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SOME ERGODIC PROPERTIES OF A COMPLEX
CONTINUED FRACTION ALGORITHM

IEKATA SHIOKAWA

Dept. of Mathematics, Keio University, Yokohama 223, Japan

(Received May 7, 1976)

ABSTRACT

Some ergodic properties of a continued fraction algorithm for complex numbers are
given.

Recently R. Kaneiwa, J. Tamura an& the author [2] proved, by making use of
a certain kind of continued fraction algrithm for complex numbers, a theorem of
Perron on complex Diophantine approximations [4]: For any complex number 6

not belonging to the imaginary quadratic field Q(~ —=3) there exist infinitely many
integers p, q in Q' —=3) such that

2|1
" q < Y13jq2

If 0=%(C+ VEEFR), where C=%(1+ v =3), the constant V13 can not be improved.

In this paper we shall investigate some ergodic properties of the complex con-
tinued fractions defined in [2].

1. Definition of the algorithm

Every complex number z can be uniquely written in the form z=u{+0{, where
% and v are real, and @ is the complex conjugate of a complex number w. We
put
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IEKATA SHIOKAWA

[2]=[#) +[v1L,

where, in the right-hand side, x is the largest rational integer not exceeding a real
number x. Note that if z is real then [z] becomes the ordinary Gauss’ symbol.
Thus we define a continued fraction algorithm as follows;

Ta=rn(2) =1 —[r7t] (n=1), ro=2—[2]
a":an(z)z[f',’;l_l] (%Zl), a,=[z2]

(1)

These procedures terminate, i.e. »,=0 for some >0, if and only if z belongs to
Q(~ —3). Hence every complex number z can be expanded in the form
1] I

a +....|.1 An+7n

Z=ao+\ (nZO)r (2)

provided 7,0 for all k<n. We put
X={ul+vl; 0<u, v<1},

and define a trnsformation T of X onto itself by

=L [ 1] Gex), (3)

z

which is an extension of the well-known ‘ continued fraction transformation’
1 1
= -] eeo1) (4)

(cf. [11). Thus the remainder 7,=7,(2) in the algorithm (1) is the nth power of the
transformation (3) (i.e. »,=T"z, for all zeX.)

Now we exhibit some basic properties of the algorithm (1). Let Z; be the ring
of all integers in Q(~/—3) and let N; be the subset of Z; defined by

N.={al+bE; a, b non-negative integers with a+b>1}.
We put
D={ul+v; u,v>0},
and set
Y=D\{z; 27 'e X}.
Thus by the definitions we have

{au(2); zeCl=Z,
{an(2); 2eCl=N,=DNZ)\0} (n=1), (5)

where C is the set of all complex numbers; and

max |z|=

2
€Y V3 (6)
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Some Ergodic Properties of a Complex Continued Fraction Algorithm

V3 (7)

min |z{= =
z€D\X

Let a,, a., -+, a,, --- be any sequence of complex numbers in D\{0} not necessarily
integral. Every finite continued fraction

1| 1 1]
R e ST
i ‘ (42} L Ay
is well-defined, since the fractions «;, a,-,+a;"', --- are different from zero. If, more

precisely, a,e D\X for all »>1, then ;'€ Y\{0} and so @,-;+a;'€e D\X. Repeating
this process we get

1 1]
a1+ré—;‘+---+!—a;‘eD\X (8)
and
1 1 i 1
Yo Tla T A eY\{ J- (9)

Let a,eZ; and a,e N, (n>1). Every finite continued fraction

1] 1|

e

| a an
has a canonical representation p,/q. (pn, qgn.€Z;), called nth approximant, in the form
of an ordinary fraction. Especially if the sequence a,, @, -+ is given by the algo-
rithm (1) we call the fraction p,/q, the mth approximant of z. Thus from the
general theory of finite continued fractions we have the following formulae: (For

the proofs see [5].)

Dn=Cnpn-1tDPn-2 @n=0nGn-1+qn-2 ("21)’ (10)
1] 1 | 11 qu.

