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t{EIO ENGINEERING REPORTS 
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ON THE WEAK CONDITIONS FOR 
MEAN ERGODIC THEOREMS 

KAZUO ANZAI 

Dept. of Mathematics Keio University, Yokohama 223, Japan 

(Received Mar. 3, 1977) 

ABSTRACT 

In this paper, we shall deal with the weak conditions for a mean ergodic theorems. 
1 n-1 

R. SINE (1970) has shown that - L: Ti: converges in the strong operator topology iff the 
n i=O 

set of fixed points of T separates the fixed points of the adjoint operator T*, T being a 
contraction operator on any Banach space. In section 4 we prove a generalization in which 

00 

V n( T) = L: ani Ti satisfying the condition (E1) replaces 11T11~1. In section 3 it will be pro
i=I 

ved that Theorem 1 (ANZAI 1977) is still valid in the normed linear space if we replace 
the condition (E) by the condition (E1). 

1. Preliminaries 

Let X be a locally convex space and T a continuous linear mapping of X to 

X. Let Vn(T) = I; aniTi, where (ani) is a matrix that Vn(T) is well defined as a 
i=O 

continuous linear mapping of X to X. Then we call Vn(T) satisfying the condition 
(E1) if 

( i) lim I; ani=l, 
ll-HXJ i=Q 

(ii) lim(l-T)Vn(T)x=O for xEX, 

(iii) { Vn(T): n~l} is equi-continuous. 
A mapping T is said a satisfying the condition (P) if, for every xE X, there exist 
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a sequence Vn(T)= I; aniP satisfying the condition (E1) and an xoEX depending 
i=O 

on .r such that a subsequence of Vn(T)x converges weakly to xo. 
We recall that a matrix (ani) is said satisfying the condition (E) if the matrix 

satisfies the following properties 
(i) Iimani=O (i=0,1,2···), 

n~oo 

(ii) lim I; ani = 1, 
n-+co i=O 

co 

(iii) I; lanil~k (n=l,2,3, .. ·), 
i=O 

00 

(iv) lim I; lani-11 -anil =0 uniformly in n. 
k-+co i=k 

Remark 1. If T is a linear mapping on a complete locally convex space X 
such that the family of mappings {Tn: n:::;l} is equi-continuous, and let a matrix 

co 

(ani) satisfy the condition (E), then Vn(T) =I; aniTi satisfies the condition (E1). 
i=O 

The following result is well known. 

Theorem A. Let T be a linear mapping on a locally convex space X and let 
co 

Vn(T)= I; aniTi satisfy the condition (E1). If, for given xEX, there exists a sub-
i=o 

sequence Vn,(T)x of Vn(T)x which converges weakly to an xoE X, then the sequence 
Vn(T) x converges to XoEX and Txo=Xo. 

Let T be a continuous linear mapping on locally convex space X and let T* 
the adjoint mapping of T. Throughout this paper we denote by FT and IT the set 

1 n-1 

of fixed points of mappings T and T* respectively. - L: Ti is denoted by Mn(T). 
n i=1 

2. Main Theorem 

Lemma. Let X be a normed space and let T a bounded linear operator on X 

such that there exists a sequence Vn(T) =I; aniTi satisfying the condion (E1). Let 
i=O 

<fa be an element of X*. Then there exist a subsequence Vn,(T)*</> of Vn(T)"""<fa and 
a </J0 EX* such that Vn,(T)*</> converges to <Po in w*-topology and </JoEIT. If a sub
sequence Vn,,(T)*<P of Vn(T)*</> converges to a </JoEX* in w*-topology then ¢ 0 is a 
fixed point of T*. 

Proof. Since the set { Vn(T): n:::; l} is bounded in uniform operator topology, 
the set { Vn(T)*</>: n:::;l} is a bounded subset of X*. Thus there exist a subsequence 
Vn,(T)*<P of Vn(T)*<P and a <faoEX* such that the subsequence Vn.(T)*<fa converges 
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to <Po in w*-topology. Then we have that, for every xeX, 

l<x, </Jo-T*q)o)I ~ l(x, <Po- Vn,(T)*</J)I 

+ l<x, Vn,(T)*<jJ-T*Vn,(T)*<P>I + l<x, T':f. Vn,(T)*<jJ-T*</Jo)1 

~ l<x, </>o- Vn,(T)*<P>I + l<x, T* Vn,(Tr¢-T*</>o)I 

+II Vn'(T)(l-T)xll ll<Pll. 

