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ABSTRACT

We introduce two types of real continued-fraction expansions, one of which is the
real part of the complex continued-fraction expansion of HurwiTz. For the transformations
associated to these expansions we shall determine the precise form of invariant measures
according to the method of P. LEvy for the case of simple continued-fraction. Moreover,
we shall clarify the mathematical meaning of the method of P. LEvy.

§0 Introduction

In the investigation of properties of a measurable transformation given on a
space, a measure invariant under the transformation, if it exists, provides a valuable
clue. Hence, one often takes the following approach in such an investigation.
First, one asks whether the transformation has an invariant measure possessing
reasonable properties. Next, if there is sucn an invariant measure, one tries to
determine its concrete form. Of course, it is, in general, difficult to obtain the
precise form of an invariant measure since one has to obtain it predictly from the
precise description of each transformation concerned. On the other hand, for this
very reason, the derivation of the concrete form of an invariant measure, if it can
be carried out, is extremely useful for the quantitative analysis of the given
transformation.
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In this connection, we recall that there is remarkable history associated with
the transformation induced by the well-known simple continued-fraction expansion.
For this transformation Gauss pointed out as if it is obvious apriori that the

1

measure having the density function of the form —~— - is invariant. Indeed,
log2 142

L1
log2 14w
density of a measure invariant under the simple continued-fraction transformation.
However, history played a trick and left us with no clue as to how Gauss actually
arrived at this function 77177——«#. Much later, KvuzmiN [3] and Lévy [4]

log2 1+z
showed, in their respective papers, ways to arrive at the density function
L1 for the invariant measure and filled this missing gap, although we
log2 1+=zx
have no way of knowing whether the reasoning used by Gauss was the same as

those employed by KuzmiN and LEvy.
In this paper, we formulate and then solve a couple of problems. The first
problem 1is to search for effective methods for determining precisely the invariant
measure for simple continued-fraction transformation and other related transforma-

tions. The second problem is to clarify the mathematical structure lying behind
1

1
log2 1+a°

With these objectives in mind, we structure this paper in the following manner:
In §1 we simplify LEvY’s argument give in [4] to derive the concrete form of the
invariant measure for the transformation associated with simple continued-fraction
expansion. The method we employ in this section, however, is based on a rather
technical and seemingly restrictive assumption, which we shall leave unexplained
at that point. For this reason, we shall call the method employed in §1 “the
method based on pure chance discovery ”.

In §2 we introduce a new type of (real) continued-fraction expansion. This
expansion corresponds to the real part of the complex continued-fraction expansion
introduced by Hurwitz in [2]. In §3, we introduce still another type of real
continued-fraction expansion. The relationship between these two continued-fraction
expansions can be explained in the following way: Each continued-fraction expan-
sion induces in a natural way an endomorphism on the space of infinite sequences
of positive integer (symbolic space). The natural extension of one of these endo-
morphisms turns out to be the inverse of the natural extension of the other one.
For these reason, we shall call the transformation defined in §3 the backward
transformation associated with transformation defined in §2.

In §4, we will determine the precise form of the density function for the
invariant measures for the continued-fraction transformations defined in §2 and
§3. Our method in §4 is different from the “method of pure-chance discovery”
employed in §1. We hope, in fact, that our procedure in §4 will clarify the
mathematical meaning and give justification to seemingly ad-hoc “ method of pure
chance discovery ”.

In order to justify this claim, we shall show in §5 that the reason why the
function g(z) seems to emerge suddenly and in somewhat unnatural manner is
because for the case of simple continued-fraction expansion the transformation

if one is given the function -, then it is easy to prove that it is the

the method used by Lévy in his derivation of the density function
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induced by it and its backward transformation coincide with each other, and that
it is this fact which makes it difficult to explain the naturalness of the emergence
of the function g¢(x).