‘ e == >1), 11

| an | @ns + +1 ai Gn (n=1) (1L

Prldn-1—DPr1gn=(—1)"" (n=0), (12)

where p_,=1, q-,=0, po=a,, qo=1. Further if p,/q, is the nth approximant of z,
then

pn n( n- qn-1 >_1 -2
z— =(—D" @p:1+ T2+ — - 13
7 (=1 1 q q (13)

n n

Lemma 1. (R. Kaneiwa, 1. Shiokawa, and J. Tamura [2]) Let a,€Z; and a,eN;
(n=>1). Then we have

|gn} =00 as n— oo

where qn is the denominator of the nth approximant.
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For completeness we prove this lemma.

Proof. Suppose, on the contrary, that g,+oo as n—>co. So we can choose an
infinite subsequence {g. -, such that |g.,|<M for all #>1, where M is a constant
independent of j. But from (6) and (9) we have

Da

<

a+727‘
0 \/3

n

and so

2
pu < (a4, )
where the right-hand side is also independent of j. It follows from these inequalities
that pn,/qn;=pn,/qn, for some 7 and k& with j<k, since the ring of all integers in
Q(+/=3) is discrete. Hence we have
1 1 1|

F4 LTI =0,
L@+l a2 T

which contradicts (9).

LemMa 2. (ibid.) Let z be any complex number not belonging to Qv —3) and
let pnlqn be its nth approximent. Then we have

z= lim =—.
n-—co {n

Proof. By (13) as well as (7), (8), (11) we have

2

bn —
z2— <'«7’;3‘” ‘in s

dn

which tend to zero as # — co.

LemMma 3. (ibid) With the same notations as in Lemma 1, the nth approximant
Dulqn converges to some complex number which belongs to a,+Y.

Proof. Similar to that of Lemma 2.

By means of Lemma 2, every complex number z can be expressed as an infinite
regular continued fraction whose partial denominators a,(z) are integers in Q(v —3);

1|, 1

szo(Z)‘*“* """" +‘;z(72)7+

This continued fraction expansion is a natural extension of the ordinary real one,
since both algorithms coincide when z is real. (For further properties of the algo-
rithm see [2] and [3].)
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Some Ergodic Properties of a Complex Continued Fraction Algorithm

2. Admissible sequences and fundamental cells

We put
A ={a,(2) - a,(2); ze X} (1<n< o)

Sequences belonging to A™ (1<n<co) will be calléd admissible. (Note that Lemma
3 suggests the existence of non-admissible sequences.) For any a; - a,€A™ we
define

Xaya,={2€ X ar(z)=ar, 1<k<n},
which will be called a fundamental cell of rank ». Thus we have

X= U Xar-.un
aya€AM
where Xg,.q, N Xs..0,=¢ if ar#be for some k with 1<k<n; ie. the set of all funda-
mental cells of rank » forms a partition of X. Besides, for any fixed infinite ad-
missible sequence a,a,--- we find

X5Xy DD Xa, D Xupan

~lp—1
and (by Lemma 2)

diam (Xg,.0,) >0  as n—co.
Hence every Lebesgue measurable subset of X may be approximated with any ac-

curacy by finite unions of mutually disjoint fundamental cells.
For any given a,--- a,€ A™ we define a function of z by

(Z)" _ 1 ‘,{_. + - 1 ,_|_|_ ,.N,,,,,L,,_l
Pay-an —i a; l Ap-1 | ant+2
or equivalently
Dntpnz
= X). 14
gntQqn-12 (z¢ ) (14)

Because of the formula (12) the linear transformation ¢,,.a, has the inverse

iy DPn—nz
(Dap-ay)(2)= S — (2€¢aya, (X)) (15)

But the equality (2) can be rewitten in the form
2=0asa,(TT2) (ze X).

Hence for each a,---a,€ A™ the nth power of T restricted on the cell Xo .., is
identical with the inverse of ¢ .q,; i.e.

