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ON THE KUZMIN'S THEOREM FOR THE CONPLEX 
CONTINUED FRACTIONS 

HITOSHI NAKADA 

Dept. of Mathematics Keio University, 832 Hiyoshi, Yokohama, 223 

(Received July 8, 1976) 

ABSTRACT 

We define a class of transformations which includes the complex continued fraction 
transformations. For this class we shall prove KuzMIN's formula which gives a convergence 
rate on the strong mixing condition and weak Bernoulli property. In the case of the 
complex continued fraction transformations the rate of strong mixing are exponential. 

Introduction 

Main purpose of this paper is to prove the KuzMIN·s theorem in the case of 
the class of transformations which includes the complex continued fraction trans­
formations. 

Recently SmoKA \VA, KANElW A and TAMA URA [2] defined a complex continued 
fraction over Q( v=3) and showed its numerical properties. Moreover SHIOKAWA 
[6], [7] obtained some ergodic properties of the transformation induced by this 
algorithm. The other hand, SCHWEIGER and WATERMAN [3], [4], [5], [8], [9], have 
also showed some results about metrical properties on the class of transformations 
including the PERRON algorithm, but not SmoKAW A's transformation. 

The auther investigates the class of transformations which generalizes WATER­
MAN's class, including SmoKA w A's one and HuRwnz's one. In this class, we can 
see the transformations are weak Bernoulli. 

1. Definitions and fundamental properties 

In this section we define a class of transformations as a generali.zation of those 
induced by the complex continued fractions. Let X be a convex measurable subset 
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of Rn which has finite positive Lebesgue measure, SS be the a-field of all Borel 
subsets of X and J( ·) be a normalized Lebesgue measure on X. 

We consider the countable partition {Xa; aE I, each Xa is measurable and 
connected} of X satisfying the condition (a): 
(a) For any aEl there exists an 1-1, continuous map Ta of Xa into X such that 
the components of it !woe continuous first order partial derivative and det DTa~O, 
where DTa is the Jacobian matrix of Ta. 

We define inductively 

( 1) 

where aiEl, l;£i;£m. Here we note that by definition Xa1a2 ... m may be empty for 
some a1a2···am. We thus obtain for any m~ 1 a partition {Xa1a2 ... a1

n} of X with a 
family of mappings Ta1a2···arn of Xa1a2 .. am into x. 

Now we further require the following assumptions (b), (c), (d) and (e): 
(b) There exist finite number, say N, of subsets U1, U2,· · ·, U.v of X with positive 
measure such that for any all a2,···, amEl, (U0 =X), 

(c) There exists a constant C> 1 such that 

( 2) 

uniformly in aia2· ··arn and j, where 1'a1a2 Um is the ·mapping of Ta1U·2 arnXU.1(}~ <:m = u.i 
onto Xa1a2.a

111 
defined as the inverse of Ta1a2·am· 

(d) 

(e) For any j, l;£j;£N, there exists Xa1U2·Us such that Ta1a2·asXa1a2as=Uo(=X) 
and 

where the length s is independent of j. 
We can define, under these assumptions, the transformation T, 

Thus T
111

=Ta1a2··Um on Xa1U2···Um• 
Since 

T=Ta on Xa for aEl. 

( 3) 

we have by (2) 

inf ldet D¢a1aram(x)l ·A( Uj)<J(Xa1a2 ... a111
)<C ·inf ldet D¢a1 ... am(x) ·A( Uj). ( 4) 

By the definition of (1), we can get 

( 5) 
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00 

Remark. Assumption (d) implies V T-m X =.;. 
m=l 

In this section all positive constants Qi. Q2, Q3 depend at most on C 
and min i1( Ui). 

j 

We define the sets of m-tuple of indices A(m), A0(m): 

and 

Lemma 1. Let (a1a2· ··ak) be a k-tuple of indices given arbitrarily. Then for 
any m (?;s of (e)), there exist Qi and Q2 such that 

and so for any m?; 1 

I: i1(Xa1a2 ·am)?;Qz. ( 7) 
(a1a2·"am)EAO(m) 

Proof. If there exists Qi of (6), then 

I: i1(Xa1a2· ·am)?;Q1 
Ca1a2"·am)EAO(m) 

provided m?; s + 1. So we may choose in (7) 