In concluding these introductory remarks, we would like to thank Professors
Takujl ONovama, Yu)r Ito and YoicHiro TakauasH! for their interest on the
problem and valuable advice.

§1 The Transformation Associated with Continued-Fraction and the Invariant
Measure of Gauss

As it is well-known, the transformation T associated with simple continued-

fraction expansions is defined as follows:
For z¢[0, 1),

l—[l] if 250
0 if £=0.

Here, [@] for any number @ denotes its integer part. If we let, for z¢[0, 1)

EH if 250

a(z)=1-"7
0 if =0,
and define
(1) an(x)=a(T"'x) for n=1,

then the simple continued-fraction expansion of x is given by

AN S S S B T

(2) x~‘ ay(x) +‘ ax(x) + +. a(x)y+T"x
IR S R S S R S S
e Tam T a@) T ana()

If » is a rational number, then 7"z=0 for all but a finite number of #’s.
Frequently, it is convenient to exclude the set of all rationals in [0,1) when we
consider the metric properties of the simple continued-fraction transformation. In
the sequel, we shall disregard the rationals from consideration without stating so
explicitly.

Let us associate to each ze[0,1) the sequence (ai(x), ax(x), @s(x), -+, an(x), -+),
where an(x)’s are determined by (1), and denote by

V= {(al(x)’ (Zz(x), ) an(‘t): : )]xe[O, 1)}'

V is, in fact, equal to the cartesian product N®, where N is the set of all positive
integers. For a sequence (a,, @, -+, @, ---) of positive integers, let
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P-lzl, [)n:Oy DPr=Cupn-1+Dn_» (ﬂ%].)
(3)

9-1=0, @=1, g2=augu-1+qa, (n=1),

then one can show that

(4) DPnGn—1—Prs@n=(—1)""" (n=1),
(5) p—n:""l**j—f—*l* ‘+”]:J+ """" +, L. (n=1),
@ ar | a | as Ly
(6) Gn1 :Tl""’ _}.T,,,lv'_l_ ...... + 1 : (nz1).
qn | An 77 a,

For a sequence (ay, @z, -+, @, ---) Of positive integers, define a function ¢a,,a,,....a, ()
on [0,1) by

N 1 1 .
(7) (/"""2""”"(“'1 a * +} Wy +\ anta’
it can be shown that
DntDnx
i )= Er T
(8) g"‘hv“?'"'a’"(l) gntqn-1

where p, and ¢, are defined by (3).

We denote by [a, @, -+, @.] the sub-interval of [0, 1) determined by the sequence
(@, @z, +++, ay). Namely,

(ay, as, -, anl={z: a(x)=a,, ax(T)=as, -+, a(r)=ay}.

Then, [a,, . -+, @.] is the image of the interval [0, 1) under the map ¢, a5 .ap, If
we denote by m the Lebesgue measure defined on [0,1), then from (4) it follows
that

(9 ) m([ah Ay oy an]): ‘(/’al.u“,,-u,u,,(l)'_(,,’al,ug.m.un(oﬂ

_ 1
qn(Qn""qn—l) )

In this section, we simplify LEvy’s argument in [4] to show how the form of the

density can be determined directly.

S
log2 1l+=x
Now, if we let my(x)=m(T "0, x)), then it follows from (2), (4) and (8) that

ma(2)= " 21 |dajagan(®) = ayag - 0q(0)]

ai,az,- ,dp

X
fl[.(l;' vag @o(@n+qn 1)

Therefore, if we denote by f,(x) the Radon-Nikodym derivative —[f%(x), then
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N 1
f"(x/_m,azz.;. can (Gn+qno1z)?

