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TWO-LEVEL PLANNING FOR 
MULTI-OBJECTIVE SYSTEMS 

KTYOTAKA SHIMIZU 

Dept. of Instrumentation Engineering Keio University, Yokohama 223, Japan 

(Received January 6, 1977) 

ABSTRACT 

We study a two-level system having N local systems in the lower level subordinate 
to a central system in the higher one, such that both central and local systems have 
decision-making units. The central system is a coordinating agency and the local ones 
are semi-autonomous operating devisions. The basic principle of planning for this organiza
tion is that the central system allocates resources so as to optimize its own objective, 
while the local ones optimize their own objectives using the given resources. 

A local objective function, fn, is a function of the lower level decision variable vector 
x=(x1,. ·., XN) and the higher level one a=(a1,. ·., aN), where an is a resource vector 
allocated to the local system n. Since the functions {/n}'~~i are mutually independent, the 
lower level composes a multi-objective system, in which the lower level decision-makers 
minimize a vector objective function f =(11,. · · ,/s) with respect to x in cooperation with 
each other. Thus, the lower level generates a set of noninferior (i.e. Pareto optimal) 
solutions x(a) being parametric with respect to a. 

The central decision-maker, then, chooses the optimal resource allocation a 0 and the 
best noninferior solution x0 corresponding to a 0 from among a set of x(a). 

The above problem becomes a decentralized two-level optimization, when the local 
system contains only its own variables (xn, an). 

Several theorems and iterative algorithms for the formulated problems are obtained 
by use of mathematical programming techniques. 

I. Introduction 

In this paper, we are concerned with a class of organizations composed of a 
coordinating central system and plural semi-autonomous local systems. 

In economic activities, for example, the central system distributes its available 
resources to the local ones and the local systems perform production activities 
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utilizing the given resources. The central system determines resource allocation 
so as to optimize its objective consisting of values of products of the local systems 
and cost of the resources. That is, the central system pursues profit of the central 
level and governs the local systems through the way of resource allocations, while 
the local ones establish their autonomies by optimizing their own objectives. 

Hence, we consider the hierarchical decision system in which the higher level 
determines values of decision variables peculiar to the central system (for instance, 
parameters such as the resources allocated to the local systems and/or policy 
coefficients defining objectives and constraints of the lower level) and the lower 
level determines values of decision variables peculiar to the local systems (for 
instance, process variables such as products, quality etc.). The basic principle of 
planning for this organization is that the central system allocates scarce resources 
so as to optimize its own objective, while the local ones optimize their own objec
tives under the restriction of the given resources. It is noted that a two-level 
system to be studied is such that both central and local systems possess independent 
decision-making units. 

Among studies to solve mathematical programs by two-level decomposition 
techniques by resource allocation exist KoRNAt's paper for LP (KoRNAI, 1965), 
S1L \'ERMAN's for convex program (SILVERJ\IAN, 1972) and GEOFFRION's for decentralized 
two-level planning of a more general form of a resource allocation type (GEOFFRION, 
1972). There are some others on optimization of hierarchical decentralized systems 
by parametric programming approach (SmM1zi:, 1969, 1974, 1976-a, b). 

II. Two-level Optimization for Multi-objective Systems 

In this section, we formulate optimization problems of the hierarchical system 
in which autonomy of the local systems is explicitly considered within the restric
tion imposed by the central one. The lower level consists of N local systems each 
of which possesses its own decision variable vector Xn, an objective function In 
and a constraint vector function Un~O. But there exist mutual interactions among 
the local systems, because In and/or Un have not only Xn but x=(Xi, · · · ,XN) as its 
argument generally. Therefore, the lower level is a group of local systems having 
mutual interaction and different goals. 

The lower level decides the best value of the vector x, which is dependent on 
a parameter vector a assigned by the higher level. But the lower level composes 
a multi-objective system where local decision-makers try to minimize a vector 
objective function f =(Ii, · · · ,/.v) with respect to x. Accordingly, one can not 
obtain a unique solution even if a is fixed. 

For the lower level problem, the following two cases are considered: (i) The 
local systems cooperate together and carry out vector minimization with respect 
to x=(xi, · · · ,x,v). They generate a set of noninferior (Pareto optimal) solutions 
x(a) being parametric with respect to a. (ii) The local systems perform noncoopera
tive game and generate a set of Nash solutions xs(a). 

