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ABSTRACT

Sufficient conditions of weak consistency of Simple Least Squares Estimators for
regression parameters and parameters contained in the modulation function in a polynomial
regression with a nonstationary error process are given. These conditions are represented
in terms of the covariance function of the stationary part and the modulation function of
the error stochastic process.

1. Introduction

We often tend to explain the mean function by explanatory variables when
the original time series can not be assumed to have mean zero. In this case,
that is, when Y()=m(¢)+ X(¢), where m(f) is a deterministic function and X(¢) is
a weakly stationary stochastic process with mean zero, the original time series
may be reduced to stationary form by subtracting the time dependent mean.
U. GRENANDER and M. RosenBLATT (1957) gave a necessary and sufficient condition
of convergence in mean of the linear estimators to the regression parameters.
And F. Eicker (1963) gave a necessary and sufficient condition of weak consistency
of Simple Least Squares Estimators for regression parameters in the case where
X(t) is an independent random variable.

On the other hand, in treating the field data, we sometimes face on the case
where we can not obtain the stationary time series even after removing the
trending part.

In this paper, we shall deal with the situation where m(#) is a polynomial of
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t of given order and where the residual is a nonstationary stochastic process. We
call this nonstationary process wuniformly modulated process. (see M. B. PriesTLEY
(1965)). We seek for a sufficient condition of weak consistency of Simple Least
Squares Estimators for the parameters contained in this model under a unified
version. Under this model, first, we shall give a sufficient condition of weak
consistency of Simple Least Squares Estimators for regression parameters. The
condition obtained here can be considered as one of the robust conditions of weak
consistency of Simple Least Squares Estimators in this model. Second, by assum-
ing that the distribution of the stationary part of uniformly modulated process is
Gaussian and by parametrizing the modulation function, we shall give a sufficient
condition of weak consistency of Simple Least Squares Estimators for the modula-
tion parameters given by the estimated residuals for the uniformly modulated
process.

2. Weak consistency of Simple Least Squares Estimators
for regression parameters

Let us consider a model
y
Y(t)= 2 it/ +c(t)X(@), 2.1)
Jj=0

where the time parameter ¢ is discrete, Y(#) a real-valued stochastic process, c¢(¢)
a deterministic function of # and X(#) a weakly stationary stochastic process such
that

(1) EX(H)=0, —ocolt<co
(i) EX@X(s)=R(t—s), —oo<t, s<co.

Then X(¢) itself has the integral representation
X(t)=S” et dz(2), 2.2)

where Z(4) is a stochastic process with orthogonal increments.
M. B. PriesTLEY (1965) and V. MANDREKAR (1972) defined a class of non-
stationary stochastic processes as

W=\ e, nazi), 2.3)

where (i) Z(2) is a stochastic process with orthogonal increments, (ii) for each ¢,
S” le(t, 2)|2dF(2) < oo, where F(A)=FE|Z(2)|2. They called W(t) oscillatory processes.

The error process in the model (2.1) means c(¢, 2)=c(¢) for all 4, which is a
typical oscillatory process and is called wuniformly modulated process by M. B.
PRIESTLEY (1965).
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A Note on Weak Consistency of Simple Least Squares Estimators

After observing Y(¢#) at ¢t=1,2,---,7, we construct Simple Least Squares
Estimators {3;; j=0,1, --,p} for the regression coefficients {3;; j=0,1, ---,p}. For
these estimators we can obtain the following.

Theorem 1. If Y(¢) satisfies the following two conditions

T
1. 2 IRMM|=0(T% as T - oo,
h=0

T
2. Y c@r=0o(T*% as T — co,
t=1

for all 0=9=2, then {3;, 7=0,1, .-, p} are weakly consistent estimators.

Proof. The T observational equations of realizations of the model (2.1) can be
written in matrix form

y=Xp+u, (2.4)

where y=[y(1), y(2), ---, y(T)) is a vector of T observations of Y(¢) at £=1,2,--,
T, X design matrix whose (¢,m) element is ! for £=1,2,---,T and m=1,2, -,
p+1, B=[Bv, B1, -+, Bp)/ @ vector of unknown parameters and u=[c(1)x(1l), ¢(2)z(2),
-« ¢(T)x(T)) a vector of T realizations of error stochastic process c(#)X(#).

