慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	On the Kuzmin＇s theorem for the conplex continued fractions
Sub Title	
Author	Nakada，Hitoshi
Publisher	慶応義塾大学工学部
Publication year	1976
Jtitle	Keio engineering reports Vol．29，No．9（1976．12），p．93－108
JaLC DOI	
Abstract	We define a class of transformations which includes the complex continued fraction transformations．For this class we shall prove KUZMIN＇s formula which gives a convergence rate on the strong mixing condition and weak Bernoulli property．In the case of the complex continued fraction transformations the rate of strong mixing are exponential．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00290009－ 0093

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたつては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

ON THE KUZMIN'S THEOREM FOR THE CONPLEX CONTINUED FRACTIONS

Hitoshi Nakada
Dept. of Mathematics Keio University, 832 Hiyoshi, Yokohama, 223

(Received July 8, 1976)

Abstract

We define a class of transformations which includes the complex continued fraction transformations. For this class we shall prove Kuzmin's formula which gives a convergence rate on the strong mixing condition and weak Bernoulli property. In the case of the complex continued fraction transformations the rate of strong mixing are exponential.

Introduction

Main purpose of this paper is to prove the Kuzmins theorem in the case of the class of transformations which includes the complex continued fraction transformations.

Recently Shiokawa, Kaneiwa and Tamalra [2] defined a complex continued fraction over $Q(\sqrt{ }=\overline{3})$ and showed its numerical properties. Moreover Shokawa [6], [7] obtained some ergodic properties of the transformation induced by this algorithm. The other hand, Schweiger and Waterman [3], [4], [5], [8], [9], have also showed some results about metrical properties on the class of transformations including the Perron algorithm, but not Shiokawa's transformation.

The auther investigates the class of transformations which generalizes Waterman's class, including Shiokawa's one and Hurwitz's one. In this class, we can see the transformations are weak Bernoulli.

1. Definitions and fundamental properties

In this section we define a class of transformations as a generalization of those induced by the complex continued fractions. Let X be a convex measurable subset
of R^{n} which has finite positive Lebesgue measure, \mathfrak{B} be the σ-field of all Borel subsets of X and $\lambda(\cdot)$ be a normalized Lebesgue measure on X.

We consider the countable partition $\left\{X_{a} ; a \in I\right.$, each X_{a} is measurable and connected $\}$ of X satisfying the condition (a):
(a) For any $a \in I$ there exists an 1-1, continuous map T_{a} of X_{a} into X such that the components of it have continuous first order partial derivative and det $D T_{a} \neq 0$, where $D T_{a}$ is the Jacobian matrix of T_{a}.

We define inductively

$$
\begin{align*}
X_{a_{1} a_{2} \cdots a_{m}} & =T_{a 1}^{-1} X_{a_{2} \cdots a_{m}}, \tag{1}\\
T_{a_{1} a_{2} \cdots a_{m}} & =T_{a_{m}} \cdots T_{a_{2}} T_{a_{1}}
\end{align*}
$$

where $a_{i} \in I, 1 \leqq i \leqq m$. Here we note that by definition $X_{a_{1} a_{2 \cdots m}}$ may be empty for some $a_{1} a_{2} \cdots a_{m}$. We thus obtain for any $m \geqq 1$ a partition $\left\{X_{a_{1} a_{2} \cdots a_{m}}\right\}$ of X with a family of mappings $T_{a_{1} a_{2} \cdots a_{m}}$ of. $X_{a_{1} a_{2} \cdots a_{m}}$ into X.

Now we further require the following assumptions (b), (c), (d) and (e):
(b) There exist finite number, say N, of subsets $U_{1}, U_{2}, \cdots, U_{N}$ of X with positive measure such that for any $a_{1}, a_{2}, \cdots, a_{m} \in I,\left(U_{0}=X\right)$,

$$
T_{a_{1} a_{2} \cdots a_{m}} X_{a_{1} a_{2} \cdots a_{m}}\left\{\begin{array}{l}
=U_{j}, \text { for some } j, 0 \leq j \leqq N, \\
=\phi, \text { if } X_{a_{1} a_{2} \cdots a_{m}}=\phi .
\end{array}\right.
$$

(c) There exists a constant $C>1$ such that

$$
\begin{equation*}
\sup _{x \in U_{j}}\left|\operatorname{det} D \phi_{a_{1} a_{2} \cdots a_{m}}(x)\right|<C \cdot \inf _{x \in U_{j}}\left|\operatorname{det} D \psi_{a_{1} a_{2} \cdots a_{m}}(x)\right| \tag{2}
\end{equation*}
$$

uniformly in $a_{1} a_{2} \cdots a_{m}$ and j, where $\psi_{a_{1} a_{2} \cdots a_{m}}$ is the mapping of $T_{a_{1} a_{2} \cdots a_{m}} X_{a_{1} a_{2} \cdots c_{m}}=U_{1}$ onto $X_{a_{1} a_{2} \cdots a_{m}}$ defined as the inverse of $T_{a_{1} a_{2} \cdots a_{m}}$.

$$
\begin{equation*}
\sup _{a_{1} a_{2} \cdots a_{m}} \operatorname{diam}\left(X_{a_{1} a_{2} \cdots a_{m}}\right)=\sigma(m) \rightarrow 0 \text { as } m \rightarrow \infty . \tag{d}
\end{equation*}
$$