In this paper, we restrict ourselves to the first case. 
Let an be a resource vector allocated to the local system n, which is regarded 

as a parameter vector in the lower level problem. The central decision-maker 

70 



Two-level Planning for Multi-objective Systems 

determines an optimal resource allocation a0 =(a~, ···,a~), based on the central 
objective function $. At the same time, however, it must choose the best nonin
ferior solution x0 corresponding to a 0 from among the set of noninferior solutions. 

The two-level planning is formally stated as follows: 

min </J(a, x(a)) 
rr,.i(a) 

(1.a) 

subj. to G(a,x(a)):S:O (1. b) 

(l .c) 

. ( U1(X, :x)~O) 
subJ. to : 

UN(X, a)~O 

(l.d) 

where x(a) represents a parametric noninferior solution. The eqn. (1. b) is a 
constraint imposed upon the parameter vector a (resources and/or policy coefficients) 
and the decision of the lower level x(a). We assume existence of (a, x(a)) satisfy
ing (1. b). This equation is expressed separately as Gi(a)~O and G2(x(a))~O in 
most cases. 

After all, the problem (1) is to find the optimal resource allocation a 0 and the 
best noninferior solution x0 =Xbest(a0

) corresponding to a 0 so as to minimize </J under 
the constraints (1. b) (1.c) (1.d). Therefore, </J must provide both roles of determin
ing the optimal resource allocations and at the same time choosing the best solution 
from among the noninferior solution set. Note that a value of </J varies with 
which x(a) is choosen even if a is fixed. 

The problem (1) is regarded as the hierarchical multi-objective system in which 
there exist N mutually independent local objective functions {/n} and a super 
objective function </J. Further, it is such a problem that parameterized constrained 
optimization problems of the lower level are contained in a part of the constraints 
of the higher level. Therefore, it is not of a type of usual mathematical programm
ing problem. 

Multilevel system is a parametric approach in principle in the sense that one 
defines a family of decision problems whose solution is attempted in a sequential 
manner from the higher to the lower level and the solution of the original 
problem is achieved when all sequential problems are solved. If a problem of 
certain level is solved, then its solution fixes some parameters in the problem of 
the subsequent level and one can attempt to solve the completely specified problem. 
In this way, we have a series of parametric constrained optimization problems, 
each of which is a simplified decision problem. The problem (1) can be solved in 
principle with such a parametric apprrach. 

For simplicity, let f=(fi, · · · ,/x) and g=(g1, ···,UN). The problem (l.c) (1.d) 
is then written as follows. 

f(x(a), a)=min f(x, a) (1. c)' 
x 
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subj to g(x, a)=$0 (l .d)' 

Now let us consider the following scalarization problem m relation to the 
problem (l.c) (l.d). 

min w'I'f(x, a) 

subj. to g(x, a)< 0 ( 2) 

where a is fixed and ws!J= {wlw ·O, i: U'11=l} 
" 1 

Then the following theorems are well known. 

Theorem 1. If x(a) solves the scalarization problem (2) for some w>O, then 
x(a) is a noninferior solution to the problem (l.c) (l.d). Further, when f and g 
are convex functions in x, if x(a) is a noninferior solution to the problem (1. c) 
(1. d), then x(a) solves the problem (2) for some ws!J. 

Theorem 2. Assume that f and g are strictly convex and convex functions in 
x, respectively. Then, in order that x(a) be a noninferior solution to the problem 
(l .c) (l .d), it is necessary and sufficient that x(a) is a solution to the scalarization 
problem (2) for some wsfJ. 

By use of Theorem 2 with the assumption on f, g the problem (1) may be 
equivalently represented as follows. 

min </J(a, x 0(a, w)) 
a,Wt!J 

subj. to G(a,x0(a, w))=$0 

wTf(x0(a, w), a) =min wTf(x, a) 
x 

subj. to g(x, a)~O 

(3.a) 

(3. b) 

(3 .c) 

(3.d) 

where x 0(a, w) is a parametric optimal solution to the scalarization problem given 
a and w. 

A difficulty of the above approach is due to the fact that it is almost impossibe 
to obtain a parametric optimal solution to (3) in explicit form. Therefore, we need 
an iterative algorithm to search the better (a, w) based on the information of the 
lower level solutions under the fixed (a, w). Namely, the iterative procedure consists 
of the coordinator asking the local systems what would happen if the parameter 
vector were set at (a, w) to which the local systems respond by giving some local 
information concerning the optimal solution of the corresponding local problems. 
The center (coordinator) then uses this information in a prescribed manner to 
determine a revised trial setting for (a, w). 

