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ON THE KUZMIN’S THEOREM FOR THE CONPLEX
CONTINUED FRACTIONS

HrrosHr NAKADA

Dept. of Mathematics Keio University, 832 Hiyoshi, Yokohama, 223

(Received July 8, 1976)

ABSTRACT

We define a class of transformations which includes the complex continued fraction
transformations. For this class we shall prove Kuzmin’s formula which gives a convergence
rate on the strong mixing condition and weak Bernoulli property. In the case of the
complex continued fraction transformations the rate of strong mixing are exponential.

Introduction

Main purpose of this paper is to prove the KuzmiN's theorem in the case of
the class of transformations which includes the complex continued fraction trans-
formations.

Recently Suiokawa, KaNeiwA and TaAMAURA [2] defined a complex continued
fraction over Q(v —3) and showed its numerical properties. Moreover SHIOKAWA
[6], [7] obtained some ergodic properties of the transformation induced by this
algorithm. The other hand, SCHWEIGER and WATERMAN [3], [4], [5], [8], [9], have
also showed some results about metrical properties on the class of transformations
including the PERRON algorithm, but not SHIOKAWA’'s transformation.

The auther investigates the class of transformations which generalizes WATER-
MAN’s class, including SHIoKAWA’s one and HURwiITZ’s one. In this class, we can
see the transformations are weak Bernoulli.

1. Definitions and fundamental properties

In this section we define a class of transformations as a generalization of those
induced by the complex continued fractions. Let X be a convex measurable subset
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of R™ which has finite positive Lebesgue measure, B be the g-field of all Borel
subsets of X and 2(-) be a normalized Lebesgue measure on X.

We consider the countable partition {X,; ecl, each X, is measurable and
connected} of X satisfying the condition (a):
(@) For amy acl there exists an 1-1, continuous map T, of X, into X such that
the components of it have continuous first ovder partial derivative and det DTq=0,
where DT, is the Jacobian matrix of Ta.

We define inductively

Xal“Z""‘m = T;:Xaz”
Toay

Am?

< Ta,Ta,

B (1)

G am

where a;el, 1=i=m. Here we note that by definition Xqg,.,, may be empty for
some @,@:--@n. We thus obtain for any mz1 a partition {X4¢y.a,} of X with a
family of mappings Zuay-a, Of Xajag-a, into X.

Now we further require the following assumptions (b), (c), (d) and (e):
(b) There exist finite number, say N, of subsets U,, U,, -, Uy of X with positive
measure such that for any a,, as---,a,el, (Us=X),

=Uj, for some j, 0<j=N,
Tal"'z"'amXalazmam

=¢, if Xujap-a,=0-
(c) There exists a constant C>1 such that

5P |det Defuyag. (@)} <C-inf 1det Do,y () (2)
rel;

rell;

uniformly in @,as--aw and j, where $u,ay.a,, 1S the mapping of Tajuy-apnXe
onto Xg,q, defined as the inverse of T,

Ui

14yt ™

(d) SUP 4ay-0, diam (X g,

(e) For any j, 1=j=N, there exists Xuu,.a; Such that Ta,u, aXaay a;=Ud=X)
and

102y

)=a(m)— 0 as m — co.

A

Xalaz---asc ij

where the length s is independent of j.
We can define, under these assumptions, the transformation T,

T=T, on X, for ael.

Thus T™=T4,ay 4, 0N Xaag-ay
Since

W Xoraga) = Syj \det Daagap(@)ds, T™Xasapay,=Us, (3)
we have by (2)

inf |det Do,y an (@) - AU < X Xayag-ap) <C-inf |det Da,.q () 2Uy).  (4)

@

By the definition of (1), we can get
Tm kX"*l“Z"'am“m 1wk Tm(‘Yam i1 G kﬂ Uf)’ ( 5 )
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On the Kuzmin’s Theorem for the Conplex Continued Fractions

Remark. Assumption (d) implies \/ 7™ X=¢.
m=1

In this section all positive constants Q,, @., @s; depend at most on C
and min A(U,).
j
We define the sets of m-tuple of indices A(m), A°(m):
Am)={(a1az-an); T"Xa 050, P}
and
A'm)={(@1as-an); T"Xu 05 0, =X}

Lemma 1. Lef (@ias--ax) be a k-tuple of indices given arbitrarily. Then for
any m(=s of (e)), there exist Q, and Q. such that

