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ON A DESCRIPTIVE MODEL FOR INFORMATION 
SEEKING IN BAYESIAN DECISION TASK 

TADAAKI FuKUKAWA 

Administration Engineering, Faculty of Engineering 

(Received July 8, 1977) 

ABSTRACT 

This paper presents a model of human information-purchasing behaviour in Bayesian 
decision task. 

In this field, several models have been presented, particularly by EDw ARDS. From the 
results of probability-estimation experiments, EDw ARDS assumed that human underestimate 
the diagnostic value of information, and modified the optimal purchasing strategy of the 
decision task to describe the human behaviour. 

W ALLSTEN and others have reported data on this subject obtained through a series of 
experiments based on the suggestion by EDw ARDS. Comparing the model and the experi­
mental data, the author proposes a modification of the model in mathematical treatments 
and provides a new revised model. 

Validity of this revised model is examined by comparing the model-behaviour and the 
experimental data reported by W ALLSTEN and by others. It is also remarked by the author 
for human in the decision task to overestimate the diagnostic value of information. Final­
ly, some implications of the revised model are mentioned. 

§ 1. Introduction 

The attractiveness of a particular course of action to a decision maker always 
depends on the states of nature. If the outcome resulting from an action depends 
on the prevailing states of nature, it is desirable and mostly possible to reduce the 
risk of the decision by having information about the states of nature prior to his 
terminal decision-making. However, in the most cases, such information is only 
available at the expense of time, effort, and/or money. In this situation, it is not 
reasonable to buy all the information but it is preferable to decide whether or not 
to seek the next one after each observation. Indeed, every real-life system has a 
function of sequential information seeking. 

In mathematical theory of statistics, these situations are formulated in optional 
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stopping and sequential decision model, or in short, Bayesian decision model. In 
these treatments, stopping rules are established so as to maximize expected value3 
of the courses of actions. The expected values are calculated as functions of the 
diagnostic value of information and the observation cost, as well as the payoffs that 
may be incurred as a result of the terminal decision. 

From the Bayesian point of view, EDWARDS (1965) formulated the situation of 
simple dichotomy form and specified the optimal stopping strategy which maximizes 
the expected value. On the other hand, several experimental studies on human 
performance in such information-seeking task were reported (e.g., W ALLSTEN (1968)). 
In these experiments, such values were manipulated as (a) the diagnostic value of 
the information contained in an observa~ion, (b) the prior probabilities of the states 
of nature, (c) the cost of observation and (d) the payoffs associated with the alter­
native decisions. The consequent effect up::m the amount of information purchased 
were measured as the results of experiments. 

However, it is observed that the maximizing expected value model gives some 
deviations from numerous experimental results. The subjects in experiment trend 
to purchase too large or too small amount of information depending upon the task 
condition (SLOVIC and LICHTENSTEIN (1971)). The model should be modified some­
how in order to obtain more adequate values. 

Among many possibilities to interpret the human behaviour and to modify the 
model, following three were attempted by several authors. 
( 1 ) Utility: W ALLSTEN (1968) has assumed a power function for the relation be­
tween utility(u) and value(v). Under the optimal model, the utility function is as­
sumed to be linear in v within the range used. Therefore the subjective probabili­
ties for maximizing subjective expected utility are the same as the Bayesian pro­
babilities for maximizing expected value. However, the expected value model could 
not predict human behaviour. Then he has assumed that the relation is a power 
function of the form u(v)=kv', ~<L 
( 2) Strategies: PITZ et al. (1969) have asserted that subjects adopte different stopp­
ing strategies during the course of the task. Then they have suggested several 
strategies that depend· on another recognizable variables in the decision process. 
The critical-difference strategy specifies the critical value of difference between two 
different types of data for each decision. The fixed-sample-size strategy is assumed 
that subject purchases a fixed number of data following which he makes his deci­
sion. The "world series" strategy specifies the number of events of one kind that 
must occur before a decision is made. 
( 3) Subjective Probability: From the results of posterior probability-estimation 
experiments, EDWARDS (1965) has suggested that subjects misperceive the informa­
tion contained in an observation. He has assumed that the subjects replace Eo(z) 
with Eo(z1) =wEu(z) in the optimal conditions of maximizing the expected value, 
where Eo(z) is the expected value of log-likelihood ratio for an observation under 
the true state O and w is an inefficiency parameter. The value of <v is assumed to 
be between 0 and 1. 