When a size of the problem is relatively small, direct search such as Constrain
ed Simplex Method (Box method) seems to be useful. The method may be applied 
also when </J is not stated explicitly. We will discuss on the Constrained Simplex 
Method in Section 4. 

It is assumed throughout that all functions are differentiable. 
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Suppose that f and g are strictly convex and convex functions in x, respectively. 
Then, it is necessary and sufficient for the problem (l.c) (l.d) that there exist µ 
and l satisfying the following equation. 

µTflxf(x, a)+.irrxu(x, a)=O 

g(x, a);?O, .,iTg(x, a)=O, ..i:::;O 

µ2:":0(µ=1=0) 

( 4) 

where µ, l are Lagrange multipliers (refer to SHIMIZU, 1976-c). If we consider 
µ=w, the eqn. (4) is a necessary and sufficient condition for the scalarization 
problem of (l.c) (l.d) with respect to x. 

It is evident that the problem (1) is to solve (a0
, x 0

) such that $(a, x)--+min 
under the constraints of (4) and (1. b). 

Next we consider the case when $ is a function of f in the problem (1). 

min $(f(x(a), a), a) 
lf,i(a) 

subj. to G(a,x(a));?O 

f(x(a), a)=min f(x, a) 
·" 

subj. to g(x, a);?O 

(5.a) 

(5. b) 

(5 .c) 

(5.d) 

h ~ (G 1 (a) ) f . f 1 A h were G(a,x(a))= f(x(a),a)-c and c is a constant o sat1saction leve. t t e 

same time let us consider the following problem in connection with the problem 
(5). 

min (/J(f(x, a), a) 
a,X 

subj. to G(a,x);?O 

g(x, a);?O 

where G(a,x)= (;(;~~)-c) and c is a constant. 

We have then the following properties. 

(6.a) 

(6. b) 

(6 .c) 

Theorem 3. Assume that r/J is a strictly increasing function of f. Then a 
solution to the problem (6), (a0

, x 0
), solves the problem (5). 

Proof First, we show that a solution (a0 ,x0
) of the problem (6) is a feasible 

solution to the problem (5 .c) (5 .d) satisfying (5. b) as a is fixed at a 0
, then there 

exists .i such that 

f(.i, a 0
) ~ f(x 0

, a 0
) and f(.i, a 0

) =t f(x0
, a 0

) (7 .a) 

g(.i, a 0 );$0 
(7. b) 

G(a0
, .i);:::O 
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From the assumption and (7 .a) 

r/J(f(x, a"), a 0 )<rfJ(f(x11
, a 0

), a 11
) ( 8) 

From (7 .b) (7 .c) (8) this contradicts to that (x0
, a 0

) is a solution to (6). Therefore, 
since (x0

, a 0
) is a noninferior solution of the lower level problem and satisfies 

G(a0 ,x0)~0, it is a feasible solution to the problem (5). Since a set of feasible 
solutions to the problem (5) is contained in that of the problem (6), it is evident 
that (a0,x0

) minimizes the objective function of (5.a). This completes the proof. 
We will consider the following vector minimization problem in relation to the 

problem (5) : 

Then we have : 

. (r/J(f(x, a), a)) mm 
"·x f(x, a) 

subj. to G(a,x)~O 

g(x, a)~O 

(9 .a) 

(9. b) 

(9 .c) 

Theorem 4. Assume that (j) is a strictly increasing function of f. Then a 
solution (a0,x0

) of the problem (5) solves the problem (6) and further it is a weak 
noninferior solution of the problem (9). 