X()(¢11~»akb‘l---bm)éQl ‘Z(Xa,lazwa.k): ( 6 )

(@1b2dm)i(@y aghy---bypp) €A (k+m)
and so for any m=1

M Xajagay) Z Q2 (7)

(ajag-am)€A(m)
Proof. 1If there exists @, of (6), then
Z(Xalazmam)éQl

(ayaz--apm)€4o(m)

provided m=s+1. So we may choose in (7)

ngmin min ‘(E Z(ala,zuam)y Q.
1SMSS  40(m)
To prove (6), we first suppose that m=s. By (5) and the assumptions (b), (c),
we have {(b,by--b); (@1as @b, bs)e AAR+8) ¢ if Xuja,-0;,5¢. Hence

Z(X‘h“z @by 'bs)

(Dyby--bg)s (ay-agdy-hg)EAN(k+5)

= Y infldet Dga,.ap(®)| A Xp . 0,)

(by—hg)
;C“I'X(Xal,..ak) Z )‘(Xbr"bs)'
(by-bg)
Since by (5), {(bibs -+ bs); (@ias-aibi-+-bs)e Ak+8)}={(b; - bs)e A%S); Xy, Ui
T*X,,.ar,= U}, and we have
Z(){alazma,kbl»--bs)
(byby--bg)s (ay--agby-bg)€ AO(k+s)
.Z_C—ll(Xalazmak) Z I(Xbl‘“bs)'
(B1-+-bg)EA0() X0 T U

So we choose @, as

Q,=C‘1 mln Z Z(Xbl“‘bs)’
0SSN (by---b5)€A0(s);
Xy bsCUj
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If m>s, then

)‘(Xﬂl‘lz"'akbr“bm)

byt by

= Z Z 2<Xa1“‘“k"1'“bm s)
(ay-agby=byp—g)€A(k+m—s) (by_gr1-bp)EAV(S):
(ap-bm—gi€d(m-s)

_&(Xal"‘bm)
/:<Xa‘l“‘bm—x)

% Z Z(Xal”'aWLbJ’”bnr s) ) Ql
(Br-bm—g)s
Ay d by b g ) €A +m )

:l(XalaZ--a;) Q.

Remark. If we assume (b’) instead of (b),

(b) inf WT"Xu0a

m, A(m)

111)\;)0’
then we need (6) as the condition (e). And (b’) is an extension of (L) in
WATERMAN [8].

Theorem 1. The transformation T is irveducible ; i.e. if T 'E=FEe®, then i(E)=0
or 1.

Proof. Assume that T-'E=F and A(E)=0. For any X, a,.a,, (@10:-a,)e A(m),
we have

MEN Xajay-a,,)

> ¥ S Lu(a)- |det Dy apyos ()l di
(bybg--bg); X
(g amby-bg) €A (m--5)

=C! 2 Z(X“l'”a’mbl'“bs).2(1"‘>

(by---0g)

=C7 Q1 A Xajay ay) AE),

where [ is the indicator function of £. So
WENF)=CQ U FYAE)

for any Fe®, since the family of all {X,, a,; (@1--an)e A(m)} generates B. Hence,

putting F=F¢, it must be A(F)=0 and 2(F)=1.
Theorem 2. There exists an unique T-invariant probability measure ;o equivalent
to Lebesgue measure i such that

Qi AE)=m(E)=Qs-AE), Ee®B. (8)

Proof. 1f there exists 7-invariant measure, then it is unique by Theorem 1.
To prove the existence of the invariant measure yx satisfying the inequality (8), it
is enough to show that for any £=0

QT AE)SEATRE)=QuA(E), Ee®B. (9)
By (4) and (7) we find
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On the Kuzmin’s Theorem for the Conplex Continued Fractions

AT-+E)= |det Dhu,..a ()| d

((llag-“ak)eA(k)Sl’j P’
%;A%C) SE\det Dray.ar(®)d
=2CQy-AE).
On the other hand
AT*E)= ﬁ:‘) C-infldet Do ay-ar(x)] - AE)
é[mjn AUNIT'CUE).
Thus putting
Q:=max {C-Q.", Cn]un AU»)Y,

we obtain (9).
Theorem 3. T is an exact endomorphism with invariant measure p.
Proof. Similar to that of Theorem 5.3 in [8].