The modified models based on these interpretations were not necessarily given 
any degree of support because of the insufficient description of human behaviour 
(e.g., WALLSTEN (1968), PITZ et al. (1969)). However, EDWARDS' model does not 
satisfy the condition of the expected number of observations given the difference, 
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E(nld), in the data-generating process. Then the author presents a revised model 
in this paper. 

As probability assessment may be an unfamiliar task in real life, subjects do 
not recognize the uncertainty relevant to the situation in terms of probabilities and 
do not become experienced in expressing their own subjective probabilities. A 
numb2r of significant barriers on eliciting subjective probabilities have been re­
ported (CHESLEY (1976)). Then we investigate the amount of information purchased 
by subjects instead of subjective probabilities eliciting from them. Validity of the 
revised model is examined by comparing the model-behaviour and the experimental 
data reported by W ALLSTEN and by others. As a result, the author suggests that 
the condition of w used in the revised model might be greater than 1 in order to 
perform better fit to the experimental results, while Emv ARDS postulated that w<l. 
Finally, some implications of the model are mentioned. 

§ 2. Bayesian Decision Task 

When one is required to make a decision, he frequently has the option of de­
ferring the decision until he has obtained relevant information at some additional 
cost. It makes the decision-making process complicated, since one must weigh the 
relative advantage of the information to be purchased against its cost. When the 
characteristics of the task are well specified, it is possible to obtain an optimal 
stopping strategy that will maximize expected value (EDw ARDS (1965) ). 

Suppose there are two hypothetical states of nature, H1 and H2. If P(H1) is the 
prior probability that H1 is true, and if P(H2) is the prior probability that H2 is 
true, then the ratio P(H1)/P(H2) is called prior odds in favour of H1 and is denoted 
by Qo. 

If P(DIHi) is the probability of getting information with the data, D, given 
the truth of H1, and if P(DIH2) is the probability of the same data given H2, then 
the ratio of P(DIH1)/P(DIH2) is called the likelihood ratio and is represented by L. 
Bayes' theorem provides a simple rule for combining the prior probabilities and the 
likelihood ratios to obtain the posterior probabilities for each hypothesis, P(H1 ID) 
and P(H2ID). The ratio of the two posterior probabilities is known as posterior 
odds and is denoted by D1. The appropriate form of Bayes' theorem is 

( 1) 

In this paper, we will simplify the task conditions in order to characterize the 
difference between theoretical strategy and human behaviour. We assume that the 
hypotheses are binomial distributions and are distinct from the values of the bino­
mial parameter 0. Then each datum comprising information is binary, say red 
event and blue event represented by r and b respectively. The payoffs, reward R 
and fine F, depend only upon whether the choice is correct or incorrect, and not 
upon the particular choice that is made, and the cost per observation, c, is constant 
through information-seeking process. 

Furthermore, we assume the following three symmetry conditions: 
Symmetry condition (1): The probability of observing each event under each hypo-
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thesis is given by 

P(r!H1) =P(b/H2) =Po, 

P(b/H1)=P(r/H2)=l-P11, 

where, without loss of generality, Po>0.5. 
Symmetry condition (2): The prior probability of each hypothesis is equal and then 

!Jo=l. 
Symmetry condition (3): The absolute value of fine is equal to that of reward, 

but the sign is opposite, i.e., F= -R. 
We use the probability of observing re::l event under each hypothesis as the 

binomial parameter of each one. When H1 is true, then 0=01 =P(rllli) =Po and 
when H2 is true, then 0=02=P(r1