Proof Assume that a solution (a0,x0
) of the problem (5) is not a solution to 

the problem (6). Then, there exists (a, x) satisfying 

r/J(f(x' a), a)< r/J(f(x0
, a 0

), a 11
) (10) 

and 

G(a, x)~O, g(x, a)s;o (11) 

( i) In case that x is a noninferior solution of the lower level problem (5 .c) (5 .d) 
for fixed a=a, the eqns. (10) (11) contradict to the fact that (a0,x0

) solves the 
problem (5). 
(ii) In case that x is not a noninferior solution to the lower level problem (5 .c) 
(5 .d), there exists a noninferior solution x* to the lower level problem (5 .c) (5 .d) 
such that 

f(x*, a)~f(x, a) and f(x*, a)*f(x, a) 

g(x*, a)~O 

G(a,x*)~O 

against (a,x) satisfying G(a,x)~O,g(x,a)~O. 
Thus, by the assumption of the theorem 

r/J(f(x*, a), a)< r/J(f(x, a), a) 

Hence, from (10) and (13) 
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</J(f(x*' a), a) «fJ(f(x0
' a 0

), a 0
) (14) 

x"' is a noninferior solution to the lower level problem for a=a and satisfies (5.b) 
from (12 .c). Therefore, the relation (14) contradicts to the fact that (a0

, x 0
) solves 

the problem (5). Hence, (a0
, x 0

) solves the problem (6). 
Since the problem (6) is a scalarization problem of (9) for w=(l, 0, 0, · · ·, 0), a 

solution (a0
, x 0

) to (6) is a weak noninferior solution to the problem (12). 

Theorem 5. Suppose that f be a function of only x, i.e. f(x), in the problem 
(5). As sufficient condition that (a0

, x 0 =Xbest(a 0
)) be an optimal solution to the 

problem (5) is that (a0
, x 0

) satisfies the following: 
( i ) f, g and G, are convex with respect to (x, a). 
(ii) </J is convex with respect to f and a. 
(iii) fi//J(f(x 0

), a 0)>0. 
(iv) there exist µ, l and r such that 

µTf7.1f(x 0
) + .,(1'f.,g(x0

, a 0
) +rTf7xG(a0

, x 0
) =0 

f7a<P(f(x 0
), a 0)+ .,(Tf7"g(x0

, a 0
) +rTVaG(a0

, x 0
) =0 

g(x'1, a0)~0, .,(Tg(x0
, a 0)=0, l~O 

G(a0,x0)~0, rTG(a 0 ,x0 )=0, 7-?:0 

µ>O 

where µ satisfies µ = flf</J(f(x 0
), au). 

Proof Let la={ijgi(x0 ,a0 )=0} and la={ilr.Ji(X0 ,a0 )<0} From the third equation 
of (iv),Aif/i(X0 ,a0)=0, ViEl=Innfa. Hence l1a=O. 

It holds for an arbitrary feasible (x, a) that U1n(x, a) ~-O=u1a(x0 , a 0
). By this 

and convexity of g 

r.i:u I n(X0
' a 0 )(x-x11

) + r"g I a(X11
, a 0

)( a- a 0
) 

~gia(X, a)-U1a(X0
, a0)~0 

Further, by the fact that lin~2:0 and l1a=O, 

.,tT(fxg(x0
, a 0)(x-x0

) + Vag(x 0
, a 0)(a-a0

) ~O 

This relation holds for any arbitrary feasible solution of (5), (a, x(a)), thus 

In similar way for an arbitrary feasible (a, x(a)) 

rT(f7xG(a0
, x 0)(x(a)-x0

) + r"G(a0
, x 0)(a-a0))S0 

From the eqn. (15) plus the eqn. (l 6) 

{lTV:rU(X 0
, a 0

) +rTrr:G(a0
, x 0)}(x(a)-x0

) 

+{l1'f7,,g(x0
, a 0

) +rrr"G(a0 ,x0)}(a-a0)~0 

(15) 

(16) 

(17) 

By the way, as x 0 satisfies the condition (iv), with the assumption on G, x 0 is a 
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noninferior solution to the lower level problem for a=a0
• Substituting the first 

and second relations of (iv) into (17) we have 

µ 1T:J(x 0 )(x(a)-x0
) + PAJ(f(x0

), a 0 )(a-a0
) 2::0 

By convexity of f and µ>0, µTf(x) is convex. Hence 

Since µ = f'//J(f(x0
), a 0

), 

f'r<fJ(f(X 0
), a 0){f(X(a))-f(X0

)} > F.i:µTf(X 0 )(X(a)-X0
) 

Substitute (19) into (18), 

fl//J(f(x 0
), a 0){f(x(a))-f(x0

)} + flAJ(f(x 0
), a 0)(a-a0

) ~O 

By convexity of r/J with respect to f and a, 

r/J(f(x(a)), a)-r/J(f(x0
), a 0

) 

(18) 

(19) 

~ V1r/J(f(x0
), a 0){f(x(a))-f(x0)}+ f7,//J(f(x 0

), a 0)(a-a 0
) ~O (20) 

Therefore, for any feasible solution (a, x(a)) of the problem (5), it holds that 
r/J(f(x0

), a0)~r/J(f(x(a)), a). This proves that (x0
, a 0

) solves the problem (5). 