T"2=(faya,) (2) (26 Xgp0)). (16)

Especially we have
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Ko tn=aya,(T" Xayay)- 17
Now we need some notations: Put

V=3
3

Il

3
U,={zeX; Im(2)>0},
U,={zeX; zeU,, Im(2)>0},
and define
U_;={z; 2eUj (7=1,2,3).

Further we set U,=X for notational convenience. Considering the reciprocals U;'=
{z; 27'eU,}, we obtain (see Fig. 1)

X=¢:<U1>u¢z<U_l>u( U ¢a<X>>, (18.0)

aeN(_

a#(,{
Us=geU-0geU-00 (U gear@0)u( U (), (18.1)

- ) tllem(zi);:‘

U2=¢5(U_1)U<G gz:k(U_z))u( U ,g/»a(X)), (18.2)

k=1 neNC‘u#C

Im(a)< 0

and

Uy=ge(Us) U G (G U-s)U g (U))- (18.3)

Taking the complex conjugate of (18.1)-(18.3) we have also the same relations for
U-,, U and U_; to which we assign (18.-1), (18.-2), and (18.-3) resp.
In any case U; can be written in the form

Ui= U ¢a(Us) (19)

a€M;

where M, is a subset of N, and k(—3<k<3) are chosen uniquely according as j
and ¢. In addition, we note that

¢(X)N (X )= (20)
whenever a+b(a, be N;).
LemMa 4. Let n>1 and let a,--ane A™. Then we have

Koy =T}, | (21)
and so

T"X, 0 =U, (22)
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Fig. 1
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for some j (—3<j5<3).

Proof. By induction on n. First we prove (21). If n=1 (21) follows from
(18.0). Suppose that (21) holds for all @, --@,e A™. Then we have

Xo,. {zeXa‘ ap; A i(2)=a(T"2)=an )
- {¢al"'an(w) ; we U], (W) =an 1}
=apan(Pay, (Ur), (by (14), (15))

= Sb"«r"@n i 1< U">’

Ap1 T

for a:-+-@a. 1€ AP, where j is defined by U;=T"X,,.4, and & chosen uniquely in
(19). (22) follows from (17) and (21).
Let £ be any subset of X. Then by Lemma 4 we have
T-"E={zeX; TrzeLE}
= U {2€Xsa,; T"2¢ ENT" "Xy 0}

apap€A

= gbal an(ENT"Xa ap)- (23)

ay- ('neA

3. Estimates of the Lebesgue measure

Let m be the Lebesgue measure on the complex plane and let B be the o-field
of all measurable subsets of X. Then we have for any «@;---@.€A™ and any [FeB

o EN=\\ 10 a@Pdndy,  a=wtin, (24)
B

But using (12) we find

A e (25)
Hence
37 < gl an (D)2 <3 (26)
and
374 gn| T (Pa)a,) (2P <3 27
because (from (6), (7), (9), (11))
31 r‘/f gl1+ - l<1+723~ <3. 28)
(23) and (25) give the estimates
3 m(E) <|gnl (o () <3'm(E)  (Ee®B) (29)

80



Some Ergodic Properties of a Complex Continued Fraction Algorithm

Eepecially, taking account of the fact that 3-2<m(U,)<1 (—3<j<3), we have

37 < gul'm(Xaya,) <3

We write

Sm=_ % i

Then for any n>1 we have

3

Indeed it follows from (30) that

(al"'a"€14(n)>.

5 < S(n) <30

34S(n) > Z) mM(Xaya,) =m(X)>3""

Aln

and

3

By means of Lemma 4 the set A™ of all admissible sequences can

~5S(n) <m(X) <1.

be divided into seven subsets; we put

AP ={a, - ancAn); T"Xaya,=Uj}

then

By (18.j) (—3<j<3) we have the

Aé""—‘-{d; dn€A(n); a; -+
or a, -
or a, -
or a, -
or a, -

A;n) :{al o
AP ={a,

or a; ---

AP =lar -
and
A(—nj):{al el a4y

where N is the set of all positive
We write

aneA("); ay

an€A™; a, -

€A™ @y

(—3<j<3),

3
) ()
Am= (J A™.