2. KuzmiN’s theorem

We need next two additional conditions (f) and (g) in order to show the so-

called KuzMmIN's theorem:
(f) There exists a constant K such that

|[det Dayag-a,(@)| et Da,ay an(@)]
= K- Xayayan) Aay-a) 2=l @, € T a0y anp (10)

uniformly in x,v and (a,az - an)e Am).
We define the partition &

=V {TmXalazmam, (TmXalaz--za,n)o}

m, Atm)
:\/{Uj’ Us}
and
Am)={(a\as-an); Xajap.a, A for any Aef).
(g P M Xojayoa,)=7(m) >0 as m— oo,

(ajaz--am)€Adg(m)

Moreover, there exists a constant M such that
’Di.j(/’alaz‘--am(x')f §M

uniformly in 4, j(1=i,j=#) and (@1az---a»)€ A(m), where D; jpa,.q, is the (i, j)-com-
ponent of the Jacobian matrix of ¢a,ey.a,,.
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Theorem 4. Suppose that ¢ real-valued integrable function hy on X satisfies
the following condition (i) and {hi, hsy---} 1S @ sequence of functions defined reccur-
sively by (i)

(3) There exists constants B and L such that

B'<h<B on X 11
and
hro() = ho(y)| < Lilx—yll (12)
when x and y are contained in the same element of £.

(1) () = .7;3 him—($a()) - |det Dea()]. (13)

Then
hw(x) = Hy - o(x) +O(a(m) +y(m))

where

Ho:S ho(;c) dx and p(x) — EZ/L[ R
X dx

Here and henceforth all the O’s and the constants Q., Qs,---depend possibly on
C, M, B, L and min A(U,).

J
Remark. If we adopt (b’) in place of (b), then it is necessary to assume that
the partition & is countable.
Lemma 2. If

Wa)= 3. h(¢u(x)):|det Dgalx)l, (14)

a: TXgdx

then
Wa)=H-p(z), H= gx h(z)da.

Lemma 3. For any m=1, we have

hn(@)= Y holdaya,(®))-|det Da,.q, (x)]. (15)

(ajaz--amds
TMX g, ..y 3T

Lemma 4. For any m=1, we have
SX fi( @) dx= SY ho() dx. (16)

The proof of these Lemmas are the same that in [5], [9].
Lemma 5. If x and y are contained in the same element of &, then

() = ()| = Qs+ [z =yl

Proof. By the assumption, e T" X, a,.q, if and only if yeT™X; q4,.q4,. Hence
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|7t (2) — P ()|
S Y holdupa,@)-det Ddu,a, ()]

(ajag--am):
TmXal-"ama"'v Y

Py (9) - [det D, ()]
= 57 Vi ()] - Idet Doy, ()] —|det Dia,.a, (W)
+ 3 Idet Dyia, o, (W) - Vrolgiay (@)~ oy an(®)]-
By (10) and (11)
3 1ialfay-ap(@))] - det Do, an ()] = ldet Deba.ap ()]
ZK-B-|lz—y].

Observing that if x and y are contained in the same element of £, then ¢ ay-a,
() and ¢g,ay-q,, (¥) are also in the same element of & even if Xy a,.q,€A:(m), we
obtain

3 det Dby ()] | olghar. o (@) — oy ()]
=L- Z |det D¢a1~-am(y)‘ : I‘,,’alu-am(x)_9,’a1~«am(?/)|
=Lon-M-C-llz—1. |

So the lemma is proved with Q,=max(L-B,L-n-M-C).
Proof of Theorem 4. It is sufficient to show that

om 1) = Ien(@) = O(a(m) +y(m))

as m — oo, uniformly in 2=1 and zeX. By (b) and Lemma 3, there is a constant
Qs such that

< ha(x) < Qs for any m=0,
and we get for any m and &

where we may choose ¢;'=Q:=G,.
Now define

Um(2) =N () — oltm().
Then from Lemma 3 and (4),
Vmlx) = b ' Vo(Pa,any(®)) - |det D, ..a,, ()]

2 2 0y ap(@):|det Doy @)

=C! Z )?’0<(/’a1~-am(x)> 'X(Xalnam)-

A0(m

Moreover, using the mean-valued theorem,

99



HitosHr NakADA

(@) —C1 T S vol) dax

@y,

?:C‘lz ‘v”((/)al'“am(x)) - Z)U((I’G“1"'“111(xl>)| ' '«Xar”(‘m)

for some #’€ 1" Xu 0y am-
Because of vo=/—¢h,, we have

| 2 {0(daya(2) =00(Qayan (@)} A Xayap)]
= 2 (@ayan(®) = lildaya, (7)) 2 X, )
90 2 1 holPay 0 (2) = Ro(Payan(2))] - A Xa, - am)
=Qs(a(m)+7(m)),

using Lemma 5. Hence

vu(r)—C 1Y g vo(x) dx

Xajam

> —=Qu(a(m)+y(m)).