Theorem 6. Suppose that </J is given as r/J(f(x(a), a)) in the problem (5). Then, 
a sufficient condition that (a 0,x0

) be an optimal solution to the problem (5) is that 
( a 0

, x0
) satisfies the following : 

( i ) f, g and G1 are convex with respect to (x, a). 
(ii) </J is convex with respect to f. 
(iii) fl.rr/J(f(x 0

, a 0
)) > 0. 

(iv) there exist µ, l and r such that 

µTflxf(x 0
, a 0

) +irflxg(x0
, a 0

) +rrflxG(a 0
, x 0

) =0 

µTflaf(x 0
, a 0

) + ,iT[1ag(x0
, a 0

) +rTflaG(a0
, x 0

) =0 

g(x0
, a0)~0, ,iTg(x0

, a 0
) =0, A ~0 

G(a0 ,x0)~0, rrG(a 0 ,x0 )=0, r;:=;O 

µ>0 

where /1 satisfies µ=f'1r/J(f(x0
, a 0

)). 

Proof The first part before the eqn. (17) is exactly the same as in Theorem 5. 
Now, since x0 satisfies (iv), with the assumption on G, it is a r.oninferior 

solution of the lower level problem for a=a0
• 

Substituting the first and second relations of (iv) into (17), we obtain 

µTfixf(x 0
, a 0)(x(a)-x0

) + µTfiaf(x 0
, a 0)(a-a0

) ~0. 

By convexity of f and µ>O, µTf(x, a) is convex in (x, a). Hence, 

µTf(X(a), a)- µTf(XO, a 0
) 

~ VrµTf(x 0
, a 0)(x(a)-x0

) + f,,µTf(x 0
, a 0)(a-a0

) ~O 
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By µ=fl//J(f(x 0
, a 0

)), 

fl1r/J(f(x 0
, a 0 )){f(x(a), a)-f(x0

, a0)}~0. 

By convexity of (fJ with respect to f 

W(f(x(a), a))-(fJ(f(x0
, a 0

)) 

~ f71W(f(x 0
, a 0 )){f(x(a), a)-f(x0

, a 0
)} ~O 

Thus, for any feasible solution (a, x(a)) of the problem (5) it holds that </J(f(x0
, a 0

)) 

~</J(f(x(a), a)). 

III. Hierarchical Optimization for Decentralized Systems 

The two-level problem (1) becomes a hierarchical decentralized (semi-autonomous) 
system when an objective function fn and a constraint Un~O of each local system 
contain ony its own decision variable vector Xn and a parameter vector an given 
from the higher level. Accordingly, the local systems are serated with respect to 
x each other. That is, 

min </J(a, x 0(a)) 

subj. to G(a,x0(a))~O 

fn(X~(an), an)= min fn(Xn, an) 
:r n 

subj. to Un(Xn, an)~O 

n=l, ···,N 

(21.a) 

(21. b) 

(21.c) 

(21.d) 

where a= (ai, · · ·, aN) and x 0(a) = (xi(a1), · · ·, x~(aN )). A vector x~(an) means a usual 
parametric optimal solution. It is noted that the eqn. (21.a) achieves minimization 
with respect to only a in contrast to the eqn. (l.a). 

Hierarchical systems are characterized with concept of decomposition and 
coordination. 

When the above problem is a typical resource allocation problem, it becomes 
as follows. 

min </J(a, x 0(a)) 

N 

subj. to I: an~b (b: total resources), Gi(x0(a))~O 
n=l 

subj. to Un(Xn) ~an, Xn<-Sn 

n=l, ···,N 

(22 .a) 

(22. b) 

(22 .c) 

(22 .d) 

The problems of the lower level consist of a set of N separated optimization 
subproblems, each of which is a usual parametric optimization problem with a 
scalar objective function. They are mutually interacting through (22. b). The first 
equation of (8. b) bounds a total amount of resources and the second constrains 
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production activity of the lower level. The first equation of (8 .d) represents an 
upper bound of the resources that is available to the local system n for production 
activity. The second is imposed by technologies of activity peculiar to the local 
system n. 

