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TREATMENT OF KINEMATICAL INTERACTION AND ZERO-POINT
SPIN REDUCTION IN ANTIFERROMAGNETS

Mirrstrt Fukvenl and TabasHl OKABE

Dept. of Instrumentation Engineering, Keio University, Yokohama 223, Ja~an

(Received Jume. 4, 1977)

ABSTRACT

Two kinds of approximation-methods, the metric operator method due to HERBERT and
the projection operator method due to IsHikawa and Ocucul, are considered and compared
each other. In present paper the former, which has bez» vclid only for S=1/2, is extended
for general spins. Numerical applications to zero-point spin reduction in real antiferro-
magnets are performed. It is confirmed that the kinematical interaction plays a decisive
role particularly on chain-like substances.

§1. Introduction

Recently, a large zero-point spin reduction has been observed in low dimensional
antiferromagnets. In a chain-like antiferromagnet, such as KCuF,, the reduction
reaches about 50% (DE JonGgH and MiepEMA 1974). It is pointed out by HERBERT
(1969) that the kinematical interaction which determines mainly the magnitude of
the reduction is not negligible even at absolute zero. For the isotropic Heisenberg
antiferromagnet, the free spin wave theory gives the divergent result, since the
kinematical interaction is not taken into account properly.

HerBerT (1969) has firstly calculated the reduction for S=1/2 by considering the
kinematical interaction. IsHikaAwA and OcucHi (1975: we abbreviate to IO here-
after) have obtained the reduction for general spins in chain-like antiferromagnets
and have shown that the contribution from this interaction is really considerably
important. HERBERT has used the Dyson-MALEEV (which is abbreviated to DM)
transformation to map the states in the spin space which are orthogonal but not
normalized into the orthonormal states in the boson space. The matrix elements
in the spin space and in the boson space are connected with each other using a
metric operator, which is expresced by a single step function in the case of S=1/2.
He has investigated the reduction in the ground state of an antiferromagnet with
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this metric operator. On the other hand, I0 have mapped the orthonormal spin
states into the orthonormal hoson states, using the HoLsTEIN-PrRiMAKOFF (Which is
abbreviated to HP) transformation. If such a mapping has been done, it is then
necessary to introduce a projection operator instead of the metric operator in order
to exclude the contributions from the non-physical states which have more spin
deviations than 2S+1.

The metric operator method by HegrBERT is exfended to general spins and the
results obtained are compared with thoze of IO in the present paper. Further, the
application of thic mehod to real chain-like antiferromagnets is considered briefly.

§2. The Boson Mapping

We consider an antiferromagnet which can be devided into two sublattices and
take the following Hamiltonian represented by

H:2]<]Zm>sj'sm_l4[§ Sj"é; an:]v (1)

where J is the constant for the antiferromagnetic exchange interaction, and A is
the effective anisotropy field in the crystal, and both of them are positive. Sub-
scripts 7 and m denote the sublattice sites belonging to the up-spin and the down-
spin respectively. The summation {j,m) must be taken over all nearest neighbor
pairs of spins interacting with J.

The state for the j-th atom in the spin space can bz represented by

> =1@S L S0, >, (2)

where |O;> is the ground state of the j-th atom. Although these ket vectors
{lu; >} are orthogonal with each other, they are not normalized,

< uilvj> :["u()ij‘;uv, ( 3 )

1 u—1
FZ‘:1'<1"2S’>”'<1” 25 > (4)

The non-physical states whose spin deviations are larger than 2S do not appear in
the spin space thanks to the factor F,, and the results obtained in this space should
contain no contribution from these non-physical states.

In the boson space, the corresponding state |«;) can be defined from the ground
state |0;),

and

uy)=(u)™" *a;)10)). (5)

Hereafter we use ¢; and «;, which are creation and annihilation operators for bosons.
The vectors {|#,)} are now orthonormal :

(lt,;i?)_,‘) :f;ij(;u'v- ( 6 )

The boson states which have no correspondences in the spin space (the non-physical
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states) can exist in this space. In order to exclude the contribution from the non-
physical states and to introduce the metric structure as is seen in the spin space,
the metric operator y; is defined as follows (HERBERT 1969, and AKHIEZER et al.
1968),

Suslo> =(2t4ln;|0) = Fudun (7)

Here 7; is the Hermitian operator and has an eigenvlaue of zero for the non-physical
states and non-vanishing values for the physical states. The operators in the spin
space can be mapped into the boson space by requiring that all corresponding matrix
elements are equal, so that the boson operator A; corresponding to the spin operator
A; is given by

Cujl Ajlv s> =(ujlm4,0;). (8)
The boson operator A; is self-adjoint with respect to the metric operator :
714;= A7 (9
However, A} does not commute with the metric operator in general,
7145 % Ajns, (10)
and, consequently, A} is not Hermitian :
A= Aj. (11)