So
Jom k()
oot CUQ B, )= gou(@)d
— Q7' Qulolm)+7(m)}
> (@)1,
where

gr=a(m)-go+ f(m, k);

a(m)=<1—C‘1Q5_1 ' S ho(z) d«”) *Jo

@y

B ) =CQ | hula)de— Q5 Qulotm)+(m).

ayam
Next, if we start, in (17), with
V(@) =Go hm s k(@) — em(),
we obtain in the same manner

G; ‘hm Hc(-f) >hm(x))
Gy=a(m)Go+d(m, k),

m, ) =C Q- 3 S Il )iz + Q5 Qu((m) +7(m)).

Xay.am
Thus, we can construct two sequences

gr=a(m)g, -+ 5(m, k),

Gr=a(m)G,.+d(m, k),
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which satisfy
Gr () <o e 1(2) < Gr - ()
for any £=1 and m>1. Noticing here that
alm)<1, fim, k)>0 and di(m, k)>0

for all m=1, we may find

. A(m, k
tim g, = 2% B Qo -+ 0(o(m)+ )
lim 17:15(7%, k) =Q(m, k) +O(a(m)+7;(m))
—a(m)
where
3 SX hud
A
S hdz
AV(m) Xﬂ»y“‘lm
Hence

- () — Q(m, k) () =O(a(m) + y(m)).
We integrate this inequality on X, and using Lemma 4 we get
Qim, k)=14+0(a(m)+7(m)).
Consequently we have
e i) = hon(2) =O(a(m) +7(m)),

and the proof of the theorem is now complete.
Corollary 1. For any Ee'B,

AT-"E)— p(E)| <Qy- AE)-(a(m) +y(m)).

Proof. We may put Ao(x)=1.
Corollary 2. Let I'=X, 4,.q, and E€B, then

W(T-"ENF)—p(E) n(F))
=E)- p(F)-Quololm —k)+y(m—k)).

And so the transformation T is weak Bernoulli.
Proof. Put hy(x)=p(Xas,a5.a;)" IXulaZ___ak(x%p(x), then the proof is the same as
Theorem 6.3 in [8].
3. The complex continued fractions.

The complex continued fraction transformation induced by SHiokawa [6], [7] is
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an example of the transformation 7 with s=2, o(m)=0(") and y(m)=0(;") where

i)

We will show that the complex continued fraction in the case of Q(v —1) defined
by Hurwirtz [1] also satisfies the assumptions (a), (b),---,(g) with s=1. From now
on, Q, @1, --are absolute constants.

Let

X={z; z=u+vi, —1/2<u,v<1/2} (18)
and
Loy={u+vi; u and v are integers.} 19)

For any complex number z,[z]; is equal to a€ly, such that z—ae X; i.e. [2]; is the
nearest point of /. We define the partition {X,} and the transformation 7 on X

Xa:‘zeX;[%J':a for ael,
[:[(i)\{ov 1)—17 1,—1}
and
Tz:l—[L] for zelX. (21)
z zZ 1
Also we define
( )—[L] for zeX. 22)
an(2)=| 1, ;
A complex number ze X is expanded in
— 1,; 1 J ,,.,,,,,,,1 . | >
= a T g (m=1) @3
provided T*zx0 for all k=m. As usual, we put
n 1! 1 *
p,ﬁ-zr.._.q_, . ,,i_|_.,.+l,_1_,,‘ (24)
qn | & (2 [ Am
and have the following formulae;
medm 'pm—l +pm—2, Im=0am qm-1 +q"z—2 (25)
o 1., 1 1}
qm-1 :‘,,,,,;,f+...+;,,7, +- } (26)
Qm 1am | az . al
ﬁm'Qm—l_pm—l'Qm:(—]-)mAI (27)

where p_,=1,¢-:=0, po=0,g,=1. Furthermore we get
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|gu| < |gm 1| for any zeX and m=1, (28)

and
D

lim~==z for zeX
(Im

(see Hurwitz [1)).
It is clear that the transformation T satisfies the assumption (a).
We put