1+ gn-1
— gn

2 2
ay, ag, -,y qn-1

n

We shall show that as # tends to oo, f,(x) converges to the desired density function
1 1

log2 14z °
. 1 .
Since —— =1 Dby (9), we can define, for each #, a discrete pro-
ax.a;,an q"(Qn'i'Qn—l) y ( ) p
bability measure G, which assigns to each point n1 a mass #—1——— Then,
(Zn QM(q7L+q'n—])
we can write
142
(10) falmy= B e G({ o })
ap,az, -, an <1+ qn-1 ) dn
dn
v 14y
=\ ————dG.(y).
), iy 96

For an arbitrary positive interger p, it follows from (3) and (6) that

1

P 1
11 S dGuly)= e
(1) Sk 2 Jﬁsgj 1 qu(@ntqn-1)
ptT= gy P
= 3 S
An=p (pqﬂr*l_'-q?l*?)( (p"’l)QnWI'*_fIn—r‘_))
og?n-2 4,

Tan-1

<1 +M>
— Qn—l

aé‘&"':?,pgx (p+£@><p+1+ I >Qn—1(qnf1 +qn-2)

o1 qn—1 Gn-1

o (P+y)(p+1+y)

(*) If we can make the assumption that the sequence of the probability measure
{G,} converges vaguely to some probability measure G which has a continuous
density function ¢(y), then we can obtain from (11), by letting # — co and then
differentiating with respect to x, the relation

1 ( 1 >: 1+ ()
prar N\ pra )~ pta)p+ita) I
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from which it follows that

1 1
14—— — e | = .
(13 o( 50 ) = +an
Since we are assuming that ¢ is continuous, this implies that (1+z)g(x) is a
constant. If we now let # — co in (10), then

1

1+y S ! 1 .
e D — oy —
o (I4yx)? vdy=C o (L+gay ! c

Here, C is a normalizing constant, i.e., C=1/log 2.

. 1
1 ()= .
nn:Ef <L) S 1+.'17

§2 Continued-Fraction Transformation of HurwiITZ.

In §2 and § 3, we discuss properties of a new continued-fraction transformation,
and in §4 we derive the density function of the invariant measure for that
transformation. We hope that the argument we use in §4 will help clarify the
meaning of the “concrete method” that we introduced in § 1.

HurwiTz treated in [2] certain type of continued-fraction expansion for com-
plex numbers. Restricted to the real numbers, this expansion takes the following
form.

Let X be the interval [—1/2, 1/2) and define for any real number z, [z}, =
[x+1/2]. We then define a transformation S on X by

1 Ll] for =0
(12) Sx=¢ * LZAh

0 for x=0.
If we write

[l] for #=0

a(z)={ L*¥h

) for x=0,
and
13) an(x)=a(S""'z),

then, just as in §1, the continued-fraction expansion of the following form is valid
for every xe[—1/2,1/2):

I S P S S S
(14) r= ax) | axx) + ban(x)+S™(x)

I S U S P L I

Ta@ Ta@m T ae) T @

We shall exclude, as we did in §1, the set of all rational number from
[—1/2,1/2). We associate to each xe[—1/2,1/2) the sequnce of intergers (a,(z), a:(x),
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-oo, @u(), ---) determined by (13), and let
W= ((a\(x), ax(x), -+, a(xn), ---)|we[ ~1/2, 1/2)}.

Let us call a finite sequence (a,, s, -+, @n) Of intergers S-admissible if |a;|=2
for each i=1,2, ---,#, and furthermore, if @;=2 then @;,,=2, while if ¢;=—2 then
;1 =—2. Call an infinite sequence (@i, ds, -, &n, ---) S-admissible if for every pair
i, J(1=i=j) the finite sequence (ai, @;i:1, -+, @;) is S-admissible. From the definition
of the transformations S and of a,(z) it follows that

W={(a,, az, -+, @n, )| (@1, *+, Any ---) 1S S-admissible}.

The transformation S induces in the obvious way the shift transformation ¢ on
the symbolic space W.