To prove (6), we first suppose that m =s. By (5) and the assumptions (b), (c), 
we have {(b1b2···bs); (a1a2 .. ·akb1···bs)EA0(k+s)}~</J if Xa1a2· ak~<jJ. Hence 

?; I: infldet DefJa1 ... ak(x)l·i1(Xb1··bR) 
(b1 .. bs) 

Since by (5), {(b1b2 ... bs); (a1a2" ·akbl .. ·bs)EA0(k+s)} = {(b1 ... bs)EA0(s); xb1b2 .. ·bsc uj, 
Tk Xa1 ... ak = Ui}, and we have 

So we choose Qi as 

Qi =C-1 min I: i1(Xb 1 ... b8 ). 
O'ii.j'ii.N (bi .. ·b8 )EAO(s); 

Xb1 b8 CUj 
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I; I; ).(Xa1 .. a1,,li1··b111) 
(a 1 ···a kb 1 ···brn-s)EA(k+rn-s) Cbrn-s H ···bm)EA0(,1·); 

(111···/Jm-s)EA(m-s) 

Remark. If we assume (b') instead of (b), 

(b') 

then we need (6) as the condition (e). And (b') is an extension of (L) in 
WATERMAN [8]. 

Theorem 1. The transformation Tis irreducible; i.e. if T- 1
E=EE"J3, then i..(E)=O 

or 1. 
Proof. Assume that T-- 1E=E and ).(£)=0. For any Xa 1a2 a111

, (a1a2···arn)EA(m), 
we have 

).(£ n Xa1a2 .am) 

:::0: I; (x!E(x) · ldet D~'a 1 .u,11h bs(x)ldx 
(b1b2···b8 ); J 

(a 1 ···arnb1 · ··bs) EAO ( rn-t-s) 

:c:;c- 1 I; A(Xa1·a11h·bJ·i..(E) 
(b1···bs) 

::o;C-1 ·Q1 · A(Xa1a2 ... am) · ).(£), 

where 11~ is the indicator function of E. So 

for any FE"J.3, since the family of all {Xa
1 

nm; (a1 .. ·a111)EA(m)} generales ~. Hence, 
putting F=P', it must be ).(F)=O and i..(E)=l. 

Theorem 2. There exists an unique T-invariant probability measure p equivalent 
to Lebesgue measure i.. such that 

( 8) 

Proof. If there exists T-invariant measure, then it is unique by Theorem 1. 
To prove the existence of the invariant measure p satisfying the inequality (8), it 
is enough to show that for any k~O 

( 9) 

By ( 4) and (7) we find 
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J.(T-k£) = (a1a2···~)EA(k) \ l'J E /det D¢a1 -ak(x)/dx 

::.; 2:: \ /det Dq1a1. -ak(x)/d.r 
AO(k) JR 

2';C 1 ·Q2 ·J.(E). 

On the other hand 

Thus putting 

we obtain (9). 

J.(T-kE)~ 2:: C·inf/det D¢a
1
a2 .. ak(x)/ ·J.(E) 

A(k) 

~[min J.( U1)]- 1CJ.(E). 
j 

(J3=ma.r{C·Q2- 1
, C·minJ.(U1)- 1

}, 
j 

Theorem 3. T is an exact endomorphism with invariant measure µ. 
Proof. Similar to that of Theorem 5. 3 in [8]. 

2. KuzMIN's theorem 

We need next two additional conditions (f) and (g) in order to show the so­
called KuzMrN's theorem: 
(f) There exists a constant K such that 

l/det D¢a1a2 ... am(x)/ - /det D<f'a1a2. -am(y)/I 

~K· J.(Xa 1a2 ... a1n) · A(a1 ... am)- l/x-yl/, X, yE ym Xa 1a2 ... am' (10) 

uniformly in x,y and (a1a2 .. ·am)EA(m). 
We define the partition ~ 

and 

(g) :Z:: J.(Xa
1
a2 ... am)=y(m)---+O as m---+co. 