(e) For any $j, 1 \leqq j \leqq N$, there exists $X_{a_{1} a_{2} \cdots a_{s}}$ such that $T_{a_{1} a_{2} \cdots a_{s}} X_{a_{1} a_{2} \cdots a_{s}}=U_{0}(=X)$ and

$$
X_{a_{1} a_{2} \cdots a_{s}} \subset U_{j}
$$

where the length s is independent of j.
We can define, under these assumptions, the transformation T,

$$
T=T_{a} \text { on } X_{a} \text { for } a \in I .
$$

Thus $T^{m}=T_{a_{1} a_{2} \cdots a_{m}}$ on $X_{a_{1} a_{2} \cdots a_{m}}$.
Since

$$
\begin{equation*}
\lambda\left(X_{a_{1} a_{2} \cdots a_{m}}\right)=\int_{U_{j}}\left|\operatorname{det} D \psi_{a_{1} a_{2} \cdots a_{m}}(x)\right| d x, \quad T^{m} X_{a_{1} a_{2} \cdots a_{m}}=U_{j} \tag{3}
\end{equation*}
$$

we have by (2)

$$
\begin{equation*}
\text { inf }\left|\operatorname{det} D \psi_{a_{1} a_{2} \cdots a_{m}}(x)\right| \cdot \lambda\left(U_{j}\right)<\lambda\left(X_{a_{1} a_{2} \cdots a_{m}}\right)<C \cdot \inf \mid \operatorname{det} D \psi_{a_{1} \cdots a_{m}}(x) \cdot \lambda\left(U_{j}\right) \tag{4}
\end{equation*}
$$

By the definition of (1), we can get

$$
\begin{equation*}
\mathrm{T}^{m i k} X_{a_{1} a_{2 \cdots} \cdot a_{m} a_{m+1} \cdots a_{m+k}}=T^{m}\left(X_{a_{m+1} \cdots a_{m ; k}} \cap U_{j}\right) . \tag{5}
\end{equation*}
$$

In this section all positive constants Q_{1}, Q_{2}, Q_{3} depend at most on C and $\min \lambda\left(U_{i}\right)$.
${ }^{j}$ We define the sets of m-tuple of indices $A(m), A^{0}(m)$:

$$
A(m)=\left\{\left(a_{1} a_{2} \cdots a_{m}\right) ; T^{m} X_{a_{1} a_{2} \cdots a_{m}} \neq \phi\right\}
$$

and

$$
A^{0}(m)=\left\{\left(a_{1} a_{2} \cdots a_{m}\right) ; T^{m} X_{a_{1} a_{2} \cdots a_{m}}=X\right\} .
$$

Lemma 1. Let $\left(a_{1} a_{2} \cdots a_{k}\right)$ be a k-tuple of indices given arbitrarily. Then for any $m\left(\geqq s\right.$ of (e)), there exist Q_{1} and Q_{2} such that

$$
\begin{equation*}
\sum_{\left(b_{1} b_{2} \cdots b_{m}\right):\left(a_{1} \cdots a_{k} b_{1} \cdots b_{m}\right) \in A 0(k+m)} \lambda\left(X_{a_{1} \cdots a_{k} b_{1} \cdots b_{m}}\right) \geqq Q_{1} \cdot \lambda\left(X_{a_{1} a_{2} \cdots a_{k}}\right), \tag{6}
\end{equation*}
$$

and so for any $m \geqq 1$

$$
\begin{equation*}
\sum_{\left(a_{1} a_{2} \cdots a_{m}\right) \in A^{0}(m)} \lambda\left(X_{\left.a_{1} a_{2} \cdots a_{m}\right)} \geqq Q_{2} .\right. \tag{7}
\end{equation*}
$$

Proof. If there exists Q_{1} of (6), then

$$
\sum_{\left(a_{1} a_{2} \cdots a_{m}\right) \in A^{\wedge}(m)} \lambda\left(X_{a_{1} a_{2} \cdots a_{m}}\right) \geqq Q_{1}
$$

provided $m \geqq s+1$. So we may choose in (7)

$$
Q_{2}=\min \left\{\min _{1 \leq m \leq s} \sum_{A 0(m)} \lambda\left(a_{1} a_{2} \cdots a_{m}\right), Q_{1}\right\}
$$

To prove (6), we first suppose that $m=s$. By (5) and the assumptions (b), (c), we have $\left\{\left(b_{1} b_{2} \cdots b_{s}\right) ;\left(a_{1} a_{2} \cdots a_{k} b_{1} \cdots b_{s}\right) \in A^{0}(k+s)\right\} \neq \phi$ if $X_{a_{1} a_{2} \cdots a_{k}} \neq \phi$. Hence

$$
\begin{aligned}
& \sum_{\left(b_{1} b_{2} \cdots b_{s}\right):\left(a_{1} \cdots a_{k} b_{1} \cdots b_{s}\right) \in A(k+k)} \lambda\left(X_{\left.a_{1} a_{2} \cdots a_{k} b_{1} \cdots b_{s}\right)}\right. \\
\geqq & \sum_{\left(b_{1} \cdots b_{s}\right)} \text { inf }\left|\operatorname{det} D \phi_{a_{1} \cdots a_{k}}(x)\right| \cdot \lambda\left(X_{b_{1} \cdots b_{s}}\right) \\
& \geqq C^{-1} \cdot \lambda\left(X_{\left.a_{1} \cdots a_{k}\right)} \sum_{\left(b_{1} \cdots b_{s}\right)} \lambda\left(X_{b_{1} \cdots b_{s}}\right) .\right.
\end{aligned}
$$

Since by (5), $\left\{\left(b_{1} b_{2} \cdots b_{s}\right) ; \quad\left(a_{1} a_{2} \cdots a_{k} b_{1} \cdots b_{s}\right) \in A^{0}(k+s)\right\}=\left\{\left(b_{1} \cdots b_{s}\right) \in A^{0}(s) ; \quad X_{b_{1} b_{2} \cdots b_{s}} \subset U_{j}\right.$, $\left.T^{k} X_{a_{1} \cdots a_{k}}=U_{j}\right\}$, and we have

$$
\begin{aligned}
& \quad \sum_{\left(b_{1} b_{2} \cdots b_{s}\right) ;\left(a_{1} \cdots a_{k} b_{1} \cdots b_{s}\right) \in A 0(k+s)} \lambda\left(X_{\left.a_{1} a_{2} \cdots a_{k} b_{1} \cdots b_{s}\right)}\right. \\
& \quad \geqq C^{-1} \lambda\left(X_{\left.a_{1} a_{2} \cdots a_{k}\right)} \sum_{\left.\left(b_{1} \cdots b_{s}\right) \in A(*) i\right) ;} \sum_{X_{b_{1} \cdots b_{s} \sim b_{j}} \sim j_{j}} \lambda\left(X_{b_{1} \cdots b_{s}}\right) .\right.
\end{aligned}
$$