1
H2)=l-Po. 

Equation (1) is often used in terms of logarithms. Letting z1 equal to log­
likelihood ratio for the observation of re:l event and z2 equal to log-likelihood ratio 
for the observation of blue event, the expected value of the log-likelihood ratio for 
an observation, E11(z), can easily be calculated: 

Po 1-Po =0 In -~--+(l-0) In 
l-Po Po 

=(20-l)ln --1.!!__. 
l-Po 

When Hi is true, Eo/z)=(2Po-l) ln (Po/(1-Po)), and when H2 is true, Eo
2
(z)= 

-(2Po-l)ln(Po/(l-Po)). Hence we obtain 

Eoi(z) = -Eo/z) =(2Po-1) In 1~0p-; =Z. 

Z can be taken as a measure of the average diagnostic value of an observation. 
As the difference between Z and zero for a task increases, it can be expected that 
the posterior probabilities of the hypotheses will more quickly approach zero and 
one. 

Briefly, the effect of Bayes' theorem is to change the log-odds in favour of 
either hypothesis by a constant amount following a red event observed and by an 
equal but opposite amount following a blue event observed. Hence, the difference, 
d, between the number of blue and red events observed should be the only relevant 
variable in making a decision. The observed sequential effects clearly rule out such 
a model as completely descriptive of behaviour. 

Under these symmetry conditions, the optimal stopping probabilities are the 
same for both Hi and FL. To find the optimal stopping probability, it is appro­
priate to differentiate the expected value equation of the final decision with respect 
to the stopping probability, and set the resulting equation equal to zero. It depends 
only on the ratio V=(R-F)/c and on Z, in terms of the equation 

VZ-2ln(p* /(1-P*))+ (lf P*)-(1/(1-P*)) =0, ( 2 ) 
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where p* equals the optimal stopping probability (EDWARDS (1965), Eq. 18, p. 319). 
The expected number of observations bought, n*, depending on the stopping 

probability is given by following equation (EDWARDS (1965), Eq. 19, p. 320): 

n*Z=(2P*-l)ln(P*/(l-P*)). ( 3 ) 

§ 3. EDWARDS' Modification and A Comment on his Descriptive Model 

Numerous experiments have compared human estimations of Bayesian proba­
bilities with the objective values (SLOVIC and LICHTENSTEIN (1971)). The results 
showed that over a wide range of conditions, subjects underestimated high proba­
bilities and overestimated low probabilities. The term cons_crvative is used to in­
dicate that subjects revise their subjective probabilities in the face of evidence less 
than that prescribed by Bayes' theorem. PHILLIPS and EDw ARDS (1966) have pro­
posed that conservatism results from an inability to make full use of the informa­
tion contained in an observation. They suggested that subjects' performance could 
be described by a modified form of Bayes' theorem (Eq. (1)) in which L was replaced 
by a subjective value L', where L' =L"' and w would usually be less than one. 

EDWARDS (1965) made an assumption that Eo(z) used by subjects in determin­
ing their optimal stopping probabilities are not the same as that used in the equa­
tions for maximizing the expected value, and that the subjects replace Eo(z) with 
E 0(z') =(J)Eo(z) in determining their optimal stopping probabilities, where w is an 
inefficiency parameter and the value of w is assumed to be between 0 and 1. Using 
this assumption, the modified forms of the equations for the subjectively optimal 
stopping probability, Ps', and for the expected number of observations, n./, become 
as follows: 

VwZ-2ln(Ps' /(1-Ps'))+ (l/ps')-(1/(1 ·-Ps')) =0, 

ns'wZ=(2Ps'-l)ln(Ps'/(l-Ps')). 

( 4) 

( 5 ) 

Based on the results of inference experiments, EDWARDS has suggested that 
each subject is characterized by a particular value of w ranging from 0.05 to 0.50; 
0.20 might be a convenient representative value. 