(a1a2···am)EA~(m) 

Moreover, there exists a constant M such that 

uniformly in i,j(l~i,f;:;.n) and (a1a2···a,n)EA(m), where Du¢a
1 

.. am is the (i,j)-com­
ponent of the Jacobian matrix of <f1a1a2 am· 
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Theorem 4. Suppose thcr! c real-valued integrable function ho on X satisfies 
the following condition (i) and {h1, h3,·· ·} is a sequence of functions defined reccur­
sively by (ii) : 
(i) There exists constants B and L such that 

B- 1 <ho<B on X (11) 

and 

Jho(x)-ho(Y)[ <LJ[x-yj[ (12) 

when x and y are contained in the same element of ~-

(ii) hm(x)= _L: hm-1(¢a(x))· [det D¢a(x)[. (13) 
a; 1'X0 3x 

Then 

hm(x) =Ho· p(x) +O(a(m) +r(m)) 

where 

( dµ 
Ho= Jx ho(x) dx and p(x) = ([;;. 

Here and henceforth all the O's and the constants Q1, Q5,···depend possibly on 
C, M, B, L and min A( Ui). 

j 

Remark. If we adopt (b') in place of (b), then it is necessary to assume that 
the partition ~ is countable. 

then 

Lemma 2. If 

h(x)= _L: h(¢a(x))·JdetD<jJa(x)[, 
a; 1'Xa3X 

h(x) =If· p(x), H= ~x h(x)dx. 

Lemma 3. For any m~l, we have 

hm(x)= _L: ho(</'a1 ... am(x))· [det D¢ai···am(x)j. 
(a1a2···am); 

1'mXa1···am3x 

Lemma 4. For any m ~ 1, we have 

\ hm(x) dx= \ ho(x) dx. Jx Jx 

The proof of these Lemmas are the same that in [5], [9]. 
Lemma 5. If x and y are contained in the same element of~. then 

[hm(x)-hm(y)[ ?:Q4 · [[x-yj[. 

( 14) 

(15) 

(16) 

Proof. By the assumption, xE Tm Xa1a2 ... am if and only if yE TmXa1a2 
... am· Hence 
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lhm(x)-hm(Y)I 

By (10) and (11) 

S: ~ Jho(<f;a 1 ... am(x))· Jdet D<f;a 1 ... am(x)J 
(a1a2 .. ·Urnl: 

rmxa1 .. ·am3J', ?I 

-ho(c/1a1 . n 11/y)) · Jdet D911a1 ··rim(Y)ll 

;c:= ~ lho(9'1a 1 ... am(x)) J · J Jdet D9'1a1 ... am(x)J - ldet DcjJa 1 ... am(y)J J 

+ ~ Jdet Dy''a 1 ... am(y)J · Jho(c/1a1 ... a7n(x))-ho(</Jar·am(y))J. 

~ Jho(c/1a 1 ... am(x))J · Jldet Dcf1a1 ... am(x)J- Jdet D</Ja 1 ... am(y)JJ 

;c::K·B·Jlx-yJJ. 

Observing that if x and y are contained in the same element of ~, then <f;a 1a2 ... am 
(x) and c/Ja

1
a

2 
... am (y) are also in the same element of ~ even if Xa

1
a

2 
... amEAe(m), we 

obtain 

~ Jdet D<f;a1 ... am(y)J • Jho(<f;a 1 ... am(x))-ho(c/Jal' .. am(y))J 

;c:=L· ~ Jdet D</Ja1 ... am(y)J · J9'1a 1 . . am(x)-9'1a1 .. am(y)J 

;c:=L·n·M·C·Jlx-yJJ. 

So the lemma is proved with Q4=max(L·B, L·n·M·C). 
Proof of Theorem 4. It is sufficient to show that 

hm 1 k(x)-hm(x) =O(a(m) +r(m)) 

as m -+ oo, uniformly in k ~ 1 and xE X. By (b) and Lemma 3, there is a constant 
Q5 such that 

Q~ 1 < hm(x) < Q5 for any m~O, 

and we get for any m and k 

(17) 

where we may choose g~ 1 =Q~=Go. 

