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KElO ENGINEERING REPORTS 
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ON THE INVARIANT MEASURE FOR THE 
TRANSFORMATIONS ASSOCIATED WITH 

SOME REAL CONTINUED-FRACTIONS 

HITOSHJ NAKADA 

Dept. of Mathematics, Keio University, Yokohama 223, Japan 

SHUNJI ho 

SHIGERU TANAKA 

Dept. of Mathematics, Tsuda College 

(Received July. 29, 1977) 

ABSTRACT 

We introduce two types of real continued-fraction expansions, one of which is the 
real part of the complex continued-fraction expansion of HURWITZ. For the transformations 
associated to these expansions we shall determine the precise form of invariant measures 
according to the method of P. LEVY for the case of simple continued-fraction. Moreover, 
we shall clarify the mathematical meaning of the method of P. LEVY. 

§ 0 Introduction 

In the investigation of properties of a measurable transformation given on a 
space, a measure invariant under the transformation, if it exists, provides a valuable 
clue. Hence, one often takes the following approach in such an investigation. 
First, one asks whether the transformation has an invariant measure possessing 
reasonable properties. Next, if there is sucn an invariant measure, one tries to 
determine its concrete form. Of course, it is, in general, difficult to obtain the 
precise form of an invariant measure since one has to obtain it predictly from the 
precise description of each transformation concerned. On the other hand, for this 
very reason, the derivation of the concrete form of an invariant measure, if it can 
be carried out, is extremely useful for the quantitative analysis of the given 
transformation. 
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In this connection, we recall that there is remarkable history associated with 
the transformation induced by the well-known simple continued-fraction expansion. 
For this transformation GAuss pointed out as if it is obvious apriori that the 

measure having the density function of the form -
1
-} 

2 
---
1
-l- is invariant. Indeed, 

og +x 

if one is given the function --1-.- ___ _1 __ , then it is easy to prove that it is the 
log 2 l+:c 

density of a measure invariant under the simple continued-fraction transformation. 
However, history played a trick and left us with no clue as to how GAuss actually 

arrived at this function --1----1-. Much later, KuzMIN [3] and LEVY [4] 
log 2 l+x 

showed, in their respective papers, ways to arrive at the density function 

-
1 

1 
2 

-
1

1 - - for the invariant measure and filled this missing gap, although we 
og +x 

have no way of knowing whether the reasoning used by GAt~ss was the same as 
those employed by KL:ZMIN and LEVY. 

In this paper, we formulate and then solve a couple of problems. The first 
problem is to search for effective methods for determining precisely the invariant 
measure for simple continued-fraction transformation and other related transforma­
tions. The second problem is to clarify the mathematical structure lying behind 

the method used by LEVY in his derivation of the density function -
1
-1--

2 
-
1
-
1
-. 

og +x 
With these objectives in mind, we structure this paper in the following manner: 

In § 1 we simplify Lf:vy's argument give in [ 4] to derive the concrete form of the 
invariant measure for the transformation associated with simple continued-fraction 
expansion. The method we employ in this section, however, is based on a rather 
technical and seemingly restrictive assumption, which we shall leave unexplained 
at that point. For this reason, we shall call the method employed in § 1 "the 
method based on pure chance discovery ". 

In § 2 we introduce a new type of (real) continued-fraction expansion. This 
expansion corresponds to the real part of the complex continued-fraction expansion 
introduced by HuRWITZ in [2]. In § 3, we introduce still another type of real 
continued-fraction expansion. The relationship between these two continued-fraction 
expansions can be explained in the following way: Each continued-fraction expan­
sion induces in a natural way an endomorphism on the space of infinite sequences 
of positive integer (symbolic space). The natural extension of one of these endo­
morphisms turns out to be the inverse of the natural extension of the other one. 
For these reason, we shall call the transformation defined in § 3 the backward 
transformation associated with transformation defined in § 2. 

In § 4, we will determine the precise form of the density function for the 
invariant measures for the continued-fraction transformations defined in § 2 and 
§ 3. Our method in § 4 is different from the "method of pure-chance discovery" 
employed in § 1. We hope, in fact, that our procedure in § 4 will clarify the 
mathematical meaning and give justification to seemingly ad-hoc "method of pure 
chance discovery ". 