So we choose Q_{1} as

Hitoshi Nakada

If $m>s$, then

$$
\begin{aligned}
& \sum_{\left(b_{1} b_{2} \cdots b_{m}\right)} \lambda\left(X_{\left.a_{1} a_{2} \cdots a_{k} b_{1} \cdots b_{m}\right)}\right. \\
& =\sum_{\left(a_{1} \cdots a_{k} b_{1} \cdots b_{m-s}\right) \in A(k+m-s)} \sum_{\substack{\left(b_{m-s}+\cdots, b_{m}\right) \in A(s) \\
\left(a_{1} \cdots b_{m-s} \in \in A(m-s)\right.}} \lambda\left(X_{\left.a_{1} \cdots a_{k} b_{1} \cdots b_{m-s}\right)}\right) \\
& \times \frac{\lambda\left(X_{a_{1} \cdot b_{m}}\right)}{\lambda\left(X_{a_{1} \cdots b_{m-s}}\right)} \\
& \geqq \sum_{\substack{\left.\left.\left(a_{1} \cdots a_{k} b_{1}, b_{m}\right) \dot{s}\right) \\
, a_{1} \cdots a_{k} b_{m}-s\right) \in A(k+m-s)}} \lambda\left(X_{a_{1} \cdots a_{m} b_{1} \cdots b_{m-s}}\right) \cdot Q_{1} \\
& =\lambda\left(X_{a_{1} a_{2} \cdot a_{k}}\right) \cdot Q_{1} .
\end{aligned}
$$

Remark. If we assume (b') instead of (b),

$$
\inf _{m, A(m)} \lambda\left(T^{m} X_{a_{1} a_{1} \cdots a_{m}}\right)>0,
$$

then we need (6) as the condition (e). And (b^{\prime}) is an extension of (L) in Waterman [8].

Theorem 1. The transformation T is irreducible ; i.e. if $T^{-1} E=E \in \mathfrak{B}$, then $\lambda(E)=0$ or 1 .

Proof. Assume that $T^{-1} E=E$ and $\lambda(E)=0$. For any $X_{a_{1} a_{2} \cdots a_{m}},\left(a_{1} a_{2} \cdots a_{m}\right) \in A(m)$, we have

$$
\begin{aligned}
& \lambda\left(E \cap X_{a_{1} a_{2} \cdots a_{n}}\right) \\
& \geqq \sum_{\substack{\left(b_{0}, b_{2} \cdots \cdot b_{j}\right) ; \\
\left(a_{1} \cdots a_{m} b_{1}=b_{s}\right) \in A(m+s)}} \int_{X} I_{E}(x) \cdot\left|\operatorname{det} D \dot{y}^{\prime} a_{1} \cdots a_{m} b_{1} \cdots b_{s}(x)\right| d x \\
& \geq C^{-1} \sum_{\left(b_{1} \cdots b_{s}\right)} \lambda\left(X_{a_{1} \cdot a_{m} b_{1} \cdot b_{s}}\right) \cdot \lambda(E) \\
& \geqq C^{-1} \cdot Q_{1} \cdot \lambda\left(X_{a_{1} a_{2} \cdots a_{m}}\right) \cdot \lambda(E),
\end{aligned}
$$

where I_{E} is the indicator function of E. So

$$
\lambda(E \cap F) \geqq C^{-1} Q, \lambda(F) \lambda(E)
$$

for any $F \in \mathfrak{B}$, since the family of all $\left\{X_{a_{1} \cdots a_{m}} ;\left(a_{1} \cdots a_{m}\right) \in A(m)\right\}$ generates \mathfrak{B}. Hence, putting $F=E^{c}$, it must be $\lambda(F)=0$ and $\lambda(E)=1$.

Theorem 2. There exists an unique T-invariant probability measure μ equivalent to Lebesgue measure i such that

$$
\begin{equation*}
Q_{3}^{-1} \lambda(E) \leqq \mu(E) \leqq Q_{3} \cdot \lambda(\mathrm{E}), E \in \mathfrak{B} . \tag{8}
\end{equation*}
$$

Proof. If there exists T-invariant measure, then it is unique by Theorem 1. To prove the existence of the invariant measure μ satisfying the inequality (8), it is enough to show that for any $k \geqq 0$

$$
\begin{equation*}
Q_{3}^{-1} \cdot \lambda(E) \leqq \lambda\left(T^{-k} E\right) \leqq Q_{3} \lambda(E), E \in \mathfrak{B} . \tag{9}
\end{equation*}
$$

By (4) and (7) we find

On the Kuzmin's Theorem for the Conplex Continued Fractions

$$
\begin{aligned}
\lambda\left(T^{-k} E\right) & =\sum_{\left(a_{1} a_{2} \cdots a_{k}\right) \in A(k)} \int_{V_{j} \cdot E}\left|\operatorname{det} D \psi_{a_{1} \cdots a_{k}}(x)\right| d x \\
& \geqq \sum_{A v(k)} \int_{E}\left|\operatorname{det} D \psi_{a_{1} \cdots a_{k}}(x)\right| d x \\
& \geqq C^{-1} \cdot Q_{2} \cdot \lambda(E) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\lambda\left(T^{-k} E\right) & \leqq \sum_{\lambda(k)} C \cdot \inf \left|\operatorname{det} D \psi_{a_{1} a_{2} \cdots a_{k}}(x)\right| \cdot \lambda(E) \\
& \leqq\left[\min _{j} \lambda\left(U_{j}\right)\right]^{-1} C \lambda(E) .
\end{aligned}
$$

Thus putting

$$
Q_{3}=\max \left\{C \cdot Q_{2}^{-1}, C \cdot \min _{j} \lambda\left(U_{j}\right)^{-1}\right\},
$$

we obtain (9).
Theorem 3. T is an exact endomorphism with invariant measure μ. Proof. Similar to that of Theorem 5.3 in [8].

