya

This completes the proof of Theorem A. In this argument, we must choose δ_{0} and jo sufficiently small.

REFERENCES

1. Gériris, R. and Subuya, Y. (1977): Étude de certains systèmes de Pfaff au voisinage d'une singularité, C.R. Acad. Sc. Paris, 284, 57-60.
2. Harris, W.A., JR., Sibt'is, Y. and Weinberci, L. (1969): Holomorphic solutions of linear differential systems at singular points, Arch. Rational Mech. Anal. 35, 245-248.
3. Sibuya, Y. (1968): Perturbation of linear ordinary differential equations at irregular singular points, Funkcial. Ekvac. 11, 235-246.