In order to justify this claim, we shall show in § 5 that the reason why the 
function g(x) seems to emerge suddenly and in somewhat unnatural manner is 
because for the case of simple continued-fraction expansion the transformation 
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induced by it and its backward transformation coincide with each other, and that 
it is this fact which makes it difficult to explain the naturalness of the emergence 
of the function g(x). 

In concluding these introductory remarks, we would like to thank Professors 
TAKUJI 0NOYAMA, Yu11 ho and YmcHmo TAKAHASHI for their interest on the 
problem and valuable advice. 

§ 1 The Transformation Associated with Continued-Fraction and the Invariant 
Measure of GAuss 

As it is well-known, the transformation T associated with simple continued­
fraction expansions is defined as follows : 

For xE[O, 1), 

if x~O 

if x=O. 

Here, [a] for any number a denotes its integer part. If we let, for xE[O, l) 

if x~O 

if .T=0, 

and define 

( 1) for n~l, 

then the simple continued-fraction expansion of x is given by 

( 2) 
1 i 1 I 1 i x = ----+ -------+ ...... +-- ·----- ------ ·--- -

I ai(x) I az(x) an(x)+ rn.T 

If x is a rational number, then rnx=O for all but a finite number of n's. 
Frequently, it is convenie~t to exclude the set of all rationals in [O, 1) when we 
consider the metric properties of the simple continued-fraction transformation. In 
the sequel, we shall disregard the rationals from consideration without stating so 
explicitly. 

Let us associate to each xE[O, l) the sequence (a1(x), az(x), aa(x), ···, an(x), ···), 
where an(x)'s are determined by (1), and denote by 

V={(a1(x), az(x), ···, an(x), ... )JxE[O, 1)}. 

V is, in fact, equal to the cartesian product NN, where N is the set of all positive 
integers. For a sequence (ai. az, ···,an, · ··) of positive integers, let 
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Po=O, 

qo=l, 

Pn = anPn-- 1 + Pn -2· (n;;; 1) 

(n~ 1), 

then one can show that 

( 4 ) Pnqn-1 -Pn-1qn=(-1r-1 (n~ 1), 

( 5) 
Pn Ii 1 : 1 I 1 (n;;; 1), ---'+-- +---·-·-+······ +,. 
qn : a1 I a2 I as ! an 

qn-1 1 1 I 1 I 

( 6) +-----+······+ (n~ 1). 
qn an : an-1 a1 

For a sequence (ai, a2, ···,an,···) of positive integers, define a function </;a1,a2 , ... ,an(x) 
on [0, 1) by 

( 7) 
1 

······+I-
I 

1 ' 1 I+ 
I an+x 

it can be shown that 

( 8) 

where Pn and qn are defined by (3). 
We denote by [a1, a2, .. ., an] the sub-interval of [0, 1) determined by the sequence 

(ai. a2, ... , an). Namely, 

Then, [a1,a2 .. ·,an] is the image of the interval [O,l)under the map <f1a1,a2 , ... ,an· If 
we denote by m the Lebesgue measure defined on [O, 1), then from (4) it follows 
that 

( 9) 

1 

In this section, we simplify Lfvy's argument m [4] to show how the form of the 

density ~1 
1 

2 
-
1

1- can be determined directly. 
og +x 

Now, if we let mn(x)=m(T-n[O, x) ), then it follows from (2), (4) and (8) that 

mn(x)= I: l<f1a 1.a2 ..... an(x)-¢a1.a2 •.• an(O)I 
a1,a2, · ,an 

Therefore, if we denote by fn(x) the Radon-Nikodym derivative ~:n (x), then 
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We shall show that as n tends to oo, fn(x) converges to the desired density function 
1 1 

log 2 l+x · 

Since I: 1 = 1 by (9), we can define, for each n, a discrete pro-
a 1. a2. ,an qn(qn+qn-1) 

bability measure Gn which assigns to each point 1 a mass . 
qn(qn +qn-1) 

we can write 

(10) 

l+y 
(l+yx)2 dGn(y). 

For an arbitrary positive interger p, it follows from (3) and (6) that 

(11) 

~_(_1+~:~:) ______ _ 
an=P 

()~~-=:.2-~x 
qn-l 

= lx l+y dG ( ) 
Jo (p+y)(p+l+y) n-1 Y 

(0;£x<l). 