2. Kuzmin's theorem

We need next two additional conditions (f) and (g) in order to show the socalled Kuzmin's theorem:
(f) There exists a constant K such that

$$
\begin{align*}
& \left\|\operatorname{det} D \psi_{a_{1} a_{2} \cdots a_{m}}(x)|-| \operatorname{det} D \psi_{a_{1} a_{2} \cdots a_{m}}(y)\right\| \\
& \quad \leqq K \cdot \lambda\left(X_{a_{1} a_{2} \cdots a_{m}}\right) \cdot \lambda\left(a_{1} \cdots a_{m}\right) \cdot\|x-y\|, x, y \in T^{m} X_{a_{1} a_{2} \cdots a_{m}}, \tag{10}
\end{align*}
$$

uniformly in x, y and $\left(a_{1} a_{2} \cdots a_{m}\right) \in A(m)$.
We define the partition ξ

$$
\begin{aligned}
\hat{\xi} & =\underset{m, A(m)}{\vee}\left\{T^{m} X_{a_{1} a_{2} \cdots a_{m}},\left(T^{m} X_{a_{1} a_{2} \cdots a_{m}}\right)^{c}\right\} \\
& =\bigvee_{j}\left\{U_{j}, U_{j}^{C}\right\}
\end{aligned}
$$

and

$$
A_{\xi}(m)=\left\{\left(a_{1} a_{2} \cdots a_{m}\right) ; X_{a_{1} a_{2} \cdots a_{m}} \nsubseteq A \text { for any } A \in \xi\right\} .
$$

(g)

$$
\sum_{\left(a_{1} a_{2} \cdots a_{m}\right) \in A_{\xi}(m)} \lambda\left(X_{a_{1} a_{2} \cdots a_{m}}\right)=\gamma(m) \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty .
$$

Moreover, there exists a constant M such that

$$
\left|D_{i, j} \psi^{\prime} a_{a_{1} a_{2} \cdots a_{m}}(x)\right| \leqq M
$$

uniformly in $i, j(1 \leqq i, j \geqq n)$ and $\left(a_{1} a_{2} \cdots a_{m}\right) \in A(m)$, where $D_{i, j} \psi_{a_{1} \cdots a_{m}}$ is the (i,j)-component of the Jacobian matrix of $\psi_{a_{1} a_{2} \cdots a_{m}}$.

Theorem 4. Suppose that a real-valued integrable function h_{0} on X satisfies the following condition (i) and $\left\{h_{1}, h_{2}, \cdots\right\}$ is a sequence of functions defined reccursively by (ii):
(i) There exists constants B and L such that

$$
\begin{equation*}
B^{-1}<h_{0}<B \quad \text { on } \quad X \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h_{0}(x)-h_{0}(y)\right|<L\|x-y\| \tag{12}
\end{equation*}
$$

when x and y are contained in the same element of ξ.
(ii)

$$
\begin{equation*}
h_{m}(x)=\sum_{a ; T X_{a} \ngtr x} h_{m-1}\left(\psi_{a}(x)\right) \cdot\left|\operatorname{det} D \psi_{a}(x)\right| . \tag{13}
\end{equation*}
$$

Then

$$
h_{m}(x)=H_{0} \cdot \rho(x)+O(\sigma(m)+\gamma(m))
$$

where

$$
H_{0}=\int_{X} h_{0}(x) d x \quad \text { and } \quad \rho(x)=\frac{d \mu}{d x} .
$$

Here and henceforth all the O 's and the constants Q_{4}, Q_{5}, \cdots depend possibly on C, M, B, L and $\min \lambda\left(U_{i}\right)$.

Remark. If we adopt (b^{\prime}) in place of (b), then it is necessary to assume that the partition ξ is countable.

Lemma 2. If

$$
\begin{equation*}
h(x)=\sum_{a ; T X_{a} \ni \cdot x} h\left(\psi_{a}(x)\right) \cdot\left|\operatorname{det} D \psi_{a}(x)\right|, \tag{14}
\end{equation*}
$$

then

$$
h(x)=H \cdot \rho(x), \quad H=\int_{X} h(x) d x .
$$

Lemma 3. For any $m \geqq 1$, we have

$$
\begin{equation*}
h_{m}(x)=\sum_{\substack{\left(a_{1} a_{2} \cdots a_{m}\right) ; \\ T m X_{a_{1}} \cdots a_{m} \ni x}} h_{0}\left(\psi_{a_{1} \cdots a_{m}}(x)\right) \cdot\left|\operatorname{det} D \psi_{a_{1} \cdots a_{m}}(x)\right| . \tag{15}
\end{equation*}
$$

Lemma 4. For any $m \geqq 1$, we have

$$
\begin{equation*}
\int_{X} h_{m}(x) d x=\int_{X} h_{0}(x) d x . \tag{16}
\end{equation*}
$$

The proof of these Lemmas are the same that in [5], [9].
Lemma 5. If x and y are contained in the same element of ξ, then

$$
\left|h_{m}(x)-h_{m}(y)\right| \leqq Q_{4} \cdot\|x-y \mid\| .
$$

Proof. By the assumption, $x \in T^{m} X_{a_{1} a_{2} \ldots a_{m}}$ if and only if $y \in T^{m} X_{a_{1} a_{2} \ldots a_{m}}$. Hence

On the Kuzmin's Theorem for the Conplex Continued Fractions

$$
\begin{aligned}
\mid h_{m}(x) & -h_{m}(y) \mid \\
\leqq & \sum_{\substack{\left(a_{1} a_{2} \cdots a_{m}\right): \\
\tau^{m} X_{a_{1}} \cdots a_{m} 3>, y}}\left|h_{0}\left(\psi_{a_{1} \cdots a_{m}}(x)\right) \cdot\right| \operatorname{det} D \psi_{a_{1} \cdots a_{m}}(x) \mid \\
& \quad-h_{0}\left(\psi_{1} a_{1} \cdots a_{m}\right. \\
\leqq & \left.\left.\sum\right)\right) \cdot\left|\operatorname{det} D \psi^{\prime} a_{1} \cdots a_{m}(y)\right| \mid \\
& \sum\left|h_{0}\left(\psi_{a_{1} \cdots a_{m}}(x)\right)\right| \cdot\left|\operatorname{det} D \varphi^{\prime} a_{1} \cdots a_{m}(x)\right|-\left|\operatorname{det} D \psi_{a_{1} \cdots a_{m}}(y)\right| \mid \\
& \quad+\sum\left|\operatorname{det} D \psi^{\prime} a_{1} \cdots a_{m}(y)\right| \cdot\left|h_{0}\left(\psi^{\prime} a_{1} \cdots a_{m}(x)\right)-h_{0}\left(\psi_{a_{1} \cdots a_{m}}(y)\right)\right| .
\end{aligned}
$$