By the condition (E1)-(ii), q>u is a fixed point of the operator T*. The lemma is 
proved. 

Theorem 1. Let X be a normed linear space. If a operator T satisfies the 
00 

condition (P), then, for every Un(T) = L: bniTi satisfying the condition (E1) and 
i=O 

every xeX, there exists an xoEX depending on x such that xoEFr and xo=lim Un(T)x. 
n->oo 

Proof. We shall show that, for every ¢eX*, there exists a </>oEX* such that 
the sequence Un(T)*</> converges to </Jo in w*-topology. By Lemma, there exist a 
subsequence Un,(T)*</> of Un(T)*</> and a </>oElr such that the subsequence Un,(Tr<P 
converges to </>o in w.,,.-topology. If there exist a cp0 eX* and the other subsequence 
Un"(T)*</> such that Un"(T)*</> converges to ¢ 0 in w.,,.-topology, by Lemma, <Po is a 
fixed point of T*. For given any yEX, by the hypothesis and Theorem A, there 

00 

exist a YoEX and a sequence Vn(T)= L: GniTi depending on y such that Vn(T) 
i=O 

satisfies the condition (E1) and 

Yo=lim Vn(T)y, 
n-oo 

According to the condition (E1)- (i), we obtain 

(yo, </>o)=lim (yo, Un,(T)*</>) 
n 1 -+oo 

=lim (Un,(T)yo, </>)=(yo,¢). 
n'-.oo 

Similary, it follows that (yo, ¢0) =(yo,¢), and so, (yo, </>o) =(yo, ¢0). Since (Yo, </>o) = 
(y,<fto) and (yo,¢o)=(y,¢o), we have 

<Y, </>o) = (y, </Jo). 

Hence, the sequence Un(T)*</> converges to </>o in w*-topology. Also, by hypothesis, 
00 

there exist an x 0 EX and a sequence Wn(T)= L: CniTi depending on x such that 
i=O 

Wn(T) satisfies the condition (E1) and xo=w-lim Wn(T)x. Then we can take an 
n->oo 

element r;o of X* satisfying that r;o=w*-lim Wn(Trq>. Also we have 
n->oo 

(xo, </Jo)= lim ( Wn(T)x, </>o) = (x, </Jo), 
n-+= 

and 

(xo, </>o) = lim (xo, Un(T)*</>) = (xo, </J). 
n-.oo 
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Thus it follows that (xo, ¢)=(x, </>o). 

On the other hand, we have 

and so 

This shows that 

(r,, r;o)=lim (x, Wn(T)*<fi) 
n--.cxo 

= lim ( Wn(T):c, ~11) = (:ro, <fa). 
n~vl 

(x0 , <fi)=lim < Wn(T).'C, ¢) 
n-->= 

= (x, r;o) = (x, ¢0) 

=lim (Un(T)x, <fa). 
n-+oo 

xo=w-lim Wn(T)x=w-lim Un(T)x. 

Theorem A implies that 

Xo=lim Un(T)x and XoEFr. 
n-->= 

Thus we get the theorem. 

As a consequence of Theorem 1 and Theorem 2 (Anzai 1977), we have following. 

Corollary 1. Let X be a normed linear space. Consider a finite number of 
commuting bounded linear operators Tj(l ~ j ~]) on X such that 

( i ) Tj satisfies the condition (P) (1 ~ j ~]), 
(ii) for every TJ(l~j~]), llTJll~K (n=?;l). 