It is DM transformation that has the correspondences (7) and (8) and inevitably
leads to the undesirable property (11):

S;—(2S)"*(1—aja;/25)a;, S; —(25)"%a},
and
S:—S—aja;. (12)

The metric operator for S=1/2 is represented by a single step function. DEMBINSKI
(1964) obtained an explicit solution of equation (7) for general spins, and another
solution may be expressed by a linear combination of unit step functions;

x>0,

28 . 1,
=1 Dblu—aja),  O)=| "= (13)
Du—;Fu_Furuy and DZS::FZS, (14)

where the coefficients D, are obtained from equations (7) and (13), and are shown
in Table 1.
On the other hand, IO have represented the states in the spin space as follows,

log; > =[(2S)“u ! F]7%(S5)"9|0;5>, u;<2S. (15)

These vectors are now orthonormal and are mapped into the orthonormal boson
states (5). Then, 10 have introduced the HP transformation, and thus the boson
operator A has desirably the Hermitian property.

149



Mirsuru FukucHi AND TapasHl OKABE

Table 1. Coefficients D, of the step functions for the metric operator.

s | D, D, D, D, D;
1
1 1

1 2 2
3 1 4 2
2 ‘ 3 9 9
o | 1 3 9 3

| 4 8 32 32
5 1 8 36 96 g
2 5 25 125 625 625

S;——(2S)"*(1—a;a;/25) *a;, S;——(25)"*a}(1—a;a;/25)"?,
and
Si——S—aja;. (16)

However, the representation (16) should be restricted to the boson-state where the
boson occupation number is smaller than 2S+1. It is, therefore, necessary to
introduce a projection operator Pj,

P;=6(2S—ajay), (17

where O(x) 1s a unit step function defined as in equation (13).
The relation between the DM and the HP transformation has been discussed fully
in terms of the metric operator by DEMBINSKI (1964) and HERBERT (1969).

§3.. Zero-Point Spin' Reduction

We introduce the DM transformation into the Hamiltonian (1):
S;——@25)"*(1—aja;/25)a;,  Sn—>(25)""by,
S; —>(25)"%aj, Sn——(2S)"4(1 —bjhbm/25)bm,
Si—>S—aja; and Si——> =S+ bnbm. (18)

Further, the Fourier- and the Bogoliubov-transformation are introduced to obtain
the diagonalized harmonic Hamiltonian :

a;=N-12 %‘4 exp (ik- R;)ax, bu=N"12 4:_‘, exp (—ik- Ru)b, 19)

ax=ur@x—Viby, and ﬁk':%kbk—i)kahf. (20)

Then the excitation energy of a spin wave is given by
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=2]SZN (14 AJ2]SZ Y — 1, (21)
where

=21 Z; exp (ik-3),

e =+ [(2JSZ(L+ AJ2JSZ)+ i} 2212,
and

ve="TF2]SZ(1 + AJ2]SZ ) — A} 24 ]2 (22)

Here @ denotes the vectors from a given atom to the Z nearest neighbors interacting
with the strength /. When the HP transformation is introduced into the Hamiltonian
(1) instead of the DM transformation (18);

S;—@2S)*(1—aja;/25) %a;,  Su—(25)%by(1— bnbn/25)"?,
S;—>(25)2a;1—aj;a;|25)%,  Su——(25)" 1 —0brbm/25)" *bm,
Si——S—aja;, and Sh—> =S+ bpbuw, (23)

we obtain the spectrum (21) again by a similar way.

The expectation value of S° for a spin in each sublattice is expressed by the
relation {(S%)=S—4S, where 4S is the zero-point spin reduction given by equations
(8) and (18);

(Olya‘al0) _<0IS=S10> _

ey ds. (24)
(Ol4]0) <010y

Here |O) is the exact ground state in the boson space and |O> is the corresponding
one in the spin space. In IO’s treatment, the projection operator P is introduced
into equation (24) instead of ».
The metric operator 7 is a product of the metric operators of all lattice sites,
that is, y=1] 7, and the following approximation is introduced in the real calculation :
J

(Olyaja;|0) _ (Olyaja,|0)

12:2519). e RZ] (25)
(0150 (Ol 0)
Tao Yuin (1966) has given the expansion formula of a step-function :
O(u—atay= "ZJO Bula;)(a;)",
and
aia0(u—aia;)= ni:l Cu(aj)"(a;)", (26)
where

B,=1, B,=0, n=u,

B.— (=1 *(u+1)(u+2) - -(n—1)
" nl (n—u—1)

, nzu+1,
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and
C = (=" “u(u+1)- - -(n—2)
" m—1) (n—u—1) ’

n=u+1. 27)

The true ground state |O) is approximated by the magnon ground state |0) in
the free spin wave theory. Then we obtain

(Ol(a;)(ay)"|0)=n V", (28)
where
V=N . (29)
k
Here v, is the coefficient which appears in the Bogoliubov transformation (20), and
V is the spin reduction in the free spin wave theory. From equations (13), (14),
(17) and (24), the reduction 4S for a general spin is obtained for the both cases:

28

> Dl+u)(l+ V)~ yt

Ve ' ~---=, the metric operator method, (30)
Du(l + V)—(l +U) [/

1

U=
and

28+1
ASp=V — 77(71721(;2;;%%7/55;’ the projection operator method. (31)

Table 2. The limitting values of zero-point spin reduction where the
anisotropy field A tends to zero.