However the Emv ARDS' model does not satisfy the condition of the expected 
number of observations given the difference, d, between two different types of 
data. The condition should be objectively decided by the data-generating process. 
If m is the number of red events and k( =n-m) the number of blue events in a 
particular order in n observations, the stopping rule is defined in terms of absolute 
difference, d( = Im -k i ). 

From the symmetry conditions (1) and (2), we assume that m'?;_k without loss 
of generality. Then the difference d is that d=m-k=2m-n. 

The posterior odds fl n is 

( 6) 

The relation among the critical difference, d*, and the cutoff odds, fl*, for the 
optimal condition (Eq. (2)) is that 
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Q*=P*/(l-P*)=(Po/(1-Po))<l*' ( 7) 

then, 

( 8) 

Scince we assumed Z=(2p0 -l)ln(Po/(l-Po)), the substitution from Eq. (8) into 
Eq. (3) produces: 

* 2d* [- 1-((1-Po)/Por1:t< -1 d* n =---. -----------------.,(!* ----. 
2Po-1 1-((1-Po)/Po)~ _ 2Po-1 

( 9) 

Eq. (9) is the equation for the expected number of observations given the dif­
ference d*, E(nld*), derived from the data-generating process, and the strategy 
specified by Eq. (9) is referred to as the critical-difference strategy in PITZ et al. 
(1969, Eq. (1), p. 3). 

Eq. (9) may be rewritten 

n*=E(nld*)= 2p~~l · [~::~~t~~~~~:J. (10) 

If subject inferes the log-likelihood ratios from Bayes' theorem inefficiently, the 
cutoff posterior odds fJs' for his subjectively optimal condition is 

fJs' =(L"'yts' =Ps'/(1-Ps'), (11) 

and 

Ps' =Po "'ds' /(Po"'ds' +(1-Po)"'<is'). (12) 

Then we substitute the Eq. (12) into Eq. (5) and rewrite as follows: 

201ds' l l-((l-P0)/P11 )'"ds' -, wd/ 
2Po -1 . -f=((i-~-p~)jpJ2~'d--;- _ - 2Po--f · (13) 

While the right hand side of Eq. (13) is the expected number of observations 
given the differences wis' then wns' =E(nlwds'). Without the case w=l, the EDWARDS' 
model does not consist of the relationship between ns' and ds' derived from the 
data-generating process in the decision task. Namely the model does not satisfy 
the condition of the expected number of observations given ds', E(nlds'), derived 
from the binomial distribution, that is ns' =FE(nlds'). 

§ 4. Revised Model 

Now we suppose that a subject is characterized by a w. He cutoff his seeking 
behaviour as follows: 

and 
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where As is the likelihood ratio just large enough to transform his prior odds into 
the upper posterior odds-cutoff, and Bs is the likelihood ratio just small enough to 
transform his prior odds into the lower posterior odds-cutoff. The conditional pro­
bability that he will accept H2 when H1 is correct will be called f3s· Similarly, the 
conditional probability that he will accept Hi when H2 is correct will be called as. 
We assume that he lets 

As =(1- /3s)/as, 

Bs=ps/(1-as). 

However, his strategy seems objectively as follows: 

A' =((l-(3s)/as) 11
"' =As11

"', 

B' =(13s/(l-as))li"' = Bs 11
"'. 

The operating characteristic function to the procedure, L'(fJ), is the probability 
that the sequential process will terminate with the acceptance of Hz when fJ is the 
true parameter. We obtain the approximation formula 

L'(01),___,(l-A')B'/(B' -A'), 

when H1 is true, and 

L'(fh),___,(A' -1)/(A' -B'), 

when Hz is true (WALD (1947), Eq. (3: 43), p. 50). 
Hence we obtain the approximation formula of the expected number of observa­

tions Eo(n). The equation can be written as 

Eo(n),..._,[L'(fJ)ln(13s/(l-as)) 

+(l-L'(O))ln((l-13s)/as)]/Eo(z'), 

if Eo(z')*O (WALD (1947), Eq. (3: 57), p. 53). 
Now we define that viJ is the payoff (reward or fine) received with subject's 

choice, H1, when Hi is correct. In the same manner as EDw ARDS, we treat obser­
vations as though they were continuous, so that stopping points can be reached 
precisely. 