Our aim is to develop algorithms to provide the optimal resource allocations 
and the problem (22) simply consists of the coordinating center and the decomposed 
(separated) local systems. But since the local systems are semi-automonous with 
its own objective, our problem is entirely different from the optimization for large
scale systems by the conventional decomposition principle for completely centralized 
planning. 

Feasible Direction Met!zod to Solve Problem (22) 

Numerical method for the problem (22) is achieved by parametric approach in 
principle. A method using multiparametric LP was proposed in case of the 
lower level problem of linear programs (SHIMIZU, 1974). Generally speaking, 
however, it is very difficult to solve parametric constrained optimization problems. 
So we need consider to solve the resource allocation problem in the higher level 
by iteration without getting an explicit parametric solution in the lower level. 

Feasible direction method seems to be useful for the coordinating center which 
updates the present allocations based on the solution of the local problems. In 
particular, when the central objective (22 .a) is given as min r/J(f(x0(a), a), a), we 

can obtain numerical procedures using primal decomposition technique by resource 
allocation, one of which was derived by GEOFFRION (1972) elsewhere. But we present 
here our algorithm in a different manner. 

Now let us consider the hierarchical decentralized system as follows. 

min r/J(f(x 11 (a)), a) 

.v 
subj. to~ an~=-cb 

n--1 

}~i(X~,(an)) =min f11(X11) 
:rJI 

subj. to Un(Xn) ;- an, X112S11 

n=l, ···,N 

A common example of the eqn. (23) is r/J = F(f(x0(a)) + H(a). 

(23 .a) 

(23. b) 

(23 .c) 

(23 .d) 

The above problem (23), to the higher level, may be viewed as one of optimally 
allocating the resource vector b to the local systems such that the central objective 
(/J is optimized. We attempt to solve it iteratively by choosing a feasible allocation 
testing it for optimality and improving it if it is not optimal. Then given the 
allocation an, the local system n must utilize it as well as possible, so 

Local Problem Pn(an): min fn(X11) (24) 
.ell 

From the feasibility condition for the central problem 

.\' 

~ a,,~b (25) 
11-1 
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ans Vn ={an[ there exists XnsSn satisfying U11(X1J~a,i} (26) 

We express the minimal objective value of Pn(an) as 

Wn(an) =min{/ n(Xn)[gn(Xn) ~an. XrisS,J (27) 
xn 

Then the two-level decentralized optimization problem (23) is equivalent to the 
following master problem. 

min (/J(w(a), a) (28 .a) 
l"nl 

,v 

subj. to I: an~b (28. b) 
nc~l 

ansVn,n=l, ···,N (28 .c) 

where w(a) = (w1(a1), · · ·, w.v(a.,,)) 
The equivalence between the master and original problems depends in no way 

upon convexity of their program. However, to make further theoretical progress, 
we impose the following conditions. 

Assumption(i) Sn is compact and convex. 
(ii) F(f(x), a) is convex and differentiable on S1 x · · · x Sr.. 
(iii) fn(Xn), Un(Xn) are convex and differentiable on Sn. 
(iv) F(f(x), a) is convex and differentiable in a. 
( v) the problem (23) is feasible. 
Two useful sufficient conditions for the assumption (ii) to hold are: 
(a) F(f(x), a) is convex and differentiable with respect to f and each fu(Xn) is 

linear in Xn. 
( b) F(f(x), a) is monotone increasing convex and differentiable with respect to f 

and each fn(Xn) is convex and differentiable in Xn· 
The convexity assumptions on j~, Un, Sn ensure that Vn is convex and that Wn 

is convex (with respect to an) over Vn, so the master problem is a convex program. 
It is very hard to obtain an explicit expression of the objective function (28 .a). 

Despite all idealized assumptions Wn may not be differentiable everywhere on Vn. 
This is the principal difficulty in solving the master problem. Fortunately, however, 
since each Wn is convex, it has directional derivatives at all points in int. Vn. 

Feasible Direction Method using directional derivatives was first applied by 
GEOFFRION (1970) and SILVERMAN (1972) to separable mathematical programs. 
Although our problem is not quite the same that they studied, we can still apply 
the similar technique as far as calculation is concerned. 