For an S-admissible sequence (ai, as, -+, da, ---), One can define sequences {pn}
and {g,} in the same way as (3) in §1 and one can show that for these sequences,
too, the properties (4), (5) and (6) hold. One can also define the ¢a, a4.-a, bY

1 .
S/)al‘az,.“,an(.ﬁ)zv"f"if“l' """ +—

for an S-admissible sequence (@i, @, -, @x). The domain of definition of ¢4 a5 a,
depends now on the sequence (a;, @s, -, @s) and is given by

1 1 .
-, = f anx+2
< 2 2) o
) 1 .
(15) S*lay, a, -+, anl= <0, 5) it a,=2
<—%y 0) 1f an:'_z-

Here, [ay, a» ---, a,) denotes, as in §1, the sub-interval of [—1/2,1/2) determined by
the S-admissible sequence (ai, as, -+, @), i.€.,

[aly ayy oy a"]z{xe ‘%, %) al(x)zal» aZ(x):a% Tty an(x>:an} .
By using (14) one can show that
. 1 1 .
X J/‘:gl'g/l'...,a"(t), —E<l‘<5 if a,*+2
(16) [ah s,y 0y An]= x: ngbalwn,an(t), 0 <i <% if a.=2
1 .
2 2=day man(t), #E<t<0 if a,=-2.

In our discussion in §1 the quantity g.-i/¢» played a significant role. By (6),

| ! i
6114+,71ﬂ R +~-1~4. However, the sequence (@, @n_1, -+,
L

n— n i l
qn-1/g» 1s equal to —— @
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@;) may no longer be S-admissible even if (a,, @, -+, @,) is. So, it will be necessary
for us to represent ¢, /g, in a different way. The following lemma will play a
key role in §3 and §4.

Lemma 2.1 If (a,, as, ---a,) is S-admissible, then

Qn~~l \/5 '_1 1 i 1 ‘ 1 ‘ ]. 1

= g A =Y e e

R g 5 e o3 T3 Ty
1SS0 oo
and
gn-n 3—4/5 1 1 | 11 1

— 5 PR A A e ML SO

B (M,-,S(g})),anﬁ;z qn 2 | 3 +i -3 ! 3 i —3

Proof. Let us define

qn—-1 qn-1
a,= Su and fS,= sup —
' (”1,-.pﬂn) qn - (’h,-»?ﬂn) qn
ap=2
then one can easily show that
—Ba= inf k,
@, ,ap) gdn
apx—2
so that
17 aw= sup L :21 ,
(@, ,an—y 2+ n-2 fgn—l
n—1
(18) ﬁn:(a sup 1 = 3“19 .
Lo, an—1) 3+ qn-2 Pn-1
n—1

By induction on #, one can show that both {a,} and {g.} are monotone increas-
ing in # and that |a,!, |3./<{1 for each #. Therefore, «=lim a, and f=lim $, both

n—00 n-=c

exist and from (17) and (18) it follows that w=1/(2—#) and 5=1/(3—73) and there-
fore a=(v5—1)/2 and 5=@B—+/5)/2. It is clear that « and 3 are the desired
supremums.

The continued-fraction transformation S of Hurwirz satisfies, because of (15),
the condition (b) of NaAkADA [5]. The same argument as in §3 of [5] can be used
to show that other conditions of Nakapa [5] are satisfied as well. In particular,
V5 -1

2
Using these facts one can establish the following theorem :

2n
we can prove that o(n)é( > and that j(n)=0.

Theorem 2.1 (i) The transformation S admits an invariant measure p which is
equivalent with the Lebesgue measure m on X=[—1/2,1/2) and satisfies 1]K<
dpldm< K for some constant K >0.
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(i) For an arbitrary Borel set E

T __1\2n
Im(S*"E)—,u,(E)lgClm(E)(v 52 1> .
(ili) For amy fundamental interval F=[a,, as, -+, a,], where (ai, -, a,) is S-admis-
sible, and for any Borel set E

V 5 —1\2%-w
vE Ly

USENF) = EYu(F)| féCz#(E)/l(F)(

where C, and C, are constants independent of sets E, F.
From Theorem 2.1 it follows easily that the system (X, S, ) is a weak Ber-
noulli endomorphism.