By (10) and (11)

$$
\begin{aligned}
& \sum\left|h_{0}\left(\phi^{\prime} a_{1} \cdots a_{m}(x)\right)\right| \cdot\left\|\operatorname{det} D \phi^{\prime} a_{1} \cdots a_{m}(x)|-| \operatorname{det} D \psi_{a_{1} \cdots a_{m}}(y)\right\| \\
& \quad \leqq K \cdot B \cdot\|x-y\| .
\end{aligned}
$$

Observing that if x and y are contained in the same element of ξ, then $\psi_{a_{1} a_{2} \cdots a_{m}}$ (x) and $\psi_{a_{1} a_{2} \cdots a_{m}}(y)$ are also in the same element of ξ even if $X_{a_{1} a_{2} \cdots a_{m}} \in A_{\xi}(m)$, we obtain

$$
\begin{aligned}
& \sum\left|\operatorname{det} D \phi_{a_{1} \cdots a_{m}}(y)\right| \cdot\left|h_{0}\left(\phi_{a_{1} \cdots a_{m}}(x)\right)-h_{0}\left(\phi_{a_{1} \cdots a_{m}}(y)\right)\right| \\
& \quad \leqq L \cdot \sum\left|\operatorname{det} D \psi_{a_{1} \cdots a_{m}}(y)\right| \cdot\left|\oint^{\prime} a_{1} \cdots a_{m}(x)-\varphi^{\prime} a_{1} \cdots a_{m}(y)\right| \\
& \quad \leqq L \cdot n \cdot M \cdot C \cdot| | x-y| | .
\end{aligned}
$$

So the lemma is proved with $Q_{4}=\max (L \cdot B, L \cdot n \cdot M \cdot C)$.
Proof of Theorem 4. It is sufficient to show that

$$
h_{m+k}(x)-h_{m}(x)=O(\sigma(m)+\gamma(m))
$$

as $m \rightarrow \infty$, uniformly in $k \geqq 1$ and $x \in X$. By (b) and Lemma 3, there is a constant Q_{5} such that

$$
Q_{5}^{-1}<h_{m}(x)<Q_{5} \quad \text { for any } \quad m \geqq 0
$$

and we get for any m and k

$$
\begin{equation*}
g_{0} h_{m}(x)<h_{m+k}(x)<G_{0} h_{m}(x) \tag{17}
\end{equation*}
$$

where we may choose $g_{0}^{-1}=Q_{5}^{2}=G_{0}$.
Now define

$$
v_{m}(x)=h_{m+k}(x)-g_{0} h_{m}(x)
$$

Then from Lemma 3 and (4),

$$
\begin{aligned}
v_{m}(x) & =\sum_{\substack{A(m): \\
T^{m} X_{a_{1} \cdots a_{m}}{ }^{3 x}}} v_{0}\left(\psi_{a_{1} \cdots a_{m}}(x)\right) \cdot\left|\operatorname{det} D \psi_{a_{1} \cdots a_{m}}(x)\right| \\
& \geqq \sum_{A^{0}(m)} v_{0}\left(\psi_{a_{1} \cdots a_{m}}(x)\right) \cdot\left|\operatorname{det} D \psi_{a_{1} \cdots a_{m}}(x)\right| \\
& \geqq C^{-1} \sum_{A^{v(m)}} v_{0}\left(\psi_{a_{1} \cdots a_{m}}(x)\right) \cdot \lambda\left(X_{a_{1} \cdots a_{m}}\right) .
\end{aligned}
$$

Moreover, using the mean-valued theorem,

Hitoshi Nakada

$$
\begin{array}{r}
v_{m}(x)-C^{-1} \sum \int_{X_{a_{1} \cdots a_{m}}} v_{0}(x) d x \\
\geqq C^{-1} \sum\left|v_{0}\left(\psi^{\prime} a_{1} \cdots a_{m}(x)\right)-v_{0}\left(\ell^{\prime} a_{1} \cdots a_{m}\left(x^{\prime}\right)\right)\right| \cdot \lambda\left(X_{a_{1} \cdots a_{m}}\right)
\end{array}
$$

for some $x^{\prime} \in T^{m} X_{a_{1} a_{2} \cdots a_{m}}$.
Because of $v_{0}=h_{k}-g_{0} h_{0}$, we have

$$
\begin{aligned}
& \left|\sum\left\{v_{0}\left(\psi_{a_{1} \cdots a_{m}}(x)\right)-v_{0}\left(\psi_{a_{1} \cdots a_{m}}\left(x^{\prime}\right)\right)\right\} \cdot \lambda\left(X_{a_{1} \cdots a_{m}}\right)\right| \\
& \quad \leqq \sum\left|h_{k}\left(\psi_{a_{1} \cdots a_{m}}(x)\right)-h_{k}\left(\psi_{a_{1} \cdots a_{m}}\left(x^{\prime}\right)\right)\right| \cdot \lambda\left(X_{a_{1} \cdots a_{m}}\right) \\
& \quad+g_{0} \sum\left|h_{0}\left(\psi_{a_{1} \cdots a_{m}}(x)\right)-h_{0}\left(\psi_{a_{1} \cdots a_{m}}\left(x^{\prime}\right)\right)\right| \cdot \lambda\left(X_{a_{1} \cdots a_{m}}\right) \\
& \quad \leqq Q_{6}(\sigma(m)+\gamma(m)),
\end{aligned}
$$

using Lemma 5. Hence

$$
\begin{aligned}
& v_{m}(x)-C^{-1} \sum \int_{X_{a_{1} \cdots a_{m}}} v_{0}(x) d x \\
&>-Q_{7}(\sigma(m)+\because(m))
\end{aligned}
$$