By solving a set of Pn(an), we obtain value of directional derivatives of ifJ(w(a), a) 
at a, DifJ(a; s), and information of the minimal value of ifJ(w(a), a). Then a direction
finding problem is constructed which, by minimizing the directional derivative of 
the master objective function (at the allocation a) subject to feasibility restriction 
(25) (26), finds a usable feasible direction s in which the allocation a can be improved. 
Such direction is a "locally best" usable feasible direction. If a is not optimal, a 
step is taken in the direction s, a new allocation a is determined and the process 
is repeated. 

In order that we may take a small step in any direction Sn from an and keep 
an+ {jsn in Vn, we assume that each vector an is in the interior of V 11 • 
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Now, a directional derivative* of r/J is given as follows. 

Theorem 7. A directional derivative of r/J(w(a), a) is given as 

D ,, ( ( ) . )- ~ ~- (Jr/J(w(a), a) D ' ( . ) or/J(w(a), a) I (/J W a, a, S - L..J '."l Un an, Sn + '"' Sn 
n~1 OWn oan 

(29) 

where Dwn(an; Sn) is a directional derivative of Wn(an). 

Proof By definition of the directional derivative 

. r/J(w(a + 1Ss), a+ ,Ss)-r/J(w(a), a) 
Dr/J(a; s)=hm ----- ----------------------

s-o i (3 

Let w(a+ps)=w(a)+h and a+ 1Ss=a+k. Since r/J is differentiable with respect to 
(w, a), 

r/J(w(a + ;3s), a+ ,ss) = r/J(w(a), a)+ ur/J(~(a), a) h+ or/J(~(a), a) (3s+O(h, f's) 
w ra 

where 

O(h, f's) 
-----+O, 
llh, f'sll 

as llh,fisll-~O. 

Hence, it holds that 

(/J(w(a + 13s), a+ 1Ss)-</J(w(a), a) 

= ur/J(w(f!-_~,_'!)_ h+ (Jr/J(w;a), a) 1Ss+O(h, ,ss) 
ow oa 

Deviding both sides by 13 and achieving limit operation, we have 

Dr/J(a; s) =lim 
11-•0 I 

ar/J(w(a), a) h or/J(w(a), a) c O(h P. ) 
'"' + a jjS + ' 1JS ow a 

/3 

where ! lh, ,Ssl 1--+0 as ;3--+0, th us 

lim O(h, ps) =0. 
'9-o+ 13 

Thus, 

D 'l( ) l' 1 ~- u(/J(w(a), a) { ( c ) ( )} ()r/J(w(a), a) P. -__ 1 
ri~a·s = 1m- wa+ 1:is -wa +-----f-'s 

' ,s-o ~ 13 _ Dw oa 

- ;, [ or/J(w(a), a) l' - 1 { ( -~ ) ( )} (Jr/J(w(a), a) -1 
- L..J '"' lffi 0 - Wn an+iJSn -Wn an + '"' Sn 

71 ,~1 OWn jS---.o-1 p oan _ 

* A directional derivative of f in s direction with respect to x is defined: 

Df(x; s)=lim f(x+i3~)-f(x___L 
11-•0 ,:J 
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= ~ [ a<JJ(w(a), a) D ( . ) o$(w(a1__~ ·1 
L.J '."l Wn an , Sn + '.':I Sn 
n=I OWn uan 

This completes the proof. 
By use of Theorem 7, the direction-finding problem to find a "locally best" 

usable feasible direction is given as 

• 
1
'" ~- ()r!J(w(a), a) (j(/J(zv__(·a·-·· ),_a __ ) .... ,,_-, mm L: _-------- Dzc11(alt; Sn)+ ' - '' 

1::111 11-1 OWn oaf/ 
,v 

subj. to L; Snr-.S:O, isR (30) 
11=1 

-l:?snr;::=l,n=l, · · ·,N,i=l, ···,dim an 

where B is an index set of the binding constraints at a, i.e. R= { ilbi- t
1 

ani=O }· 

Then the following properties hold (see Chap. 9. of LASDON (1969)). 
(A) Let a be feasible for the master problem. If s=O is optimal for the direction
finding problem, then a solves the master problem. 
(B) Let own(an) be a set of subgradients of Wn at an. 
Then the directional derivative Dwn(an; Sn) is expressed as 