Now define 

Then from Lemma 3 and ( 4), 

Vm(X) = ~ Vo(</Ja 1 .. am(x)) · Jdet DcjJa1 ... am(x) I 
A(m): 

TmXai···am3X 

Moreover, using the mean~valued theorem, 

99 



HITOSHI NAKADA 

for some x' E TrnXa. 1a
2 

... am· 
Because of Vo=lzk-goho, we have 

J I; {vo(~ba.i··am(x))-Vo(sba 1 ... am(x'))} ·A(Xa1 ·arn)I 

;£ I; Jhk(s/Ja,1 .. arn(x))-hk(</Ja,1 ... a,
1
n(x'))J ·A(Xa1 .. am) 

+go I; Jho(</1a1 .. am(x))-ho(</;a,1.1.i,n(x'))J ·A(Xa1 ... a,m) 

;£Q6(a(m)+r(m)), 

using Lemma 5. Hence 

So 

where 

V11i(:r;)-C- 1 I; I T Vo(:x:) dx 
J,1a,1. ·rtm 

> -Q1(a(m)+i·(m)). 

hm;k(x) 

>hm{Qo+C-1
Q51 I; ~Xni· ·am (hk(x)-goho(x))dx 

-Q51Q1(a(m) +r(m))} 

>hm(x)g1, 

91 =a(m) ·go+ p(m, k); 

a(m)=(l-C-
1
Q5

1
.L; ~Xai··amho(x)d.x)·Qo 

p(m, k)=C- 1Q51 I; ~xai···am hk(x)dx-Q51Q1(a(m)+r(m)). 

Next, if we start, in (17), with 

we obtain in the same manner 

G1 ·hm!k(x)>hrn(x), 

G1 =a(m)Go +o(m, k), 

o(m, k)=C- 1Q51 I; I hk(.x)d.x+Q51Qs(a(m)+r(m)). 
Jxa 1. am 

Thus, we can construct two sequences 

Or =a(m)ar-1 + p(m, k), 

Gr =a(m)Gr-1 +v(m, k), 
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which satisfy 

Or· h,,i(.x) < hrn r-k(x) < G,. · hrn(x) 

for any k ~ 1 and m ::=o: 1. Noticing here that 

rt(m)<l, 13(m, k)>O and iJ(m, k)>O 

for all m?:; 1, we may find 

where 

Hence 

lim gr= t~:(~) -Q(m, k)+O(a(m)+r(m)), 

lim G,. = tm, t)) =Q(m, k) +O(a(m) +r(m)) 
-am 

hw k(x)-Q(m, k) · hm(.x) =O(a(m) +r(m)). 

We integrate this inequality on X, and using Lemma 4 we get 

Q(m, k) = 1 +O(a(m) +r(m)). 

Consequently we have 

hrn, k(x)-hrn(x) =O(a(m) +r(m)), 

and the proof of the theorem is now complete. 
Corollary 1. For any EESJ.3, 

IJ.(T- 1nE)- µ(E)i < Qg • J.(E) · (a(m) +r(m)). 

Proof. We may put ho(x)=l. 
Corollary 2. Let F=Xa1a2 .. ak and EESJ.3, then 

lµ(T-rn En F)- fl(E) · fl(F) I 

~p(E) · µ(F) ·Q1o(a(m-k)+r(m-k)). 

And so the trans/ ormation T is weak Bernoulli. 
Proof. Put ho(x) = p(Xa1a2-.. ak)-1 lxa1a2 

.. a/x) · p(x), then the proof is the same as 
Theorem 6. 3 in [8]. 

3. The complex continued fractions. 

The complex continued fraction transformation induced by SmoKA w A [6], [7] is 
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an example of the transformation T with s=2, a(m) =O(fJm) and r(m) =O(rr) where 

_ 1 r(--:,:.4 ----)--
0=3 3,r;=v2 ~0-1. 

We will show that the complex continued fraction in the case of Q( v=n defined 
by HtjRWITZ [1] also satisfies the assumptions (a), (b), .. .,(g) with s = 1. From now 
on, Q10, Qll,. .. are absolute constants. 

Let 

X={z; z=u+vi, -1/2<u,v<l/2} (18) 

and 

Ico ={u+vi; u and v are integers.} (19) 

For any complex number z, [z]i is equal to aElci) such that z-aEX; i.e. [z]i is the 
nearest point of lei)· We define the partition {Xa} and the transformation T on X 

(20) 
l=fci)\{0, 1,-1, i,-i} 

and 

Tz=_!_-[.!-J for zEX. 
z z i 

(21) 

Also we define 

arn(Z)=[ yr:_12 l for zEX. (22) 