So

$$
\begin{aligned}
& h_{m * k}(x) \\
& \qquad \begin{array}{l}
h_{m}\left\{g_{0}+C^{-1} Q_{5}^{-1} \sum \int_{X_{a_{1} \cdots a_{m}}}\left(h_{k}(x)-g_{0} h_{0}(x)\right) d x\right. \\
\left.\quad-Q_{5}^{-1} Q_{7}(\sigma(m)+\gamma(m))\right\} \\
>
\end{array} h_{m}(x) g_{1}
\end{aligned}
$$

where

$$
\begin{aligned}
g_{1} & =\alpha(m) \cdot g_{0}+\beta(m, k) \\
\alpha(m) & =\left(1-C^{-1} Q_{5}^{-1} \sum \int_{X_{a_{1} \cdots a_{m}}} h_{0}(x) d x\right) \cdot g_{0} \\
\beta(m, k) & =C^{-1} Q_{5}^{-1} \sum \int_{X_{a_{1} \cdots a_{m}}} h_{k}(x) d x-Q_{5}^{-1} Q_{7}(\sigma(m)+\gamma(m))
\end{aligned}
$$

Next, if we start, in (17), with

$$
V_{m}(x)=G_{0} \cdot h_{m+k}(x)-h_{m}(x)
$$

we obtain in the same manner

$$
\begin{aligned}
G_{1} \cdot h_{m+k}(x) & >h_{m}(x), \\
G_{1} & =\alpha(m) G_{0}+\delta(m, k) \\
\delta(m, k) & =C^{-1} Q_{5}^{-1} \sum \int_{X_{a_{1} \cdots a_{m}}} h_{k}(x) d x+Q_{5}^{-1} Q_{8}(\sigma(m)+\gamma(m))
\end{aligned}
$$

Thus, we can construct two sequences

$$
\begin{aligned}
g_{r} & =\alpha(m) g_{r-1}+\beta(m, k), \\
G_{r} & =\alpha(m) G_{r-1}+\delta(m, k)
\end{aligned}
$$

which satisfy

$$
g_{r} \cdot h_{m}(x)<h_{m+k}(x)<G_{r} \cdot h_{m}(x)
$$

for any $k \geqq 1$ and $m \geqq 1$. Noticing here that

$$
\alpha(m)<1, \beta(m, k)>0 \quad \text { and } \quad \delta(m, k)>0
$$

for all $m \geqq 1$, we may find

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} g_{r}=\frac{\beta(m, k)}{1-\alpha(m)}=Q(m, k)+O(\sigma(m)+\gamma(m)), \\
& \lim G_{r}=\frac{\delta(m, k)}{1-\alpha(m)}=Q(m, k)+O(\sigma(m)+\gamma(m))
\end{aligned}
$$

where

$$
Q(m, k)=\frac{\sum_{A 0(m)} \int_{X_{a_{1} \cdots a_{m}}} h_{k} d x}{\sum_{A^{0}(m)} \int_{X_{a_{1} \cdots a_{m}}} h_{k} d x}
$$

Hence

$$
h_{m * k}(x)-Q(m, k) \cdot h_{m}(x)=O(\sigma(m)+\gamma(m)) .
$$

We integrate this inequality on X, and using Lemma 4 we get

$$
Q(m, k)=1+O(\sigma(m)+\gamma(m)) .
$$

Consequently we have

$$
h_{m \cdot k}(x)-h_{m}(x)=O(\sigma(m)+\gamma(m)),
$$

and the proof of the theorem is now complete.
Corollary 1. For any $E \in \mathfrak{B}$,

$$
\left|\lambda\left(T^{-m} E\right)-\mu(E)\right|<Q_{9} \cdot \lambda(E) \cdot(\sigma(m)+\gamma(m)) .
$$

Proof. We may put $h_{0}(x)=1$.
Corollary 2. Let $F=X_{a_{1} a_{2} \cdots a_{k}}$ and $E \in \mathfrak{B}$, then

$$
\begin{aligned}
& \left|\mu\left(T^{-m} E \cap F\right)-\mu(E) \cdot \mu(F)\right| \\
& \quad \leqq \mu(E) \cdot \mu(F) \cdot Q_{10}(\sigma(m-k)+\gamma(m-k)) .
\end{aligned}
$$

And so the transformation T is weak Bernoulli.
Proof. Put $h_{0}(x)=\mu\left(X_{a_{1} a_{2} \cdots a_{k}}\right)^{-1} I_{{a_{1}}_{1} a_{2} \cdots a_{k}}(x) \cdot \rho(x)$, then the proof is the same as Theorem 6.3 in [8].

3. The complex continued fractions.

The complex continued fraction transformation induced by Shioкawa [6], [7] is

Hitosili Nakada

an example of the transformation T with $s=2, \sigma(m)=O\left(\theta^{m}\right)$ and $\gamma(m)=O\left(\eta^{m}\right)$ where

$$
\eta=3^{-\frac{1}{3}}, \eta=\sqrt{2\left(\frac{\pi^{4}}{90}-1\right)}
$$

We will show that the complex continued fraction in the case of $Q(\sqrt{-1})$ defined by Hurwitz [1] also satisfies the assumptions (a), (b), $\cdots,(\mathrm{g})$ with $s=1$. From now on, Q_{10}, Q_{11}, \cdots are absolute constants.