J 
Let T be a convex combination I; ajTJ of linear operators Tj (l~j~J), where 

j=l 
J 

O<aj<l (l~j~J) and I; aj=l. Then, for every xEX and rpEX>i<, there exist an 
j=l 

x0EX and a ef>0EX* respectively such that 
( 1) x0=lim Mn(T)x=lim Mn(T1)···Mn(TJ)X, 

J 

( 2) XoEFT= n FTp 
j=l 

n-->= 

( 3) efio=w*-lim Mn(T)*<fa 
n-->= 

=w*-lim Mn(T1)*···Mn(TJ)*<fa, 
n--+oo 

J 

( 4) ef>oEIT= n Irj• 
J=l 

Let S be a compact Hausdorff space and CR(S) a Banach space of real valued con
tinuous functions on S. Then a Markov operator T is a positive (T/=?;0 whenever 
f=?;O) linear with Tl=l. We call any Markov operator T uniformly mean stable 
(u.m.s.) if the sequence Mn(T)f converges uniformly for every f in CR(S). Also 
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we recall that a measure ti on S is said invariant measure with respect to T if 

~ Tfd11= Vd11 for all /ECR(S). 

Then we have that 11 is an element of IT if and only if 11 is invariant measure. 

From Corollary, we have the following remark [c.f. (SINE 1975)]. 

Remark 2. Let {Tj: 1;£j;£]} be a set of commuting Markov operators on CR(S) 
J 

whose satisfy the condition (P), and let T= I: ajTj a convex combination of 
j=l 

J 

Tj(l;::;j;::;J), where O<aj<l and I: aj=l. Then the set of invariant measures 
j=l 

with respect to T coincides to the intersection of the sets of invariant measures 
with respect to Tj(1;£j;£J) and Tis u.m.s. 

In the case of the noncommuting operators, we have the following result; es
sentially the same idea has been used by M. EDELSTEIN (1966). 

Remark 3. Suppose X is a uniformly convex Banach space, and Tj(l;::; j;::; J) 
are contraction linear operators on X whose are not necessary commuting. Let T 

J 

be a convex combination I: ajTj of linear operators Tj(l;£j;£J), where O<aj<l 
j=l 

J 

and I: aj=l. Then it is easy to show that, for every xEX, there exists an xoEX 
j=l 

such that 

J 

.ro=lim Mn(T):.c and xoEFT= .n FTj· 
J=l 

3. Equivalence 

Theorem 2. Let X be a Banach space and T a bounded linear operator on X 
00 

satisfying that there exists a sequence Vn(T) =I: aniTi satisfies the condition (E1). 

Then the following properties are equivalent. 
( 1) T satisfies the condition (P). 

00 

i=O 

( 2) If Un(T)= I: bniTi satisfies the condition (E1), then, for any xEX, there 
i=O 

exists an element xoEX depending on x such that XoEFT and 

Xo=lim Vn(T)x=lim Un(T)x. 
n-+oo 

( 3) FT separates the points of Ir. 

Proof. By Theorem l, it follows that the properties (1) and (2) are equivalent. 
( 2)---+ ( 3) By the proof of Theorem 1, we obtain that FT separates the points 

of Ir. 
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( 3)-+ ( 1) Let xEX be given. By assumption, Lemma implies that, for every 
</JEX*, Vn(T)*<P converges to a <ftoEir in w*-topology. Thus we can define the func
tion ho on X* depending on x as follow 

hM)=lim <x, Vn(T)*<fa) for </JEX*. 
n----oo 

Then, it is evident that ho is a linear function. We shall show that ho is continuous 
in the w*-topology. 

If a net {<ft''}aE1 converges to <ft in w*-topology, then, by Banach-Steinhause's 
theorem, the set {9>": aE11} is bounded. Also, by assumption and Lemma, there 
exist <ft~(aEA) and 9'> 0 depending on <p«(aE!l) and <fa respectively such that <fa~(aEA), 
<ftoEir and 

1>~=w*-1im Vn(T)*<fa"(aEA), </J 0 =W*-lim Vn(T)*<ft. 
n--->oo n-'too 

Thus it follows that h0(<f/')=ho(<ft~) and ho(<ft)=ho(<ft0 ). Also, for any yEFr, the net 
{(y, 9'>~)}aE,i converges to <Y, </Jo) because the net {<y, <ft")}aEA converges to <Y, <ft) and 
<Y, <Pa>= <Y. ¢~)(a EA) and <Y, efJ) = <y, ¢0). Since Fr separates the points of Ir, by 
Banach-Steinhause's theorem and Alaoglu's theorem, a net {<ft"}"E' converges to <ft in 
w*-topology if and only if, for every zEFr, the net {<z, ¢")LE1 converges to <z, efJ). 
Thus the net {<x, ¢~)}aE1 converges to <x, 9'>0). Therefore, ho is continuous in w*
topology. Hence, Banach's theorem implies that there exists an xoEX such that 
<.ro, <ft) =ho(</J). This completes the proof. 