A complex number zEX is expanded in 

1 • 1 I 1 z=,- -+~--+ ... + ---- rn 
I a1 I a2 I am+T z 

(m?:c 1) (23) 

provided Tkz~O for all k-;;,m. As usual, we put 

qrn 
(24) 

and have the following formulae ; 

(25) 

(26) 

(27) 

where P-1=1, q_1 =0, Po =0; qo = 1. Furthermore we get 
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and 

1
. p,n 
1m ---- =z for zEX 

qm 

(see HURWITZ [l]). 
It is clear that the transformation T satisfies the assumption (a). 
We put 

Uo=X, 

U1 ={zEX; lz+il 2::1}, U2= U1 xi, Us= U2X i, U4 = UiX i, 

U5={2EX; iz+l+il ~l}, Uo= U5xi,·····., 

U9={2EX; iz+il::O::l, Jz+ll~l},······, U12=U11Xi, 

(28) 

where Uixi={z'; z'=zxi, zE U1}, then {U1 ; j=O, 1, 2, ···, 12} satisfies (b). This is 
shown by induction (see figure-1). 

By (23), (24), (25), we get 1Ja
1
a

2 
... am (z) in (c) as 

(29) 

where ZE uj = ym Xa1a2· .. am• From this equation and Cauchy-Riemann equation, it 
follows that 

Hence we have 

and this implies (c). 
Next proposition means the assumption (d). 
Proposition 1. It follows that 

z=x+iy 

uniformly z,wETmXa1a2 
... amand (a1a2 ... am)EA(m), where 0=3-v2~ 

Proof. In general 

so it is sufficient to prove 

I 

qm I. .r---
--1 > 3-·v 2 
qm-2 : 
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2 i 

-2 2 

-2 i 

Fig.1-(a) Xand X 1 ={z'; z'=l/z, zEX}. 

-2 2 
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-1+2 i 2 i 

-2+i 

-2 

-2 i 

Fig. 1-(c) U,, and U5 
1 

-'!.i 

Fig. 1-(d) U9 and u!, I 
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for m~2. By (25) and (28) 

: _qll!__ I= JI am(a111- 1qm-2f{j_1n~_8]±q_~~-2 ii, 

I qrn-2 qm-~ , 

From this inequality and dependency of am and a,n-i. we get 

The assumption (e) is evident with s=l (see figure-1). Finally we examine 
the additional conditions (f) and (g). From (30) and (31), we have 

and this implies (f). 

\det D~'•a 1 a 2 n,,,(z) 1- ,det D~''a 1a2 a,,Jw) I\ 

~;Q1:i· lz-w: · :qm~ 1 

Proposition 2. It fallows that 

I: lqm!- 1 ;::~Q1-1(v 2 /3) 1111 . 
A,;(m) 

Proof. In this transformation T, the partition ~ decomposes Xa
1
a

2
.am on the 

unit circles with centers (l+i), (1-i), (-l+i), (-1-i) respectively. Since these 
unit circles are symmetric about real line or imaginary line, it is sufficient to 
consider the unit circle with center (1 + i) (see figure-2). For m = 1, the unit circle 
crosses X1 zi., X2 ~1 and X2 i· Hence we have by induction 

Fig. 2-(a) the partition ; . Fig. 2-(b) the partition {Xa}. 
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Ae(m)={(a1a2 .. ·am); azk41=2+2i,a2k=-2+2i, for 1~2k,2k+l~m-1, 

am=l+2i or 2+2i or 2+i, if m is odd, 

am=-1+2i or -2+2i or -2+2i, if mis even.} 

Thus we have 

( 
y 2 )

1 

L: . lqm 1- 4 < L: [qm-1 l-J --3-- • 
A.(m; A.Cm) 

<; <; 

Since .A.(Xa
1
a

2 
... a:n)"-' jqml-J, Proposition 2 involves the condition (g). 

As stated above, the transformation T satisfies (a), (b),. · ·(g). Consequently we 
have KuzMrN's formula as follows: 

hm(x)-::;, Ho· p(x)+Q15((3- Y 2 )-m). 

Remark. In the case of Q('\;-.:_:_-3) defined by HcRWlTZ, it is easy to show that 
the assumption (a), (b),-··, (e) is satisfied. So we can calculate the order of a(m) 
and examine the other conditions in the same way. Thus, three types of the 
complex continued fraction transformations are weak Bernoulli endomorphisms. 
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