Let

$$
\begin{equation*}
X=\{z ; z=u+v i,-1 / 2<u, v<1 / 2\} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{(i)}=\{u+v i ; u \text { and } v \text { are integers. }\} \tag{19}
\end{equation*}
$$

For any complex number $z,[z]_{i}$ is equal to $a \in I_{(i)}$ such that $z-a \in X$; i.e. $[z]_{i}$ is the nearest point of $I_{(i)}$. We define the partition $\left\{X_{a}\right\}$ and the transformation T on X

$$
\begin{align*}
X_{a} & =\left\{z \in X ;\left[\frac{1}{z}\right]_{i}=a\right\} \text { for } a \in I, \tag{20}\\
I & =I_{(i)} \backslash\{0,1,-1, \mathrm{i},-\mathrm{i}\}
\end{align*}
$$

and

$$
\begin{equation*}
T z=\frac{1}{z}-\left[\frac{1}{z}\right]_{i} \text { for } z \in X \tag{21}
\end{equation*}
$$

Also we define

$$
\begin{equation*}
a_{m}(z)=\left[\frac{1}{T^{m-1} z}\right]_{i} \text { for } z \in X \tag{22}
\end{equation*}
$$

A complex number $z \in X$ is expanded in

$$
\begin{equation*}
z=\frac{1}{a_{1}}+\frac{1}{\mid a_{2}}+\cdots+\frac{1}{a_{m}+T^{m} z} \quad(m \geqq 1) \tag{23}
\end{equation*}
$$

provided $T^{k} z \neq 0$ for all $k \leqq m$. As usual, we put

$$
\begin{equation*}
\frac{p_{m}}{q_{m}}=\frac{1}{\mid a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1 \mid}{a_{m}} \tag{24}
\end{equation*}
$$

and have the following formulae;

$$
\begin{gather*}
p_{m}=a_{m} \cdot p_{m-1}+p_{m-2}, q_{m}=a_{m} \cdot q_{m-1}+q_{m-2} \tag{25}\\
\frac{q_{m-1}}{q_{m}}=\frac{1}{a_{m}}+\cdots+\frac{1}{a_{2}}+\frac{1}{a_{1}} \tag{26}\\
p_{m} \cdot q_{m-1}-p_{m-1} \cdot q_{m}=(-1)^{m-1} \tag{27}
\end{gather*}
$$

where $p_{-1}=1, q_{-1}=0, p_{0}=0, q_{0}=1$. Furthermore we get

$$
\begin{equation*}
\left|q_{m}\right|<\left|q_{m+1}\right| \quad \text { for any } z \in X \text { and } m \geqq 1 \tag{28}
\end{equation*}
$$

and

$$
\lim \frac{p_{m}}{q_{m}}=z \quad \text { for } \quad z \in X
$$

(see Hurwitz [1]).
It is clear that the transformation T satisfies the assumption (a).
We put

$$
\begin{aligned}
& U_{11}=X, \\
& U_{1}=\{z \in X ;|z+i| \geqq 1\}, U_{2}=U_{1} \times i, U_{3}=U_{2} \times i, U_{4}=U_{3} \times i, \\
& U_{5}=\{z \in X ;|z+1+i| \geqq 1\}, U_{6}=U_{5} \times i, \cdots \cdots, \\
& U_{9}=\{z \in X ;|z+i| \geqq 1,|z+1| \geqq 1\}, \cdots \cdots, U_{12}=U_{11} \times i,
\end{aligned}
$$

where $U_{j} \times i=\left\{z^{\prime} ; z^{\prime}=z \times i, z \in U_{j}\right\}$, then $\left\{U_{j} ; j=0,1,2, \cdots, 12\right\}$ satisfies (b). This is shown by induction (see figure-1).

By (23), (24), (25), we get $\dot{\psi} a_{1} a_{2} \cdots a_{m}$ (z) in (c) as

$$
\begin{equation*}
\xi^{\prime} a_{1} a_{2} \cdots a_{m}(z)=\frac{p_{n}+p_{m-1} z}{q_{n}+q_{m-1} z} \tag{29}
\end{equation*}
$$

where $z \in U_{j}=T^{m} X_{a_{1} a_{2} \cdots a_{m}}$. From this equation and Cauchy-Riemann equation, it follows that

$$
\begin{align*}
\left|\operatorname{det} D \psi_{a_{1} a_{2} \cdots a_{m}}\right| & \left.=\frac{\partial \psi_{a_{1} a_{2 \cdots} \cdots}}{\partial(x, y)} \right\rvert\,, \quad z=x+i y \\
& =\left|\frac{d \psi_{a_{1} a_{2} \cdots a_{m}}}{d z}\right|^{2} \\
& =\left|q_{m}\right|^{-4}\left|1+\frac{q_{m-1}}{q_{m}} z\right|^{-4} \tag{30}
\end{align*}
$$

Hence we have

$$
\begin{equation*}
Q_{11}^{-1}\left|q_{m}\right|^{-4}<\left|\operatorname{det} D \psi_{a_{1} a_{2} \cdots a_{m}}\right|<Q_{11}\left|q_{m}\right|^{-4} \tag{31}
\end{equation*}
$$

and this implies (c).
Next proposition means the assumption (d).
Proposition 1. It follows that

$$
\left|\psi_{a_{1} a_{2} \cdots a_{m}}(z)-\psi_{a_{1} a_{2} \cdots a_{m}}(w)\right|<Q_{12} O^{-m}
$$

uniformly $z, w \in T^{m} X_{a_{1} a_{2} \cdots a_{m}}$ and $\left(a_{1} a_{2} \ldots a_{m}\right) \in A(m)$, where $\theta=3-\sqrt{2}$.
Proof. In general

$$
\left|\psi_{a_{1} a_{2} \cdots a_{m}}(z)-\psi_{a_{1} a_{2} \cdots a_{m}}(w)\right|=Q_{12} \cdot\left|q_{m}\right|^{-2}
$$

so it is sufficient to prove

$$
\begin{equation*}
\left|\frac{q_{m}}{q_{m-2}}\right|>3-\sqrt{2} \tag{32}
\end{equation*}
$$

Hitoshi Nakada

Fig. 1-(a) X and $X^{1}=\left\{z^{\prime} ; z^{\prime}=1 / z, z \in X\right\}$.

Fig. 1-(b) U_{1} and $U_{1}{ }^{-1}$.

On the Kuzmin's Theorem for the Conplex Continued Fractions

Fig. 1-(c) U_{5} and U_{5}^{11}.