Then, 

( * ) If we can make the assumption that the sequence of the probability measure 
{Gn} converges vaguely to some probability measure G which has a continuous 
density function g(y), then we can obtain from (11), by letting n ~ oo and then 
differentiating with respect to x, the relation 

1 ( 1 ) 1 +x 
(p+.x)2 g JJ+-;; = (p+x)(p+ 1 +x) g(x), 
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from which it follows that 

(1+-__!_-) g(---h_-) =(l+x)g(x). 
p+x p+x 

Since we are assuming that g is continuous, this implies that (1 +.r)g(.r) is a 
constant. If we now let n - CD in (10), then 

• ~I l+y ~I 1 , 1 hmfn(:.r)= -(-
1

--)-:;:g(y)dy=C -(l --)9 dy=C-
1
--.-. 

n •cY> o + ?J.T o + lf.1; ~ + J' 

Here, C is a normalizing constant, i.e., C= l/log 2. 

§ 2 Continued-Fraction Transformation of HURWITZ. 

In § 2 and § 3, we discuss properties of a new continued-fraction transformation, 
and in § 4 we derive the density function of the invariant measure for that 
transformation. We hope that the argument we use in § 4 will help clarify the 
meaning of the "concrete method" that we introduced in § 1. 

HURWITZ treated in [2] certain type of continued-fraction expansion for com­
plex numbers. Restricted to the real numbers, this expansion takes the following 
form. 

Let X be the interval [ -1/2, 1/2) and define for any real number x, [x]1 = 
[x + 1/2]. We then define a transformation S on X by 

Sx={ :-[~l for .r='l=O 
(12) 

for x=O. 

If we write 

a(x)={ ~~ 1 for x='l=O 

for x=O, 

and 

(13) an(x) =a(sn-1x), 

then, just as in § 1, the continued-fraction expansion of the following form is valid 
for every xE[-1/2,1/2): 

(14) 
1 I 1 I 1 I 

x=, a1(x) +[a;(.~Y + ...... +--anf:r)+sn(x) 

1 :+_l _ _J+·· .. ··+ 1 l+_l_~ 
-1--ai(.~T I az(x) I an(x) I an+i(x) 

We shall exclude, as we did in § 1, the set of all rational number from 
[ -1/2, 1/2). We associate to each xE[-1/2, 1/2) the sequnce of intergers (a1(x), az(x), 
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·· ·, an(x), .. ·) determined by (13), and let 

W= {(a1(x), az(x), .. ·, a(xn), · .. )JxE[-1/2, 1/2)}. 

Let us call a finite sequence (a1, a2, ... , an) of intergers S-admissible if Jail ~2 
for each i=l, 2, ···, n, and furthermore, if ai=2 then ai+1~2, while if ai= -2 then 
ai+1 ~ -2. Call an infinite sequence (ai. a2, .. ·, an, .. ·) S-admissible if for every pair 
i, j(l~i~j) the finite sequence (ai, ai+i. ... , aJ) is S-admissible. From the definition 
of the transformations S and of an(x) it follows that 

W={(ai, 02, ... , On, ... )J(ai, ... , an, ... ) is S-admissible}. 

The transformation S induces in the obvious way the shift transformation a on 
the symbolic space W. 

For an S-admissible sequence (ai, az, ... , an, ... ), one can define sequences {Pn} 
and {qn} in the same way as (3) in § 1 and one can show that for these sequences, 
too, the properties (4), (5) and (6) hold. One can also define the ¢a

1
,a2 .... an by 

for an S-admissible sequence (ai, a2, ... , an). The domain of definition of ¢a1,a2 ... ,an 
depends now on the sequence (a1, a2, .. ·,an) and is given by 

( _ _!_ 1-) 
2' 2 

(15) S11
[ai, lt2, ... , ltn]= ( 0 ' ~) 

(-~, o) if On= -2. 

Here, [ai, a2 .. ·,an] denotes, as in § 1, the sub-interval of [ -1/2, 1/2) determined by 
the S-admissible sequence (a1, a2, .. ·,an), i.e., 

[ai, 02, ... , On]= { x E [ - ~ , ~) Ja1(x) =ai, a2(x) =a2, .. ·, On(x) =an}. 

By using (14) one can show that 

{x: x=¢a1 , .. ,an(t), - ~<t<~} 

(16) [ai, a2, ... , an]= {x: x=¢a1 ..... a1m, 0 <t< ~} 

{x: x=¢a1 , ... ,an(t), - ~<t<O} if an= -2. 