j=-3

following relations for n>1;
An1€AS Y, an#E, T

n1€ A"V, an=+E, Im () <0;
n €AY, an#{, Im(a.)>0;
@n-1€ A", @n#(, Im () <0;
1€ AV, a,#+E, Im (a,)>0},

an €AV UANTVU ALY, an=C},

1€ ATV U A, a,—{eN;
An €AV YARY q,eN},

dn-1€ A(_nl—l) U Asénil), an :C}v

can€ Ay (7=1,2,3),

integers.
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Sim= 2. lg|™ (—3<5<3).
al"'aneAj(ﬂ)
Thus we have
Simy=S_;n)  (—3<7<3),

and

3
Smy= 23 Sin).
j==3
LEMMA 5. For any j (—3<3<3) we have

Simy>3-  (n=3).

Proof. Let a, - a,€ A" and let p,/g, the nth approximant.

from (10) and (28) that
37 anGn—1] <|@ni <3|@nGn-1l.
By (32.0), (33) and (36) we have

3Sum)> > laimt X |@n-al*
aeN\ L () ay--ap_1€4o(n—1
+2 2 a7 2 lgn-i|*
ae N\ (@) yag €A (n=D
Im(a)<0
+2 2 lal 2 G|
aeNz\(G} apa, _1€4z 1)
Im(a)<0

>Sen—1)+2S(n—1)+2/Z+1|1S:(n—1)
>3 %Se(n—1)+S,(n—1)+ Sa(n—1)).

Hence
So(1) >3 Se(n—1)+Si(n—1)+Sx(n—1)).
In the same way we get
Si(m) >3 (Se(r—1) +Si(n—1)+Sx(n—1)),
Sa(1) >3 1S (m—1)+Se(n—1)+ Ss(n—1)),
and
Ss(n)>34(Si(n—1)+Ss(n—1))
(using (32.1)-(32.3)).

3
So(n)>37% 33 Sj(n—2)>3""S(n)>3-12
j=0

Similarly we may obtain (35) for any j(—3<j<3).
In what follows we shall use (35) only with 7=0.
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4. Invariant measure and ergodicity

THEOREM 1. Let E be any measurable subset of X such that T'E=E. Then
m(E)=0 or m(X).

Proof. We assume that m(E)>0. By Lemma 4 and (23) we find for any
gl...aneA(”)

EN Xop.ay=T""E0 fian(T" Xuy. 2,)
=dapoa(EN T Xuya,)-

From this as well as (29) and (30) we have

m(EN Xaln-an) >3 %gal*m(EN TnXay--a,n)
23_8m(Xa1--~an) min {m(EN Us), m(EN U_y)}. (37)

But (18.3) and (23) implies that
ENUs=TENUsD ¢ (ENUs) UP(ENU-y).

Beside for any measurable subset F' of U, we have by (24) with (25)

m(p(F)) = SSF|1+ZI““dxdy>SSpli—l-1+z|"4dxdy=m(¢;g,.,(F)).

Hence

m(EN Us) > m{z 1 (EN Us)) +mlde, (EN U-s))
=m(P1(£)) >3+ 1" 'm(E)=3""m(E). (38)

(using (29)). Similarly we get
m(ENU-s)>3"m(E). (39)
By (37), (38), and (39) the inequality
m(EN F)=3"“m(E)m(F). (40)

hold for all fundamental cell F, and so for any measurable set F in X. Thus,
putting F=X\FE in (40), we have

m(EYm(X\E)=0,
which implies m(E)=m(X).

THEOREM 2. There exists an unique, T-invariant probability measure n equiva-
lent to Lebesgue measure such that the inequalities

m(E)
m(X)

< u(E)<30 ME) (41)

3-15 )

83



IEKATA SHIOKAWA

hold for all EeB.
Proof. To prove the existence it is enough to show that the inequalities
3P L) <m(T"E)<3"m(E) (Ee®B) (42)
hold for all #>0 (see F. Schweiger [5] §6-§7). By (23), (29), and (31) we have
m(T"E)< A}(] 1{ayay(E))
<3'm(E)S(n)<3"°m(E)

To prove the left-hand side inequalities in (42), we suppose first that £c U,. Then,
by (23), (29), and Lemma 5,

m(T"E)> ;)m(gbal...an(E))zB—“"m(E),
At
as required. In the same way, these inequalities hold for any Ec U.\Us. The left-

hand side of the inequalities (42) is also true for any subset £ of U_; or U_,)\U_s.
As a result (42) holds for any subset E of X, since

E=(EnNU;) U(EN(UNU)UENU-) UEN(U-\U-y)).