Fig. 1-(d) $\quad U_{9}$ and $L_{9}{ }_{9}{ }^{1}$.
for $m \geqq 2$. By (25) and (28)

$$
\begin{aligned}
\left|\frac{q_{m}}{q_{m-2}}\right| & =\left|\frac{a_{m}\left(a_{m-1} q_{m-2}+q_{m-3}\right)+q_{m-2}}{q_{m-2}}\right| \\
& =\left|a_{m} a_{m-1}+1+a_{m} \frac{q_{m-3}}{q_{m-2}}\right| \\
& >\left|a_{m} a_{m-1}+1-\left|a_{m}\right|\right.
\end{aligned}
$$

From this inequality and dependency of a_{m} and a_{m-1}, we get

$$
\left|\frac{q_{m}}{q_{m \cdots 2}}\right| \geq 3-\sqrt{2} .
$$

The assumption (e) is evident with $s=1$ (see figure-1). Finally we examine the additional conditions (f) and (g). From (30) and (31), we have

$$
\begin{aligned}
& \operatorname{det} D \varrho^{\prime} a_{1} a_{2} a_{m}(z)\left|-\operatorname{det} D \varrho^{\prime} a_{1} a_{2} \cdots a_{m}(w)\right| \\
& \quad \leqq Q_{13} \cdot|z-w| \cdot \mid q_{m}
\end{aligned}
$$

and this implies (f).
Proposition 2. It follows that

$$
\sum_{\Lambda \xi(m)}\left|q_{m}\right|^{-4} \leqq Q_{14}(\sqrt{ } 2 / 3)^{4 m}
$$

Proof. In this transformation T, the partition $气$ decomposes $X_{a_{1} a_{2} \cdots a_{m}}$ on the unit circles with centers $(1+i),(1-i),(-1+i),(-1-i)$ respectively. Since these unit circles are symmetric about real line or imaginary line, it is sufficient to consider the unit circle with center $(1+i)$ (see figure-2). For $m=1$, the unit circle crosses $X_{1}{ }_{2 i}, X_{2} \ldots i$ and $X_{2, i}$. Hence we have by induction

Fig. 2-(a) the partition

Fig. 2-(b) the partition $\left\{X_{a}\right\}$.

$$
\begin{aligned}
A_{\xi}(m) & =\left\{\left(a_{1} a_{2} \cdots a_{m}\right) ; a_{2 k+1}=2+2 i, a_{2 k}=-2+2 i, \text { for } 1 \leqq 2 k, 2 k+1 \leqq m-1\right. \\
a_{m} & =1+2 i \text { or } 2+2 i \text { or } 2+i, \text { if } m \text { is odd, } \\
a_{m} & =-1+2 i \text { or }-2+2 i \text { or }-2+2 \mathrm{i}, \text { if } m \text { is even. }\}
\end{aligned}
$$

Because of $q_{m}=q\left(a_{1} a_{2} \ldots a_{m}\right)=a_{1} \cdot q\left(a_{2} a_{3 \ldots} a_{m}\right)+p\left(a_{2} a_{3 \ldots} a_{m}\right)$, we get

$$
\begin{aligned}
\left|q_{m}\right| & =\left|a_{1}\right| \cdot\left|q\left(a_{2} a_{3} \cdots a_{m}\right)\right| \cdot 1+\frac{p\left(a_{2} a_{3} \cdots a_{m}\right)}{a_{1} \cdot q\left(a_{2} a_{3} \cdots a_{m}\right)} \\
& \leq \sqrt{ } 8 \cdot q\left(a_{2} a_{3} \cdots a_{m}\right) \cdot \frac{3}{4}
\end{aligned}
$$

Thus we have

$$
\sum_{A_{\xi}(m)}\left|q_{m}\right|^{-4}<\sum_{A_{\xi}(m)}\left|q_{m-1}\right|^{-4}\left(\frac{\sqrt{ } 2}{3}\right)^{4}
$$

Since $\lambda\left(X_{a_{1} a_{2} \cdots a_{n}}\right) \sim\left|q_{m}\right|^{-4}$, Proposition 2 involves the condition (g).
As stated above, the transformation T satisfies (a), (b), $\cdots(\mathrm{g})$. Consequently we have Kuzmin's formula as follows:

$$
h_{m}(x) \leq H_{0} \cdot \rho(x)+Q_{15}\left((3-\sqrt{2})^{-m}\right)
$$

Remark. In the case of $Q(\sqrt{-3})$ defined by Hurwitz, it is easy to show that the assumption (a), (b),, , (e) is satisfied. So we can calculate the order of $\sigma(m)$ and examine the other conditions in the same way. Thus, three types of the complex continued fraction transformations are weak Bernoulli endomorphisms.

Acknowledgement

The author wishes to thank Professors T. Onoyama and I. Shiokawa for their helpful advices.

REFERENCES

[1] Hurwitz, A. (1888): Über die Entwicklungen Komplexer Größen in Kettenbriche. Acta Math. 11, 187-200 (=Werke II, 72-83).
[2] Kaneiwa, R., Shiokawa, I. and Tamlra, J. (1975): A Proof of Perron's Theorem on Diophantine Approximation of Complex Numbers, KEIO Engineering Reports, 28, 131-147.
[3] Schwelger, F. (1968): Metrishce Theorie einer Klasse zahlentheoretischer Transformationen, Acta Arith. 15, 1-18.
[4] , (1973): The Metrical Theory of Jacobi-Perron Algorithm, Lecture Note in Math. No. 334, Springer.
[5] Schweiger, F. and Waterman, W. (1973): Some Remarks on Kuzmin's Theorem for F-expansions, J. Number Th. 5, 123-131.
[6] Shokawa, I. (1976): Some Ergodic Properties of a Complex Continued Fraction Algorithm, KEIO Engineering Reports, to appear.

Hitosili Nakada

[7] , (1976): A problem of Gauss for complex continued fractions, to appear.
[8] Waterman, W. (1970): Some ergodic properties of multi-dimensional F-expansions, Z. Wahr. Verw. Gebiete 16, 77-103.
[9] , (1971): A Kuzmin theorem for a class of number theoretic endomorphisms, Acta Arith. 19, 59-69.