Square lattice

S ASp ASu
1/2 0.141 0.141
1 0.184 0.163
3/2 0.194 0.172
2 0.197 0.177
5/2 0.197 0.181
free spin wave theory 0.197”7
NaCl-type lattice
S f asp ASx
1/2 0.067 0.067
1 0.077 0.072
3/2 0.078 0.074
2 0.078 0.075
5/2 0.078 0.076
free spin wave theory ‘ 0.078
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Using the formulae (30) and (31), we have carried out the numerical calculations
for the spin reduction of the case with non-vanishing A as well as the case with
vanishing A as the limitting case. The values of 4S for two and three dimensional
systems with A=0 are shown in Table 2 together with those of 10. As for the
non-vanishing A, the values obtained for one, two and three dimensions and for
different S values are shown in Table 3. We have shown the spin reduction of

Table 3. Zero-point spin reduction for various spin values: (a) o1e dimension,
(b) two dimension (square lattice) and (c) three dimension (NaCl-type lattice).
The values of 4Sy and 4Sp are given by expressions (30) and (31) respectively.

(a) one dimensional system

| os=12 0 s=t | s=32 | s=2 5=3/2

A/2]i ASy  4Sp | A4Sy Sdp ‘ A4Sy ASp | 4Sy  4Sp 4Sx 4Sp
\
|
|
i
| |
! {
| |
i |
i

1x10-1; 0.162 0.162 0.242 0.285 ‘ 0.299 0.364 0.342 0.419 0.376  0.459

4%10-2 | 0.211 o0.211 0.305 0.366 0.370 0.469 0.420 0.539 0.459 0.588
1x10-%2 | 0.266 0.266 0.382 0.466 0.460 0.605 0.519 0.702 0.566 0.771
4x103 | 0.294 0.294 0.422 0.519 0.508 0.681 0.574 0.798 0.627 0.881
1x10-% | 0.325 0.325 | 0.470 0.582 0.568 0.777 0.643 0.922 0.705 1.030

4x1074 | 0.342 0.342 0.496 0.616
1x10| 0.361 0.361 ' 0.528 0.658

0.601 0.830 | 0.683 0.993 = 0.749 1.117
0.644 0.898 | 0.733 1.086  0.808 1.236

i

(b) two dimensional system

s=1/2 | S=1 o os=32 | S=2 L S=5/2
A2] | 4Sw  4Sp | A4Sk 4Sp ' ASw  4Sp ASy  4Sp | ASw  4Sp
1x101 | 0.094 0.094 - 0.119 0.130 0.131 0.144 0.140 0.151 ‘ 0.146 0.156

| |

4x10-2 | 0.113 0.113 1 0.137 0.152 | 0.148 0.164 0.155 0.169 i 0.160 0.173
1x10—2 1 0.125 0.125 ‘ 0.148 0.165 ‘ 0.158 0.177 0.165 0.180 0.169 0.183
4x10-3 | 0.132 0.132 0.154 0.173 | 0.164 0.184 0.170 0.187 ]; 0.174 0.189
1x10-3 | 0.136 0.136 0.158 0.177 ‘ 0.167 0.188 0.173 0.190 , 0.177 0.192
4x10~ | 0.138 0.138 | 0.160 0.180 = 0.169 0.191 = 0.175 0.193 | 0.178 0.194
1x1074 | 0.140 0.140 = 0.161 0.182 i 0.171 0.192 0.176 0.194 . 0.179 0.195
(c) three dimensional system

S=1/2 S=1 | 5=3/2

Aj2] | 4Sw  4Se A4Sy 4Sp . 4Sy  4Sp
1x10-1| 0.057 0.057 | 0.065 0.069 | 0.069 0.072
4x10~2 | 0.063 0.063 | 0.070 0.074 | 0.072 0.076
1x10-2 | 0.066 0.066 | 0.071 0.076 | 0.073 0.078
4x10-* | 0.067 0.067 | 0.072 0.077 = 0.074 0.078
1107 | 0.067 0.067 | 0.072 0.077 - 0.074 0.078
4x10- | 0.068 0.068 | 0.072 0.077 . 0.074 0.078
1x104 | 0.068 0.068 | 0.072 0.077  0.074 0.078
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Zero-point spin reduction of one dimensional system.