§3 Backward Transformation

In this section we consider a new expansion associated with the continued-
fraction expansion considered in §2. This new expansion induces a transformation
which is the “reverse” of the transformation considered in §2. For this reason,
we call the new transformation the “backward transformation .

Let a=(~/'5—1)/2 and 8=(3—+/5)/2. a and § have the meaning described in
Lemma 2.1. Denote by X™* the interval [ —a, a) and define for any real number z,

[x+a] if =0
19 [1':|2={ .
—[—z+4] if x<0,

define a transformation S* or X* by

l—[l] i 20
(20) S*p=! x |al

0 if x=0,
and let

[l] i 20

a*(x)= R

o if =0,
and
21 af(x)=a*(S* (x)) nz=l.

Then, just as in §1 and § 2, the following continued-fraction expansion is valid:
For any arbitrary irrational ze[—a, a)

U T ST T 1
22) o= Lot T o)+ 57 @)
1] 1 1 1

1 . 1 .
et T a@ T ae) T da@ T
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Define the symbolic spaced W* by
W*: {(a;k(x), a;k<x), Tty a;k(x)r "')1506[&') 0()}.

Let us call finite sequence of integers (@i, @, -+, @) S™-admissible if |@;|=2 for
each i=1,2, .-, n, and furthermore, if @;=2 then a@;,,=—2, while if ¢;=<—2 then
@i.1>2. An infinite sequence (ai,as, -+, dy, ---) Will be called S*-admissible if for
every pair ¢, j (1=i{=j) the finite sequence (&, di., -, @;) is admissible. From the
definition of the transformation S* and a¥(x) it follows that

(23) W*={(ay, s, . @u, -+ )@s, @3, -+, @n, -+) 18 S*-admissible}

and that the transformation S* induces the shift operator ¢* on W*.

For an S*-admissibble sequence (ai, @, -+, @,), one can define quantities p, and
¢» in the same way as in (3) of §1, and the properties (4), (5) and (6) are valid
for these sequence also. A function ¢¥, a,...a, Similar to ¢4, q,..a, Of sections §1
and §2 can be defined in the same way as before for an S*-admissible sequence
(a1, @s, -+, @) and the sub-interval

[ay, az, -, anl*={rel —a, )|af(x)=ay, -+, af(®)=an}
of X*=[—a,a) can be represented in terms of the function ¢¥ 4,4, as
{x: z=¢%, . 0 (y), —<y<al if @,=2
(24) [ah A2y *0y an]*: .
v z=¢%, .0, y) —aLyf if a.=-2.

You note that a sequence (ay,d,, -+, @,) is S-admissible, then the sequence
(@, @n-oy -+, ay) Will be S*-admissible. If we denote by (I/T/, &) the natural extension
of (W,s), and by (W*,&*) the natural extension of (W*, ¢*), then we can obtain
the following:

Lemma 3.1 System (W, ) and (W*,&*) are isomorphic dynamical systems.
Proof. Define a map ¢ from W onto W* by

(coy gy @y @1y @y )= () @2y A1y Ay Ay )
for every (---,d—s, a1, a1, @s, --)eW. Then, it is easy to check that ¢F '¢~!=4%.

Remark. The natural extension (W,&,Z) of the endomorphism (W, s, 1) which was
induced by the endomorphism (X, S, i) is weak Bernoulli by Theorem 2.1. There-
fore, the system (W¥* &* 1*) is also a weak Bernoulli automorphism, where 4*
denotes the measure ¢2*.

Lemma 3.2 Call the restriction of X* to W* by i*, and denote by y* the measure
induced on X* by X* in the natural way. Then,

1) p* is S*-invariant.

2) y* is equivalent with the Lebesgue measure on X*.