Since B={[ps, B, -+, Bp)’ is an unbiased estimator for B, we need only to prove

cov (B)=EB—-BNB—B)=X'X)"'X %, XV(X’X)“1 -0 as T— oo,

where Y, is the variance-covariance matrix of u.
First, we shall evaluate the highest order in 7T of each element in the matrix
(X’X)™'. If we denote the (i,j) element of the matrix X'X by (X’X);;, we have

T
(X/X)ij'—“Zﬂ'{j‘gy ,,j=1,2,-, p+1.
t=1

Let the matrix of the coefficients of the highest order in T for each element of

S~
X'X be X’X, then

(XX )= i, j=1,2, - p+1. 2.5)

_1
i+j—1"
By the nonsingurality of the matrix (2.5) (see R. T. GREGORY and D. L. KARNEY

(1969)), the highest order term in 7 of det X’X does not vanish and we can
exactly evaluate the highest order in 7T of each element in the matrix

vy adj X' X
(Xx)= det X’ X’
where adj X’X denotes the adjugate matrix of X’X. Let (X'X);; be a;; for i,j=
lv 2a "'yp+1'
Since

det X/X: Z €<U)(lli1(lzi2y Ay lipiq
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where
@ij;=0(T7:" V) as T — oo,

then

det X' X = o(T PR 2’) O(T@ V%) as T — oo,

And the highest order in T of each element in adj X’ X is
(adj X’ X )i;=O(T@ D*-Gi-0)y a5 T — oo
for i,j=1,2,--, p+1.
From (2.6) and (2.7),
(X' X)y=0(T-“7"P)  as  T—ooo
for i,7=1,2,--, p+1.

(2.6)

@.7

. 8)

Second, we shall evaluate the highest order in T of each element in the

matrix X’ 37 X. By using ScHWARZ's inequality,

(X5 Xl =5 5 st te(s)t te(thR(E—s)]

t=1 §=

= RO) X8+ T RUD T clsiels +s (s
- —(T—1)
)

T T—1 T-h — 1.2
STUITRO) Y (2T S 1R(/z)1< S s>2) (z; (b+/z)2)
t=1 h=1 =

T -1 T
= Tii-2R(0) 2 @+2T772 37 |R(B)| 3 c(s)?
— h=1 s§=1

=o(Ti /=) +o(T7) as T— co
=o(T% ) as T — co.
Therefore, from (2.8) and (2.9), we have
[(X'X)'X L XX X) " hj=0o(T-¢-2) as T— oo
for i,j=1,2,---,p+1,
and this is equivalent to

E(B-B(B—B) -0 as T—co

(2.9)

This shows the weak consistency of Simple Least Squares Estimator 8 for g.
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A Note on Weak Consistency of Simple Least Squares Estimators

Remark. We usually analize the time series with §=0 in Condition 1 in Theorem
T

1. In this case, Condition 2 in Theorem 1 is reduced to X c(£)?=0(T2) as T — oo
t=1

and this is satisfied, for example, if c(¢)=¢"2"¢ (¢>0).

3. Weak consistency of Simple Least Squares Estimators
for modulation function ¢(¢) by using
estimated residuals

In this section, supposing the structure of modulation function ¢(#), that is,
parametrizing c(¢#), we shall define the estimated residuals by making use of
Simple Least Squares Estimator ﬁ and estimate the structual parameters of c¢(¢)
by the least squares principle by using the information of the above residuals.

First, we suppose that for each ¢, the distribution of X(#) is Gaussian with
mean 0, variance 1 and that as the structure of ¢(¢)

ct)=exp (il wi(t)) : 3.1)

where ¢i(f) is a bounded function of ¢ for each i=1,2,..-,¢q. Then the model
(2.1) can be written as

V()= }i_,‘o Biti+exp ( ZZ‘; ciod ) X, (3.2)

Having the samples of Y{(#) at 1=1,2,---,7, we define the estimated residuals
Z(t) by

ZH=Y0) —Z Bits, 3.3)

where {8;; 7=0,1, ---,p} are Simple Least Squares Estimators defined in Section 2.
Next, we shall consider the following statistical linear model

log | Z(t)| — E log | X()] = z ¢ ei(t)+log | X(8)| — E log | X(2)], 3.4)
t=1,2,--, T

and construct Simple Least Squares Estimators {¢;; i=1,2, -, g} for {¢;; i=1,2,---,
g}, which are obtained by minimizing

T q
; {log |Z(¢)| — E log | X(¢)| — Z}l ci (D)2 (3.5)
=1 i=
Theorem 2. Suppose that the following four conditions hold:
L YR <oo
h=0
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2. ¢i) is a bounded function of ¢ for i=1,2, -, 4.
T
3 D e®?=0(T) as T—oo for i=1,2,-,4q.
t=1
4. For any 4,7=1,2, -, g, the limit

2 eilt)e;(t)
lim__t=t
o |||z i@ e

T 1/2
exists and we shall put this limit as 7;; where ||¢:i(#)|ir= (Z W(t)2> . The
t=1

matrix {r;;; ¢,7=1,2,---, ¢} is nonsingular.
Then, Simple Least Squares Estimators {¢;; i=1,2, -+, ¢} are weakly consistent
estimators for the structual parameters {c;; i=1,2,--,q} of c(#).