Dwn(an;sn)= max x*Tsu=max(-A.'[,sn) 
:r*cDU1rl((rn) J.nr: 1n 

where /ln is a set of all optimal Lagrange multiplier vectors for Pu(an). 
Let each set Sn be expressed as 

We assume that each component of qn is convex and differentiable. Let x~ is 
an optimal solution to Pn(an), and A.n is the Lagrange multiplier vector associated 
with (gn;::=an, qn;::=O). Then A.ndn if and only if .x~1 and some A.n satisfy the Kuhn
Tucker conditions for Pn(an). Accordingly, under the assumption that </J be monotone 
increasing function with respect to f, from the eqn. (29) of Theorem 7, we have 
the direction-finding problem in a final form 

min [- _ £: (J(/J(~(a), a) _a[n(~_~) Zn+ £ a(/J(w(a), a) Sn] 
:c,s n=I OWn OXn n=I aan -

N 

sub. to L: Sni~O, isB 
n=l 

-l;::=sni;::-:1,n=l, · · ·,N,i=l, ···,dim an 

ogni(x~) · C {.I ( o) 0} 1 N 
'.':I Zn?: -Sni, le n= l 9ni Xn -ltni= , 11= , · · ·, 
<iXn 

aqni(X~) 0 . D - { · 1 ( o ) - 0} -1 N 
'.':I Zn'?:; , le n- l qni Xn - , 11- , · · ·, 
OXn 

-l;::=zni;::=l,n=l, · · .,N,i=l, · · ·,dimxn 

(31.a) 

(31. b) 

(31.c) 

(31.d) 

(31.e) 

(31.f) 

We obtain the locally best s by solving the above LP. Given a usable feasible 
direction sk, a new point ak 1 is generated by solving a convex one-dimensional 
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problem to determine a step size : 

min {1J(w(ak + psk), ak + psk) lak + 1ssk satisfies (25), (26)} 
/i 

where k is an iteration number. 

IV. Application of Constrained Simplex Method 

The feasible direction algorithm is analytical method to some extent, but it 
requires the assumptions of separability with respect to Xn, monotone increasing 
of r/J with respect to f, differentiability of all functions and the algorithm itself is 
fairly complicated. 

Among direct search method exists Simplex Method which uses no derivatives. 
A simplex in the n demensional parameter space is a geometric figure having more 
than (n+ 1) vertex points. The basic method is just to replace the worst vertex 
in the simplex by its reflexion in the centroid of the others, thereby producing a 
new vertex that is expected to improve the objective value so that the procedure 
of generating a new simplex can be repeated. The basic idea was improved with 
various modifications and Simplex Method for constrained optimization problem 
was developed (see in detail, SmMTZU, 1976-c). 

The Constrained Simplex Method is of simple principle and assumes almost 
no assumptions, thus is appreciated useful to problems with relatively small number 
of decision variables. 

The procedure can be applied to the problems (3), (21), (23) to decide the 
optimal allocations. First, generate a simplex with a trial (K = 2 dim a) points 
{ak}ff=i· Since N local problems with the allocations {a~} may be solved by appro
priate nonlinear programming, one can calculate {x~(a~)}f,= 1 and {/ n(x~(a~), a~)}fi=1 
given a~. 

Then, as one can evaluate values of r/J and G, the process of Constrained 
Simplex Method can be achieved. 

Since this method does not need derivatives etc., it can be applied to any 
complicated structured problems numerically. In particular, it may be applicable 
to the case when the central objective is not defined explicitly by introducing 
man-machine interactive decision systems. 

V. Conclusion 

We have studied the hierarchical optimization problems for multi-objective 
systems in which there exist plural semi-autonomous local systems subordinate to 
a central system and in which the lower level composes a vector minimization 
problem. The coordinating center allocates scarce resources so that the central 
objective function is optimized, while the local systems optimize their own inde
pendent local objective with use of the given resources. 

Two-level optimization problems for multi-objective systems were formulated 
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and various theories were established, which were essentially parametric approach. 
In perticular, decentralized optimization was studied for the hierarchical systems, 

in which the local systems were separated with respect to local decision variables. 
A primal method by resource allocation was proposed, which was a feasible derection 
method using directional derivatives. 

Besides, Constrained Simplex Method was proposed to apply to the more general 
structured problem which necessitates to solve parametric programming. 

The systems as newly formulated here exist in many real and important 
organizations. 
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