Proof. 1) follows immediately from Lemma 2.1. To prove 2), it suffices to show
that there exists a constant A;>1 such that
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(25) K'm((ay, @z -, an)*)<p¥(ay, as, -+, an]*)<Kim((ay, @s, -+, @u)")

for an arbitrary S*-admissible sequence (a,, @s, --+, @,) for any n=1, where m denote
the Lebesgue measure on X*. We note that

(26) /J*([alv Azy ey an]*):/l([(lm An-1y *y (lJ)
and that by Theorem 2.1 there exists some constant K such that
(27) K m(lan, -, ae)<gl[@n, -+, ax])Em([an, -, a1]).

It follows from (16) and (24) that m((aw, ---, @1)) and m((a,, @s -+, @, ]*) can be
represented as

(28) m([an; An—-1, '“v(ll])

1
1 1 |
qn(@ns An-1y al)+§qn_1(an, oy @2) § {gn(@ny -0y al)—gqn_l(an, az)l\
if ax+2
_ . 1 - if =2
2{4n<am () dl)“‘EQn»l(am Tty 02)}%(0", ) a!)
1 1 lf )= -2
2{(]7L(any A al)_EQn»l(any AR a‘z)}(In(am Ty al)
and
(29) 7”([611) M) an]*)
[ 1
{gnl@s, -, an)+agqu (s, -, a1 Hqe(a@s, -, @n)— Bgqu-s(ay, -+, @u1)}
if @,=2
— 1,, "
{Qn((ll; ty an)+ﬂ¢]n—1(0(1, sty O(n—l)} {Qn(fl'l, ey (l’n)—O(Qn—l(le, R an)}

if a,=-2.

In formulae (28) and (29) and here-in-after, we denote by pu(ai, -+, @n), Pald@n, -+, a1),
gnlay, -, an), qu(a@n, -, @), etc. in order to distinguish p,’s and ¢.’'s which are
determined by an S™*-admissible sequence (ay, -+, @») and an S-admissible sequence
(am ey al)'

Since |gn|>|ga-1| hold for either case (i. e. for the case of S*-admissible sequence
and for S-admissible sequence), it follows from (28) and (29) that there exists
constants K,, K;>1 such that

(30> Kzulq"(aﬂv al)~2<m([am Tty fll])<K261n(ﬂm AR} 01)72
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(31) A.s 'lqn(ah Yy an)ﬁz<m([al, Tty (ln:l*><K3(In(aly Ty an) '2'

On the other hand, since gu(a,, -, @2)=q.{a., -, @) follows from (6), we obtain
(25) for some K, by using (26), (27), (30) and (31).

§4 The Density Functions for Invariant Measures for S and S*

We determine the precise form of the density functions for the invariant
measures for S and S*.

Theorem 4.1 The invariant measure p equivalent with the Lebesgue measure m
for the transformation S has the following density function:

1
” Jcm Jor x>0
.a’_(x)z
m 1
- for x<0,

R e
here C; denotes the normalizing constant.

Theorem 4.2 The invariant measure p* equivalent with the Lebesgue measure m
Jfor the transformation S* has the following density function:

C3 ~L1**— fOr xe(—a,—ﬁ)
2<1—~x>
2
dp™ ()= Q-——l—l—— for ze(—3573)
dm T <l—~w2>
4
1 -
Cu,___,w,,f,,,, Jor xe(f, a).

Proofs of Theorems 4.1 and 4.2 Let (ay, as, -+ @) be an S-admissible sequence,
and denote by pu(ai, -+, @) and g.(a,, --- @,) the p, and g, determined by (3). Then,
the Lebesgue measure of the interval [ay,as, -+, @,] is given by (28). We know
also that the sequence (a,, -+, @1) is S*-admissible and that gu.(@n, -+, @) =ga(ay, -+, @»)
and puldn, -, @) =qn-r(as, -+, @n). Next, for each fixed »#, we consider the set

Ger_ 1 + 1 S SRRERPY +»—L ; (@1, -+, @) is S—admissible | .