By Theorem 1 7-invariant probability measure p is uniquely given by the limit

1 1

(see F. Schweiger [5]). So (41) follows from (42) and (43).

THEOREM 3. T is evgodic with respect to p; i.e. for any fe LX) we have
1 n-—-1
lim —=- 3 f(T"z)=S f(2)dy, ae.
-0 M k= X

Proof. Follows from Theorem 1, 2 and Birkhoff’s individual ergodic theorem.
As an application of Theorem 3, we have
lim (@,(2)---aa(2))"" =e", a.e.

where

a= S log a:(z)dp.
X

(Note that f(z)=log a,(2)e L'(X), where -%g arg f(z)S%, since the series

>, a~*log a is convergent.)
aeENy

5. Exactness
A measure-preserving transformation 7" on a normalized measure space (X, B, 1)
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is said to be exact if

1D

T-"B={¢, X},

0

or equivalently, if for every set £ of positive measure with the measurable images
TE, T®E, --- the relation

lim (T"E)=1 (44)

holds (see V.A. Rohlin [6].)

THEOREM 4. The transformation T is exact.
The proof requires the following

LEMMA 6. Let ¢>0 and let E be any measurable set such that
(UNE)<e
for some j (—3<j<3). Then
W(TE)>1—-3%,

Proof of Lemma 6. It is clearly enough to consider only the case j=-+3.
Further we may assume j=3, since the following arguments are available for the
conjugate case j=—3. Note first that

D1(U-2) Uz (Un) CUs, (45)
(by (18.3)). By (41) and (27) with =1 and a,=1, we get

T (P(U-\E) <3°m(X) " m(T(po(U-)\E))
<3Ym(X) " m(py(U-)\E) <3 u(p(U-)\E). (46)

while, using (27) with #=1 and «,={+1,
w(T( e A(U\ED)) < 3% (e a(U)\E)). (47
Combining (45), (46), and (47) we find

/1( T((gl’l( U—z) U ¢E+l( UZ))\E))
<3 (@1 U-2) U rzan( U)\E)
<3 (U\E) < 3%. (48)

Therefore, by (45), (48), and (18.3), we obtain

U TE)Y> p(TUp1(U—2) U s (U\E))
2 p(T(P1(U-2) U e 1(U2))) = T((1(U-2) U gz i l(U)\E))
>1—3%.

Proof of Theorem 3. We prove (44). Let Ee®B given arbitrary. (Note that, by
the definition of T, EFe®B if and only if TEe®B.) Let ¢>0. Then there exists a
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fundamental interval F'=X,,.q, such that

m(F\E) <3 em(F). (49)
Otherwise, the inequality

m(F\E)>3"%sm(F)

holds for all fundamental interval F, and so it holds also for arbitrary measurable
set F. Putting F=F we have m(F)=0; a contradiction.
Using Lemma 4, (41), (16), (27), (30), and (49), we get

WUT"F\T"E)< l(T"(F\E))
<3Um(T™(F\E)) <3%|gn|*m(F\E)
<3Pm(F)'m(F\E) <37 % (50)

Noticing that 7"F=U; for some j by Lemma 4, we have from (50) and Lemma 6
W(TPHE)>1 —e.

Since p(E), u(TE), p(T*E), --- is non-decreasing, the relation (44) is proved.
As a general property of exact transformations (see V.A. Rohlin [4]) we have

Corollary. The transformation T is mixing of all degrees. In particular T is
strongly mixing; i.e. for any E, FeB we have

lim w(T-"ENF)=(E ) F).

T—00
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