10

Fig. 1.
the broken line correspond to 4S and V respectively.
by equation (30). Broken lines: 4Sp given by (31).

the one dimensional system for S=1/2 in Fig. 1 (a), and for S=1 and 5/2 in Fig.
and the spin reduction
Since S=1/2, equations
(30) and (31) give the same results. Fig. 1 (b) shows the spin reduction 4S) (the
solid lines) given by equation (30) and the spin reduction 4Sp (the broken lines) by
equation (31). It is seen that the kinematical interaction is contributing considerably

1 (b). Fig. 1(a) shows the spin reduction 4S (the solid line)
V in the free spin wave theory (the broken line) for S=1/2.

in this system.
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Though the spin reduction tends to infinity for an isotropic one dimensional system
in the free spin wave theory, the values of 4S tend to S in the present theory
when the anisotropy field A approaches to zero, since the kinematical interaction
is taken into account properly. The ratio of 4S to the magnitude of S becomes
larger as the dimensionality becomes lower, or as the spin value S becomes smaller
as is clearly seen in Table 3.

§4. Discussion

A large spin reduction (~50%) has been observed in the so-called one dimensional
antiferromagnet such as KCuF;. In this substance, it is found that the antiferro-
magnetic order is developed along the c-axis, and there are weak ferromagnetic
interactions between chains. It may be considered that the weak interactions between
chains in the chain-like antiferromagnet can be replaced by the effective anisotropy
field in one dimensional system.

In order to investigate this idea, we take the following Hamiltonian :

H=2]<Z;>S‘1~S¢—2]”Z] S-S, (32)

7 <m,n>
and have carried out numerical calculations to it, where J denotes the exchange
interaction between spins which belong to two different sublattices in a chain, and
J’ denotes the ferromagnetic interaction between different chains. Following the
procedure described in §3, we may obtain the diagonalized Hamiltonian as follows:

H=FE,+ %: (e e+ B Be)s

Ey,=—2]NS*Z(1+v)+ 2 {2—2]5Z(1+Lv)},

Ae=2JSZ~ (1 +(l—)P 7
re=2" 3 exp (ik-8), 1,=2""" } exp (ik-d'),

¢=J|J, and v=2Z (33)

The vectors 8 and 8’ denote the vectors from a given atom to the Z and Z’ nearest
neighbors, which interact through J and J’ respectively. We have computed the
spin reduction of the chain-like antiferromagnet for S=1/2 as well as for S=1 and
5/2. Fig. 2 (a) shows the spin reduction 4S (the solid line) and the reduction V in
the usual free spin wave theory (the broken line) for S=1/2. In Fig. 2 (b), the
solid lines and the broken lines correspond to the spin reduction 4Sy given by
equation (30) and the reduction 4Sp by equation (31) for S=1 and 5/2, respectively.

Fig. 1 corresponds with the case where the antiferromagnetic order arises from
the staggered field A for one dimensional antiferromagnet. Fig. 2 corresponds to
that from the ferromagnetic interaction J’ between the antiferromagnetic chains.
We may connect these two results and obtain the relation between A and /.
If we replace these interchain interaction by the effective staggered fields for
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AN S=1/2

1 ] lllIIlI 1 LlLlIII! 1 llllllll 1 J
0 0 162 10" 1

’

J/J
(a)

0 0 0° 1 1

(b)
Fig. 2. Zero-point spin reduction of a chain-like antiferromagnet. (a) Solid line: the
values of 4S. Broken line: the values of V. (b) Solid lines: 4Sy given by equa-
tion (30). Broken lines: 4Sp given by (31).

the z-direction, it may be expected that the relation A=2]’Z’¢(S*> would hold on
the simple molecular-field-theoretical point of view. However, it seems that we
should prefer the relation A=2J(Z’—1)S numerically from these results obtained
above.

From the discussion mentioned above, we may apply the theory to other materials
with S>1/2 as well as KCuF;, CuCl;-2NC;H; and Cu(NH;),SO,-H.O with S=1/2.
The zero-point spin reductions 4S obtained for these chain-like substances are shown
in Table 4, using the Hamiltonian (32) where we have used the values for {(=J'/])
given by DE JoncH and MiepEma (1974).
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Table 4. Zero-point spin reduction of real chain-like antiferromagnets.

i s Yl | ASu 45p
KCuF, 1/2 2.7x10°2 0.21(42%) 0.21(42%)
CuCl,-2NC;H, 1/2 4%10-3 0.28(56%) 0.28(56%)
Cu(NH,),S0,- H,0 1/2 6x10% | 0.27(54%) 0.27(54%)
CrCl, 2 5x10-2 ; 0.24(12%) 0.27(13%)
CsM= C13 2HZO 5/2 6x10-3 | 0.45(18%) | 0.56(22%)
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