Proof. Let the design matrix obtained in the model (3.4) be X. The (¢,j) ele-
ment of X is given by

(X)U':S»"J(z)» t:1»2|"'v T; j:]-)Zy'”aq’

Let Simple Least Squares Estimator of unknown parameter e=[ci, s, -+, ¢,] be
¢=[(, 0y, -+, 6] Since ¢ is unbiased, it is enough to show that

cov(@)=E@—c)e—c)=X'X)'X N XX X)?'>0 as T— oo
where ) is the variance-covariance matrix of log |X(#)|—FE log | X(©)|, t=1,2,--, T.
First, we shall evaluate the highest order in T of each element of the matrix
(X’X)"'. From the definition of X,
T
(X' X)ij= 23 ¢il)ps(t) (3.6)
t=1

for 4,7=1,2, -, q.
Let Dr be

i 0
0

DT=

Heallr

then X' X=Dr(D7' X' XD7")Dr.
The conditions 3 and 4 give

(DR X' XDi)=0(1) as T—oo

for 4,7=1,2,-,q.
Then
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det X’ X=det D D7: X’ XD5") Dy
=(det Dr)? det (D7 X’ XD;")

q
=K1 lill;

=(T%) as T — oo, 3.7

where K=det (D! X’ XDz").
Similarly,

adj X’ X=adj Dr(D7' X' XD7")Dr
=(T*Y) as T — oo, (3.8)
Therefore from (3.7) and (3. 8),
(X'X)'h=0T") as T—ooo 3.9
for 7,7=1,2,---, ¢

Second, we shall evaluate the highest order of the each element in 7 in the
matrix X’ 3, X. From the model (3.4),

(X 2 X)n':; éwz(s Joi(t)E(log | X(#)| —a)(log| X(s)| —a)

2. ¢iS)e;(t)(E log | X(2)| log | X(s)| —a®)

t=1

Ms

8

\ |
—

for ,7=1,2,--+,q, (3.10)

where a=F'log | X(¢)]. Let the covariance function of X(¢) and X(s) be p(t—s).
We put Flo(t—s))=~FElog | X(#) log | X(s)| and expand it in the neighbourhood of
0. Then,

Flolt—5))=FO)+F'(0p(t —$) )olt —s)
=+ P (0p(t—s))p(t—s)  (0<O<1). (3.11)
From (3.11), (3.10) is

T T
X' T X)u=1 T odSpAOF Gplt=s)plt—s)  0<0<1
for 1,7=1,2,--,q. (3.12)
Condition 2 in Theorem 2 says

(X T X0 SM %, 2 IF@plt =)ot —9), (3.13)

where M is an absolute constant.
Now we shall evaluate the highest order in T of
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2 ém(op(t—s) Jolt—3)l.

Let the joint probability density function of x=X(#) and y=X(s) be

1 1 . .
Sl 05 9=y X p|- Pl ~2ury 1)}, (3.14)
Then
g e e V&Y 0 [P (0z—y) oy —x) . 3.15
P =R s D . 3.15)
Since E(log | X(#)])?< oo, E(X(t) log | X(#)|)*<oco and E(X(#)? log | X(#)])? < co,
Pon=\ | 1og lal tog i e+ LI s, sy

0 =% oo
=17\ tog lal tog lu1 (e, ; sy

1 o oo
+ \ S log || 1og |y|(Upe— )y —2)f(x, y; Op)dady
=11+12, (3. 16)

has a definite value.

The order in T of

% 2 P 0t—9)t—9|= 2, 2 i+ Iplt—s)

s=1t=1

-

depends on

T T

Z Z |IzP(t—3)l~

s=11t=1
Since

1 2 2
IZZW{({) 4 ”1)N1—2400Nz},

where

log || log |ylzyf(z, v; Op)dzdy

o0

N 1 02 2)1/2800

Ny=(1—#2 2)1/2 _ loglallog lyla*fiw, v; Op)dzdy,

T T
then the highest order in 7 of }; > [l.p(t—s)| depends on
s=1t=1
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T T t— 20
s§1 té (1 —(;E,(tj)s)Z)znxz 0<o<1. (3.17)
Now,
-y o(t—5)%0
sgzl :=Zl (1—02p<j_s)2)2+1/2
b b =)
:é t=1 (1'—02,0@—8)2)2‘"1/2
(e T ()]

S A P & T

h=1 s=1

N R =N I
= P I

T
émz +4T,LZ=1 A= (R 172 (3.18)
By using Condition 1 in Theorem 2, ’il lo(A)| < oo

shows that

s el
B U=t <

Then the right hand side of (3.18) is O(T) as T — wo.
Therefore

(X Z X)ij=O(T) as T — co
for i,7=1,2,---,q. (3.19)

Finally, from (3.9) and (3.19), we obtain the result that each element of
cov (@)=(X'X)"'X' ¥ X(X’X) "' is O(T-') as T— co. This fact shows that é is a
weakly consistent estimator of c.

Q. E.D.
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