In our discussion in § 1 the quantity qn_ifqn played a significant role. By (6), 

qn_ifqn is equal to 1_J+--1----
1 + ...... + 1 However, the sequence (an,an-i, ... , 

! an : an-1 i a1 
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a1) may no longer be S-admissible even if (ai, a2, · .. ,an) is. So, it will be necessary 
for us to represent qn_ifqn in a different way. The following lemma will play a 
key role in § 3 and § 4. 

Lemma 2. 1 If (ai, a~, · · ·a11 ) is S-admissible, t!zen 

and 

qn-1 3- v' 5 1 i 1 I 1 I 1 • 
{3= sup --=--------------=,-- +,-----+ - + 1-----+······. 

(a1. ,an), an~2 qn 2 I 3 i -3 I 3 i -3 
l~Ti 00 

Proof. Let us define 

and Pn= sup 
(a1, , a 11 ) qn 

a 11 ~2 

then one can easily show that 

so that 

l 1 
an= sup 

2- f3n-1 ' (a1, ,an-1) 
2+ qn-2 

(17) 

qn-1 

(18) /3n= sup 
1 1 

(a1, ·· ,an-1) 
3+ qn-2 3-,3n-l 

qn-1 

By induction on n, one can show that both {an} and {pn} are monotone increas­
ing inn and that lanl, l13nl<l for each n. Therefore, a=lim an and p=lim /Sn both 

n-----CXJ n-_.,cx) 

exist and from (17) and (18) it follows that cr=l/(2-/S) and 13=1/(3-i3) and there­
fore a=( v'5-- 1)/2 and 13=(3- v'5)/2. It is clear that a and 13 are the desired 
supremums. 

The continued-fraction transformation S of HuRWITZ satisfies, because of (15), 
the condition (b) of NAKADA [5]. The same argument as in § 3 of [5] can be used 
to show that other conditions of NAKADA [5] are satisfied as well. In particular, 

(
'\;-5 -l)Zn 

we can prove that a(n)~ -
2
- and that r(n)=O. 

Using these facts one can establish the following theorem: 

Theorem 2. 1 ( i) The trans/ ormation S admits an invariant measure p whiclz is 
equivalent with the Lebesgue measure m on X = [ -1/2, 1/2) and satisfies 1/ K < 
dtt/dm<K for some constant K>O. 
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(ii) For an arbitrary Borel set E 

(iii) For any fundamental interval F=[ai. a2, ···,an], where (ai. ···,an) is S-admis­
sible, and for any Borel set E 

where Ci and C2 are constants independent of sets E, F. 
From Theorem 2. 1 it follows easily that the system (X, S, µ) is a weak Ber­

noulli endomorphism. 

§ 3 Backward Transformation 

In this section we consider a new expansion associated with the continued­
fraction expansion considered in § 2. This new expansion induces a transformation 
which is the "reverse" of the transformation considered in § 2. For this reason, 
we call the new transformation the " backward transformation ". 

Let a=( v5 -1)/2 and (3=(3-v'S)/2. a and (3 have the meaning described in 
Lemma 2. 1. Denote by X* the interval [-a, a) and define for any real number x, 

(19) { 

[x+a] 
[x]2= 

-[-.r+ /3] 

if x~O 

if x<O, 

define a transformation S* or X* by 

(20) S*x={ ~ -[!1 if x~O 

if x=O, 

and let 

a*(x)={ 01 if x~O 

if x=O, 

and 

(21) a~(x) =a*(S*n- 1(x)) n~l. 

Then, just as in § 1 and § 2, the following continued-fraction expansion is valid: 
For any arbitrary irrational xE[ -a, a) 

(22) 

=---1 ___ 1+ 1 i+······+ 1 --- l+ __ l_i+······ 
! af(x) I a{(x) 1 a~(x) I a~+ 1(x) · 
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Define the symbolic spaced W* by 

W*={(a~(x), at(x), ... , a:(x), ···)lxE[a, a)}. 