U,=X,

U={zeX; |z+il=1}, Us=U,xi, Us= Uy xi, Uy=U; X1,
={zeX; |z+1+i|=1}, Us=UsXi,---,

Uy={ze X; |z+i| =1, |z+1]=1},--+-- , Un= U X1,

where U;xi={z’; z/=zXi, ze U;}, then {Uj;; 7=0,1,2,---,12} satisfies (b). This is
shown by induction (see figure-1). )
By (23), (24), (25), we get ¢ ap-am (2) in (c) as

pln +pm 12

q:n+qm—1z <29)

(,’ala2 am(z)

where ze U;=T"X, ayan- From this equation and Cauchy-Riemann equation, -it
follows that

80 sag-am | ,
det Diaay an] = ~ L0000 z— gty

o(r,y) |
_| 4¢ejay-am |*
- dz
—1
~ign| 14+ =2y (30)
Hence we have
Qn'lgnl < |det D¢ala2-v»am| <Qulgn|™ (31)

and this implies (c).
Next proposition means the assumption (d).
Proposition 1. It follows that

|</)a1a2~-am(z> - Qﬁalaz---am(w)l < Q0"

uniformly z,we T™Xa 0y ap and (€:10s.an)e A(m), where §=3—~ 2.
Proof. In general

|01a5-am(2) — Pai0y am(@)]| =@z |gn] 7%

so it is sufficient to prove

In_ |~ 3-v2 ’ (32)
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21
—1-+2¢ /..\ 1424
—1+i 147
—2.41 i 241
-2 -1 0 1 2

Fig. 1-(a) X and X '={z'; 2'=1/z, zeX}.

N

Fig. 1-(b) U, and U,"%.
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—24-21

/7/'\\

—14+27 23

N /

Fig. 1-(c) U, and Uy L.

(8]

Fig. 1-(d) U, and U,
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for m=2. By (25) and (28)

g | _ | @nl@neaGnez Gn-s) G |
J (Im—z (Im—fz ‘
=\l +14+an q‘m;i |

-2

\/ J(lmamfl'*"l} - iam\'
From this inequality and dependency of @, and «,_;, we get

| i
3wy,
qm -2

The assumption (e) is evident with s=1 (see figure-1). Finally we examine
the additional conditions (f) and (g). From (30) and (31), we have

1det D"/"M“z' (,,,II(Z)\ — ‘det D(l,'a|u2~-am<w)J :\

=SQuiz—wl - gm Tt

and this implies (f).
Proposition 2. 1t follows that

Y gl =Qu(V 2 3)
Ag(m)

Proof. In this transformation 7, the partition ¢ decomposes X, 4,4, On the
unit circles with centers (1+1), (1—¢), (—1+41i), (—1—i) respectively. Since these
unit circles are symmetric about real line or imaginary line, it is sufficient to
consider the unit circle with center (1+1i) (see figure-2). For m=1, the unit circle
crosses X, »;, Xz »; and X» ;. Hence we have by induction

\

Fig. 2-(a) the partition Z. Fig. 2-(b) the partition {X,}.
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Aim)={(@1ay-a,)); @Gski1 =242, ape=—2+2, for 1=2k2k+1=m—1,
an=142i or 24+2{ or 2+1i, if m is odd,
am=—1+42{ or —242i or —2+2i, if m is even.

Because of gn=¢(a,a,.an)=0a\-q(@:as.an)+p(aas.an), We get

o Plasasan)
| 1—-\ } oy e+ ;.]__{_,A i
1qm: lay ‘q(ag(l; dm) ‘ 01'q(dzda"'am) 1‘

/; \/ 8 ~q(dzds'“flm)' *i‘-

Thus we have

V2!
Z lq’"i7~4< . l.qnhli_l("’g'"*) .

A (m) A,
S S

Since A(Xu,0y.a.,)~Ign!~*, Proposition 2 involves the condition (g).
As stated above, the transformation T satisfies (a), (b),---(g). Consequently we
have KuzMmIN’s formula as follows:

By < Hy» p(2) +Q1s((3—V 2)~™).

the assumption (a), (b),---, (e) is satisfied. So we can calculate the order of ¢(m)
and examine the other conditions in the same way. Thus, three types of the
complex continued fraction transformations are weak Bernoulli endomorphisms.
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