Then we have following. The equivalence of the following properties (2) and 
(3) is a generalization of the (SINE 1975). 

Corollary 2. Let X be a Banach space and let T a bounded linear operator on 
X with llTnll~K (n~l). Then the following properties are equivalent. 

( 1) T satisfies the condition (P). 

( 2) Let Un(T)= L: bniP satisfy the condition (E1). Then, for any xEX, there 
i=l 

exists an x 0 EX depending on x such that x 0 EFr and x 0 = lim Mn(T)x= 
n~oo 

lim Un(T)x. 

( 3 ) Fr separates the points of Ir. 

4. Function Space 

Let S be a compact Hausdorff space and let Ma subspace of C(S), where C(S) 
is a Banach space of complex valued continuous functions on S. Then Mis called 
a function space if 

( 1) M separates the points of S, 
( 2 ) M contains the constants. 

We denote by alt1S the Choquet boundary (PHELPS 1966). 
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Theorem 4. Let M be a function space on a compact Hausdorff space S and 
let T a bounded linear operator on M. If, for every /EM, there exist a sequence 

00 

Vn(T)= I: aniTi satisfying the condition (E1) and /oEM such that a subsequence of 
i=O 

Vn(T)f(x) converges to fo(x) for all xEaMS, then, foEFT and, for every Un(T)= 
co 

I: bniTi satisfying the condition (E1), 
i=l 

fo=lim Vn(T)f=lim Un(T)f. 
1!->00 

Proof. By Theorem A and Theorem 1, we have only to show that there exists 
a subsequence Vn,(T)f of Vn(T)f such that 

(/ o, <fa)= lim ( Vn,(T)f, <jJ) for <jJEM*. 
n 1 -+co 

By assumption, there exists a subsequence Vn'(T)f of Vn(T)f such that 

fo(x) = lim Vii-(T)f(x) 
n 1 -+oo 

Let 9SEM* be given. By Choquet-Bishop-Deleew's theorem, there exists a measure 

µ on S such that (g, <P> = ~s gdµ for all gEM and 11(E) =0 for any Baire set E in S 

which is distinct from aMs. Therefore, by Lebesque dominated convergence theorem, 
we have 

!~~ ( Vn'(T)j, </>) = ~i,~L Vn,(T)fd/l 

= ~Jodµ=(fo, ¢). 

Thus the proof is complete. 

Corollary 3. Let X be a Banach space, and let T be a bounded linear operator 
on X. If, for every xEX, we can take an xoEX and a sequence Vn(T) satisfying 
the condition (E1) and satisfying that there exists a subsequence Vn'(T)x of Vn(T)x 

such that 

<xo, q))=lim (Vn,(T)x, rp) 
n 1 .....-.+oo 

whenever ¢ is an extreme point of the unit ball of X*, then, xoEFT and, for every 
sequence Un(T) satisfying the condition (E1), 

x0 =lim Vn(T)x=lim Un(T)x. 
n-+oo n-+oo 

Proof. Let K be a unit ball of the dual space X*. Then K is a compact 
Hausdorff space in the w*-topology. We denote by A(K) the space of complex 
valued continuous affine functions on K. Then A(K) is a Banach space with 
supremum norm and aAcK)K=exK, where exK is the set of extreme points of K. 

Let f/J denote the natural embedding of X into A(K): 

f/J(x)(</>)=<x, ~)) for ef>EK. 
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Then (fJ is a isometrically isomorphism of X to a subspace of A(K). Also it is 
clear that 

il"/J(x)ll =sup l<x, 9))1 = sup l<x, </>)I. 
</>EK <j>Ee:rK 

Hence it follows from Theorem 4 that 

Xo=w-lim Vn,(T)J;. 
n---co 

This completes the proof. 
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