Let us call finite sequence of integers (ai. a2, ···,an) S*-admissible if !ail ~2 for 
each i = 1, 2, · · ·, n, and furthermore, if ai ~ 2 then ai 

1
1 :'le= - 2, while if ai ~ - 2 then 

ai_,_ 1 ::'1c=2. An infinite sequence (ai. a2 , ···,an,···) will be called S*-admissible if for 
every pair i, j (l~i;:;;j) the finite sequence (ai, ai, i. ···, aj) is admissible. From the 
definition of the transformation S* and a:};(x) it follows that 

(23) W*={(ai. az, ···.an, ···)i(ai. az, ···,an,···) is S*-admissible} 

and that the transformation S* induces the shift operator a* on W*. 
For an S*-admissibble sequence (ai. az, ···,an), one can define quantities Pn and 

qn in the same way as in (3) of § 1, and the properties (4), (5) and (6) are valid 
for these sequence also. A function ¢~1 .a 2 ,. .,an similar to ¢a 1,a 2 •... ,an of sections § 1 
and § 2 can be defined in the same way as before for an S*-admissible sequence 
(ai. az, ···,an) and the sub-interval 

of X* = [-a, a) can be represented in terms of the function ~1~ 1 ,a 2 , . .,an as 

if an~2 
(24) 

if an~ -2. 

You note that a sequence (a1, az, ···,an) is S-admissible, then the sequence 
(an, an 1, • • ·, ai) will be S*-admissible. If we denote by (W, a) the natural extension 
of ( W, a), and by (W*, a*) the natural extension of ( W*, a*), then we can obtain 
the following: 

Lemma 3.1 5>ystem (W, a- 1
) and CW*, a*) are isomorphic dynamical systems. 

Proof. Define a map <p from W onto W* by 

Remark. The natural extension (W, a, l) of the endomorphism ( W, a, A.) which was 
induced by the endomorphism (X, S, µ) is weak Bernoulli by Theorem 2. 1. There­
fore, the system (W*, a*, l*) is also a weak Bernoulli automorphism, where l* 
denotes the measure <pl*. 

Lemma 3. 2 Call the restriction of l* to W* by A.*, and denote by p* the measure 
induced on X* by ).* in the natural way. Then, 

l) 11* is S*-invariant. 
2) 11* is equivalent with the Lebesgue measure on X*. 

Proof. l) follows immediately from Lemma 2. 1. To prove 2), it suffices to show 
that there exists a constant Ki> 1 such that 
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for an arbitrary S*-admissible sequence (ai, az, ···, ari) for any n~l, where m denote 
the Lebesgue measure on X*. We note that 

(26) 

and that by Theorem 2. 1 there exists some constant K such that 

(27) 

It follows from (16) and (24) that m([an, ... , ai]) and m([ai, az .. ·,an]*) can be 
represented as 

and 

1 

{ qn(an, an-1, .. ·, ai) + ~ qn-1(an, .. ·, a2)} { (qn(an, ... , ai)- ~ qn-1(an, ... , a2)} 

if ai~ ±2 

1 

1 

(29) m([ai, .. ·,an]*) 

1 
{qn(a1, ···, an)+aqn-1(a1, ... , an-1Hqn(ai, ... , an)-pqn-1(ai, ... , an-1)} 

if an~2 

1 
{qn(ai. ···, an)+pqn-1(ai. ... , an-1)} {qn(a1, ... , lrn)-aqn-1(ai. ... , an)} 

if an;£ -2. 

In formulae (28) and (29) and here-in-after, we denote by Pn(a1i .. ·,an), Pn(an, ·· ·, a 1), 

qn(a1i ···,an), qn(an, ·· ·, ai), etc. in order to distinguish Pn's and qn's which are 
determined by an S*-admissible sequence (a1i ···,an) and an S-admissible sequence 
(an, ... , ai). 

Since [qnl>lqn-11 hold for either case (i.e. for the case of S*-admissible sequence 
and for S-admissible sequence), it follows from (28) and (29) that there exists 
constants K2, Ks> 1 such that 

(30) 
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(31) 

On the other hand, since qn(a1, ···,an) =qn(an, · · ·, a1) follows from (6), we obtain 
(25) for some K1 by using (26), (27), (30) and (31). 

§ 4 The Density Functions for Invariant Measures for S and S* 

We determine the precise form of the density functions for the invariant 
measures for S and S*. 