Now the expected gain is as follows: 

E(v) =P(H1)[(l- (3s)V11 + /3sVz1 -cE01(n)] 

+p(Hz)[asV12 +(l-as)V22-cE02(n)]. (14) 

To find the optimal values of as and f3s, it is appropriate to differentiate Eq. 
(14) with respect to as and f3s, set the resulting equations equal to zero, and slove 
them as a system of simultaneous equations in two unknowns. 

The operations are straight forward and conventional. It is convenient to define 

Xo = (as(3s) 11
"' -( (1- as)(l - /38 ) )

11
"' , 

Xi =((as/3s) 11 "' -((3s(l- j3s)) 11"')/Xo, 
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X2 = ((ps(l- Ps) 11w - ((1- ll's)(l - j3s)) 11 w)/ Xo , 

Xa = ( (as(l -as))1 w -((l -o:s)(l -19s) )11 w)/ Xo , 

Then, the final forms of the equations become 

+ - P(H2)C [- 1 [ (1 , )JO--w)/w{[ p (1 .0 )JL UJ (! w)/UJ 1q
8

11w · E--( --,-)- · -X 2 ll's -as f's -fJs -as i' 
82 z 0 (/) 

-(1-lts) 0 "'). UJ(l-19s)li'"} y +-- ~~- - -~4-- J + P(H2)(lh2 -V22) =0 ' 
1-as ll's _ 

Po=0.6 

10 0.6 

.,,,,. 10/1 

0.2 

20 10 ()() JOO V 

Fig. 1. ns* as a function of V for sample values of w when Po=0.6 The mark 
® indicates the average number of observations in FuKUKAWA (1974). 
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-P(H1)C . [---=l- [ g (1- p )JCI-W) w {[ (1- )]1/"' - J/W 3 (!. W)/OI 

-iE~(z') Xo2W f s s as lrs as Is 

-(1-as)l "'(l-/3s)Cl ! "')!"'} Y +-~ -· X2 0-] 
13s 1- 1:.is 

+ -P(H2)C ·[-1-[ (l- )Jl"'{[g.(l-P.)JCl-"'l·"'- .11w3.o-"'ll"' 

E ( 
') X 2 lts lts / s 1J,1 lts 1 s 

(}2 z . 0 (J) 

-(l-as)11"'(l-ps)CI-"'l 1"'}Y+ ~3 
- lX

4 
J+P(H1)(V21-V11)=0. 

f}s - /3s 

Explicit solutions of these equations are not to be anticipated. 
If the symmetry conditions (1), (2) and (3) apply, it follows that Eo 1(z') = -Eo/z') 

=wZ, f2s'=l/Q~', A'=l/B', as=p.1=1-Ps* and the optimal condition is 

(15) 

(I) =0.2 

u. ~ 

Po=0.7 

15 

U.6 

U.8 

10 

1.0 

--- .10/8 _.. -,.,..... 

---- 10/6 
5 

-- - 10/4 

- - - - - - - 10/2 

20 60 80 100 v 
Fig. 2. n8* as a function of V for sample values of w when P0 =0.7. 
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n.; 

Ei 

Po=0.8 

0.4 
10 

O.fr 

0.8 

5 1.0 

-- -0-
- - - 10/8 

- - - - - - - 10/6 

10/4 ---- -------
------ - - - - - 10/2 

() ..--=:::::r----.-~-.-~-.-~.---------.~-.-~-.-~.-----~~ 

0 20 40 60 80 100 v 
Fig. 3. ns* as a function of V for sample values of w when Po=0.8. The 

mark(!) indicates the average number of observations in FuKllKAWA 

(1974). 

and the expected number of observations is 

(16) 

The optimal Ps* and ns* are calculated from Eqs. (15) and (16), given w, Po and 
V. To find the optimal Ps*, we utilize an approximation method (NEWTON'S me­
thod) to Eq. (15). Figs. 1, 2 and 3 show a plot of ns* as a function of V and w 

for the fixed Po, and in Figs. 1 and 3 the average number of purchases made by 
the subjects in the experiment (FuKUKAWA (1974)) are also plotted. 