Qn { ay dn—l al
From Lemma 2.1 it follows that (gn-./g.)e X*=[—a,«). Let G, be the probability
measure on X* which assigns to each point ¢, i/g. the mass m([a,, -, @)).
Namely,
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e L T )
(Q7l +727Q7L»1> (q:; - Eqn—l)
1 .
e — if w,=2

®  al)-
( ) g qn 2<QM ’l" '%an1>q”

W——i B i o2

! 2<{Jn—"'2“q:z——l>4n

Now, for the sub-interval [a@,, ¢y 1, -+, @,]* of X™ which is determinea by the
S*-admissible sequence (@, @1, -+, @), We have
(33) Gu ((an, -, ad*)=( x (b1, ba, -+, biey bic 15 -+, D 1))

by, bpag)s S-admissible,
bpt1=api=1,,n

=m(S~*a,, as, -+, a)) for every k=1.
From Theorem 2.1 it follows that
llm Gn»k ([an; Tty (11]*):/1([01, Ty (lnD

k—o0

The definition of p* given in Lemma 3.2 implies that

/«l([aly Tty an]):ﬂ*([am Tt al]*>-

*
Therefore, lim G,=,*, and by Lemma 3.2, the density —Z%(y):g(y) exists.

n—co

In order to determine the density function g¢(y) precisely, we consider the
following several cases:

Case (i): —p<a<<la<lj
Suppose p= +2, then

1

{ae=  z e
1 11 qn
Pt pre T ¢y,  pta
1
= X
(p=p and < +l >< “1—(] )
s :::f <x qn 2 qn-1)\4n D) n—1
1 qu ]. Qn,—rz
g 22122
- 3 )i ) 1
ap=p and 1 CIn—fZ' 1 qn-2 > ( 1 Qn-2 )( 1 gu-2 >
P — 4= n— +—- 7 n-1""""
ag%};:? T <p+ 2 + qn—l )(p 2 QH—I q ! 2 qn—l q ! 2 qn—l
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By letting # — co, we obtain

1 l)( _l,>
. <1+2y 1 2y

(34) S s sdn= S” <1>+%+y) (P—%H/)

Similar argument shows that for the cases p=2 and p=—2, one can get

Sf <1+;y<><1_;y; o(y)dy iTop=2
1 Cx ot
@ o 1J
« @+w@—~+®

Case (ii): p<alz<a.
Nothing that if @=g¢u-2/gn-1 =2 then a,-,=2 and hence @,=2, we get

- 2(1+%1/>
L S (m%w)(p—%ﬁ)

pta
@)\ ewar=

1
pra 1— Y

‘w+w@+%+@

-g(y)dy if pz=3

~g(Cin)dy if p=2.

Case (iii): —a<la<z<l—-p.

——o()dy if p=-3
G =

_1 1

ptr z ]. —-é‘y

S 1 g(y)dy if p=-2.
“w+w@—5+ﬂ

Differentiating both sides of equations (34), (35), (36) and (37) with respect to
x, we obtain

(38) (1ﬁ%< [Hl—x >Z>g< P—ll—x >:<14%I2>g(l«) it —f<eh pra2

1 1 1 1\, e —
(39) 2(1-}--2——54_—‘{)(;(71)—;;) <1—Zx )g(Jc) if f<x<lp, p=2
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(40) 2(1—1 1 )g( 1 ):(1—lx2>g(;c) if —p<a<B, p=-2

2 5ra )\ Fia y
W M)t o e
@ (b b e o e e
0 (A M 1 s s
TSRV -
If we define
(Lo it eetas
Ha)={ (1= o)oto) it we(—45)
(el o,

then, from (38)—(44), it follows that
h(x)=h(S*x).