Theorem 4.1 The invariant measure fl equivalent with the Lebesgue measure m 
for t/ze transformation S has the following density function: 

dp 
·-~(x)= 
dm 

1 C-----­
u (1 +m)(l-x13) 

1 C3----·· · -- ···-
(1-.w)(l +:x:13) 

here c3 denotes the normalizing constant. 

for x>O 

for .x<O, 

Theorem 4. 2 The invariant measure 11* equivalent with the Lebesgue measure m 
for t/ze transformation S* has the following density function: 

dp* ( ) ---x = 
dm 

Proofs of Theorems 4. 1 and 4. 2 Let (a1, a2, ···a,,) be an S-admissible sequence, 
and denote by Pu(ai, ··.,an) and qn(ai, ···an) the Pn and qn determined by (3). Then, 
the Lebesgue measure of the interval [a1, a2, ··.,an] is given by (28). We know 
also that the sequence (a,,, .. ., ai) is S*-admissible and that qn(an, .. ., a1)=qn(ai, .. ., an) 
and Pn(an, · ·., a1) =qn--1(a2, ··.,an). Next, for each fixed n, we consider the set 

{ _{ln-_1_ =- _J._ + 1 + ...... +--L ; (ai. .. ., a.,,) is S-admissible} . 
qn f au an- I al 

From Lemma 2. 1 it follows that (qn--1/qn)EX* = [-a, a). Let Gn be the probability 
measure on X* which assigns to each point qn-1/qn the mass m([ai. · ·., an]). 
Namely, 
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1 
--- ----- ------- ~ ------ ----

(qn ++qn-1) ( qn - ~ qu-1) 
if (/n'\:: ±2 

(32) 
1 

if ([ll =2 

2( qn +tqn-1)q11 

1 if ([,, =ccc --2 

Now, for the sub-interval [an, a11-1, · · ·, a1]* of X* which is determine'.1 IJy the 
S*-admissible sequence (an, a1H, .. ., a1), we have 

(33) Gn k([an, · · ·, a1]*) = I: m([b1, b2, · ··, lh, b,.. 1, · · ·, bn k]) 
(b1. . b 11 +k}; S-admissihle. 

bk+1=ai·~=l. ,n 

for every k::;; 1. 

From Theorem 2. 1 it follows that 

lim Gn ,k ([an,···, a1]*) = p([a1, ···,an]). 
A·-oo 

The definition of p* given in Lemma 3. 2 implies that 

dp* 
Therefore, ~~~ Gn=p*, and by Lemma 3. 2, the density -dm(y)=g(y) exists. 

In order to determine the density function g(y) precisely, we consider the 
following several cases : 

Case ( i): -13<a<x<i3. 
Suppose p~ ±2, then 

I 

~ p~a- dGn( ?/) = 
p+.r 

Gn(~l__) 
<_<In~_!__< I qn 
=-,In = p+rt 
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By letting n ---+ co, we obtain 

(34) 

Similar argument shows that for the cases P=2 and P= -2, one can get 

if P=2 

(35) 
I v+a 
J g(y)dy= 

if P= -2. 

Case (ii): 1S<a<x<a. 
Nothing that if a~ q n-2/ qn-l ~ :i_: then an- I= 2 and hence an~ 2, we get 

(36) 

(37) 

l 

~ p-t-r[ u(y)dy= 
L l 

-p-t-.r 

if p~3 

if P=2. 

if p~ -3 

if P= -2. 

Differentiating both sides of equations (34), (35), (36) and (37) with respect to 
x, we obtain 

(38) (1-l(_l )
2)g(-l-) = (1-lx2)g(x) 

4 P+x p+.x 4 

(39) 2 1+- ---- g ---- - l--x g(x) ( 1 1 ) ( 1 )- ( 1 .2) 
2 p+x P+x 4 
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(40) 2( 1-_!_ _l_)g(-1-) = ( l-_!_x2)g(x) 
2 P+x P+x 4 

if -f3<x<13, P=-2 

(41) ( 1-l(-
1
-)2)g(-

1
-·) =2( l+lx )g(x) 

4 P+x P+x 2 
if 13<.x<rr, p~3 

(42) (l+~l-1-)a(-1-) = ( 1+_!_.x )a(.x) 
2 p+.x p+x 2 

if 13<.x<a, P=2 

(43) ( 1-l{ ___ l )2) 9(-
1 

) =2( 1-l.r:)a(:c) 
4 P+x P+.x 2 

if -rr<:r<13, P?-3. 