The subjective posterior odds fl.~* is 

f}~ * = Ps * /(1-Ps *)=(Po/( 1-Po) )'"<ls*, 

but the objective posterior odds !J' in data-generating process is 
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vz 
0.2 05 10 LO 50 100 

o.25 1----''-----'----+-~_,_,'-l-__ ___._ _ ___.___._---+___._--'--~..._ __ ..___L,__._-1--__.___.___._~ 

0.15 f-----+----+---------+--

W=l0/2 

/ 
/ ' ' 

W=l0/4 ,,,,.- -
/ ' 

w=0.2 

0.10 1-+-------1----4-~----+---/..,--l.-l----.J-----lo-~r---+-+--~~ 

I 
I 

I 

I '­
/ ' 

I 
I 0.05 1--1--=----l----h---l---l---~-+--+-----'--:-t----t-~---"ir--I 

I 

' 

0.00 l---,--,--.+--r-T---.-i+---.----,----.---+--r---.-.---r-+-----.---,----.-+--.-.,....,.-i:-j 
0.2 0.5 2 s 10 20 50 100 

vz 

Fig. 4. ns* /V as a function of VZ for sample values of w. 

f}' =(Po/(1-Po))<Z; =(Ps* /(l-P./)) 11
"'. 

Then, substitution from Eq. (17) into Eq. (16) produces: 

11 
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(18) 

This Eq. (18) satisfy the condition of the expected number of observations given 
the difference, that is ns* =E(n[ds *). 

In the same way as EDWARDS (1965, Eq. (20), p. 320), divide Eq. (16) by Eq. (15): 

%- = ~~(:: = { [ ~:~-:~:: ~H~~ :~>~ }n 1 ~1;s * } / 
{ -~·· ' [ Ps*CJ-u,) "'(1-p/i<)(l-w) w l p * ,- p *Jw (l p *)I w j 

u> p/1 "'+(1-Ps*)L"' ln T~1p,*-- . fJ:*;;~v~-(i=P:*)I;~ 

[
- 1 1 J} . -*-+--*- . 
_ Ps 1-Ps 

Since V is a constant in this equation, the maximum value of ns* will occur where 
n// V is a maximum. But the maximum value depends on the parameter oJ. Fig. 
4 presents plots of ns*I V as a function of VZ for sample values of w. 

§ 5. Concluding Remarks 

The features of human performance which were shown in the results of ex­
periments on optional stopping, were as follows: 
(a) Subjects were only partially sensitive to variables, that is, the amount of varia­

tion in the number of observations was more stable with V than the theore­
tical one in both cases of Po =0.6 and 0.8. 

(b) Subjects purchased too few observations in the task, where the diagnostic im­
pact of an observation was great. 

(c) Subjects tended to purchase too many or too few observations depending on V 
in the task where each observation was less diagnostic. 
WALL.ESTEN (1968), Pnz et al. (1969), Pnz (1969), FuKuKA\\'A (1974) and others 

found these features in their studies. 
In these decision problems where the average diagnostic impact of an observa­

tion is small, it is predicted by Emv ARDS that the subjects would buy less observa­
tions under the all values of V. The results of experiments showed that they 
bought less observations under the higher values of V, but excess under the lower 
values. EDWARDS' prediction is that the subjects would buy considerably more than 
the optimal number of observations where the average diagnostic impact of an 
observation is great. However the observations they bought were less but not 
significantly different from the optimal. 

In contrast with the EmvA1rns' prediction, the revised model conforms to the 
features in case w>L That is, subjects have a tendency to overestimate a proba­
bilistic information in optional stopping and sequential decision-making, on the con­
trary to underestimate in simple probability-estimation task. These results may 
be able to interpret as follows. Subjects in the information-seeking decision task 
treat each data sampled from a probabilistic state as it were a certain fact, and 
depend in excess on the observations. 