Since S* is ergodic, £ must be constant almost everywhere.
Thus, we obtain

C—2<1——§;)_ if ze(—a, —f)
1 .
o(z) = Cgm if ze(—pBp)
c3—2<1T1%;->— i we(pa)

where C; is a normalizing constant. This completes the proof of Theorem 4. 2.

For the remainder of the proof of Theorem 4.1, let m,(x)=m(S~"[0, z)) and
Snlx)=(dm,(x))/dx and calculate lim f,(z), in case £ >0. It follows from (8) and (28)

_ 1
fn(x) - (ayg, -;a") i (Qn—l-Qn—ﬂ‘)z

S-admissible
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) (000
<q7f+72 qIL--l Qn+ 2 anl

(ay, Lap)

1 1
s-admissible (@ntqn-12)" (C]n + *QnA) <C]n - Eqn 1)

on—1 ., 2
T
1
2<q7z+—é‘q”—l)qn
+ T B
%’Li"ﬁ (Qn‘i‘CInAlx)zz(Iu (q”‘*'EQn—l)
bbb, e
= — P ZG’IL R T dGn .
| it e+ s a6
Letting # — oo, we obtain
dp N o 1
i =AM fu(2)=Cy Sg Tra =01 = p) (2>0).

In case »<0, we let m,(x)=m(S "(x,0)) and use the same argument to get

dp 1 )
dm =A@y <O

§5 Concluding Remarks

In this section, we try to establish the logical connection between the “ method
of pure-chance discovery” of §1 and the method of proof we employed in § 2—§ 4.
1) If we wish to employ the “ method of pure-chance discovery ” in the derivation
of results of §2—8§4, we can adopt the following procedure:

First of all, assume that the measure G, defined on X*=[—a«,a) by (32)
satisfies the hypotheses (%) made in §1. Then under this assumption one can
prove in exactly the same manner as we employed in §4 that the function ¢(x)
satisfies the identities (38)—(42). This will enable one to determine the form of
the function ¢(x) and the fact that "g;l;:CTlfﬁﬁ)l(_*l—}—.m) . If one follows this
procedure, there will remain a problem of showing that, in fact, the measure g
with the density dp/dm is the invariant measure for the transformation S on
{—1/2,1/2). On the other hand, for the transformation S* one can prove directly
that the identities (34)—(37) satisfied by the function ¢(x) are nothing but the
identities to be satisfied by the density function of any invariant measure for S*.
Alternatively, one can verify that the function g(x) having this particular form is
indeed the density function of an invariant measure for S*.

2) Conversery, one possible “explanation” of the method of pure-chance discovery
of §1 can be given if we look at it from the view-point of §2—§4. Namely, if
we consider the backward transformation associated with the transformation in-
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duced by the simple continued-fraction expansion, then we see that the backward
transformation in fact coincides with the simple continued-fraction transformation
itself. Therefore, the hypotheses (*) made on the sequence of discrete probability
measures {G,} can be interpreted as the assumtion on the existence of an invariant
measure for the backward transformation, and we are led to the reasonable con-
clusion that the function ¢(x) and dp/dm(x) coincide with each other since the
spaces X and X* are identical in the present situation.

3) If we emphasize “the method of pure-chance discovery” in §2—§4, it is
possible to take the following approach. Define the discrete measure G, concen-
trated on points gn—1/gx bY Gulgn-1/g»)=1/g,*. Make the hypotheses that the sequence
{Gn} converges vaguely to a probability measure G having a continuous density
function g¢(x). One can then prove as in §1 that g(x)=constant, and using this,
fact, one can explicitly determine the form of the Radon-Nikodym derivative dp/dm
for the invariant measure p. This approach will simplify the computation con-
siderably. However, the characterization of g(x) as the density function for the
invariant measure for the backward transformation will no longer be valid. Even
for the case of the simple continued-fraction transformation of §1 one can use this
simplified procedure.
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