(44) ( 1-1--
1
-)g(-

1 
) = ( 1-_!_x )g(x) 

2 p+x p+.x 2 
if -a<x<-/3, P= -2. 

If we define 

2( 1- ~ x )g(x) 

h(x)= (1- ! x2)g(x) 

2( 1+ ~ x )g(.x) 

then, from (38)-(44), it follows that 

h(x) =h(S*x). 

if XE ( -rr, -13) 

if .TE ( - j3, /3) 

if .xE(13,a), 

Since S* is ergodic, h must be constant almost everywhere. 
Thus, we obtain 

Cs 
1 

2( 1- ~ x) 

if xE(-a,-p) 

Cs 
1 

g(x)= 
( 1- ! x2

) 

if xE(-p, p) 

Cs 
1 

2( 1+ ~ x) 

if xE(p, a) 

where Cs is a normalizing constant. This completes the proof of Theorem 4. 2. 
For the remainder of the proof of Theorem 4.1, let mn(x)=m(S-n[O, x)) and 

fn(x)=(dmn(x) )/dx and calculate limfn(x), in case x>O. It follows from (8) and (28) 

fn(x)= ~ 
(a1,···,an); 

s-admissiblf' 

1 
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I: 
(a1. ,an); 

S-admissihle 

+ I: 
q,, __ 1_ --,l 

qn 

Letting n -> co, we obtain 

2( qn + ~ qn-l )qn 
- --- - ---------- -

(qn +qn-1X)2 2qn ( qn + ~ qn-1) 

dp . ~" -d-- = hm/,,(.x:)=C:i 
m 11--.CY> --,9 

(.x>O). 

In case .r:<O, we let m,J:c)=m(S 'tx, 0)) and use the same argument to get 

§ 5 Concluding Remarks 

In this section, we try to establish the logical connection between the " method 
of pure-chance discovery" of § 1 and the method of proof we employed in § 2-§ 4. 
1) If we wish to employ the "method of pure-chance discovery" in the derivation 
of results of § 2-§ 4, we can adopt the following procedure: 

First of all, assume that the measure Gn defined on X*=[ -a, a) by (32) 
satisfies the hypotheses ( * ) made in § 1. Then under this assumption one can 
prove in exactly the same manner as we employed in § 4 that the function g(x) 
satisfies the identities (38)-(42). This will enable one to determine the form of 

. du 1 
the function g(x) and the fact that _d ___ = c (1 r)(l ) 

m -xp +.xa 
If one follows this 

procedure, there will remain a problem of showing that, in fact, the measure 11 

with the density d11./dm is the invariant measure for the transformation S on 
[ -1/2, 1/2). On the other hand, for the transformation S* one can prove directly 
that the identities (34)-(37) satisfied by the function g(x) are nothing but the 
identities to be satisfied by the density function of any invariant measure for S*. 
Alternatively, one can verify that the function g(x) having this particular form is 
indeed the density function of an invariant measure for S*. 
2) Conversery, one possible "explanation" of the method of pure-chance discovery 
of § 1 can be given if we look at it from the view-point of § 2-§ 4. Namely, if 
we consider the backward transformation associated with the transformation in-
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duced by the simple continued-fraction expansion, then we see that the backward 
transformation in fact coincides with the simple continued-fraction transformation 
itself. Therefore, the hypotheses ( *) made on the sequence of discrete probability 
measures {Gn} can be interpreted as the assumtion on the existence of an invariant 
measure for the backward transformation, and we are led to the reasonable con­
clusion that the function g(x) and dp./dm(x) coincide with each other since the 
spaces X and X* are identical in the present situation. 
3) If we emphasize "the method of pure-chance discovery" in § 2-§ 4, it is 
possible to take the following approach. Define the discrete measure Gn concen­
trated on points 9n-d9n by Gn(9n-1/gn) = 1/qn2

• Make the hypotheses that the sequence 
{Gn} converges vaguely to a probability measure G having a continuous density 
function g(x). One can then prove as in § 1 that g(x)=constant, and using this, 
fact, one can explicitly determine the form of the Radon-Nikodym derivative dp./dm 
for the invariant measure 11. This approach will simplify the computation con­
siderably. However, the characterization of g(x) as the density function for the 
invariant measure for the backward transformation will no longer be valid. Even 
for the case of the simple continued-fraction transformation of § 1 one can use this 
simplified procedure. 
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