There exists two commonly means of the subjective probabilities. One is sub-
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jective estimate that a particular individual infers on the objective probability and 
the other is subject's degree of belief as a measure of confidence that a particular 
individual has in the truth of a particular proposition. It could be asserted that 
the estimates of subjective probabilities reported by subjects do not accurately reflect 
their uncertainty under the decision-situation, and therefore the predictions are 
invalid (W ALLSETN (1968)). Subjects' feeling about uncertainty would differ in 
simple estimation task and in information-purchasing task. 

The results showed that human behaviour might be explained with the aid of 
the n::vised model. However, it is not in full but, we can describe the feature(c) 
in partially. That is, in the case Po =0.6 and V =40 (see Fig. 1), the average number 
of the subjects' observations showed above the appropriate value of the revised 
model. The experimental results reported previously showed that subjects have 
sometimes had the prior opportunities to stop at the terminal difference d, or a 
larger one, within a series of observations (W ALLSTEN (1968), PITZ et al. (1969), 
Fu KUKA \VA (197 4) ). The implication is that subjects would make a decision at a 
small value of d when the number of observations, n, was large, even though they 
had deferred to commit themselves to a decision when d was as large or larger, 
but n was small. In this research, it is assumed that the expected value model is 
adequate, but the influence about probability is misperceived. However, these results 
suggest the necessity of further investigations on (i) whether the decision is closely 
related to the likelihood ratio of the observation or not, and (ii) if it were the case, 
the exact relation. 

Supposing that human-behaviour is based on the degree of belief, the confidence 
might be affected by " hope" to achieve or "fear" to fail, and by other utilities 
related to the task situation. Subjects might expect not only to maximize their 
rewards, but they might also have pleasure (utility) of "success" or displeasure 
(negative utility) of "failure" in their decision outcomes. 

Other proposals by previous investigations are two hypotheses: ( i) the cons­
training effect of success probability, and (ii) the risk-preference tendency. In the 
hypothesis ( i ), it is assumed that the success probability associated with the goal 
object perform as a constraint on choice behaviour in some decision situation 
(FEATHER (1959)). In (ii), it is assumed that the risks are maintained at constant 
levels particular to the decision makers (O'CONNOR et al. (1972)). While they are 
weakened by the difficulty of identification of these utilities and risks, the present 
findings may be partially explained by these hypotheses. 

It is of interest to look at the individual differences in stopping behaviour. 
Within each task used in the experiments, the subjects were put in rank order 
according to their average number of observations bought. The large and consis­
tent individual differences existed in the subjects' information-seeking behaviour 
(WALLSTEIN (1968), HERSHMAN et al. (1970), FuKUKAWA (1974)). These effects depend 
on subject's propensity for taking risk and purchasing an insurance policy in order 
to avoid a small chance of a large loss. While FEATHER (1959) hypothesized and 
found that attainment attractiveness of a goal object varies inversely with the as­
sociated success probability and that the assumed covariation tends to be more ap­
parent in ( i) achievement oriented than in relaxed situations, and (ii) ego-related 
(skill) than in chance-related situations. Subjects might perceive higher achieve­
ment values in correct decision with less observations than in correct decision with 
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many observations. The effect of task involvement might constitute a deviation 
from the expected value model (RoNEN (1974)). There will be an issue regarding 
the extent to which the subject's personality traits affect on their behaviour in 
these tasks. 

Finally, it must be pointed out that the optimal stopping difference is decimal 
but actual differences are integers. Then subjects can not stop buying observations 
at the optimal difference precisely. These models cannot be applied exactly. Still, 
preliminary results suggest that the revised model is a good first approximation 
for some subjects. As a further research, it may consider to apply some strategies 
of information-seeking, like Pnz et al. (1969), but with misperceived observations. 
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