慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Some ergodic properties of a complex continued fraction algorithm
Sub Title	
Author	Shiokawa，lekata
Publisher	慶応義塾大学工学部
Publication year	1976
Jtitle	Keio engineering reports Vol．29，No．7（1976．8），p．73－86
JaLC DOI	
Abstract	Some ergodic properties of a continued fraction algorithm for complex numbers are given．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00290007－ 0073

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

SOME ERGODIC PROPERTIES OF A COMPLEX CONTINUED FRACTION ALGORITHM

Iekata Shiokawa

Dept. of Mathematics, Keio University, Yokohama 223, Japan
(Received May 7, 1976)

Abstract

Some ergodic properties of a continued fraction algorithm for complex numbers are given.

Recently R. Kaneiwa, J. Tamura and the author [2] proved, by making use of a certain kind of continued fraction algrithm for complex numbers, a theorem of Perron on complex Diophantine approximations [4]: For any complex number θ not belonging to the imaginary quadratic field $Q(\sqrt{-3})$ there exist infinitely many integers p, q in $Q(\sqrt{-3})$ such that

$$
\left|\theta-\frac{p}{q}\right|<\frac{1}{\sqrt[4]{13}|q|^{2}}
$$

If $\theta=\frac{1}{2}\left(\zeta+\sqrt{\zeta^{2}+4}\right)$, where $\zeta=\frac{1}{2}(1+\sqrt{-3})$, the constant $\sqrt[4]{13}$ can not be improved.
In this paper we shall investigate some ergodic properties of the complex continued fractions defined in [2].

1. Definition of the algorithm

Every complex number z can be uniquely written in the form $z=u \zeta+v \bar{\zeta}$, where u and v are real, and \bar{w} is the complex conjugate of a complex number w. We put

$$
[z]=[u] \zeta+[v] \zeta,
$$

where, in the right-hand side, x is the largest rational integer not exceeding a real number x. Note that if z is real then $[z]$ becomes the ordinary Gauss' symbol. Thus we define a continued fraction algorithm as follows;

$$
\left.\begin{array}{l}
r_{n}=r_{n}(z)=r_{n-1}^{-1}-\left[r_{n-1}^{-1}\right] \quad(n \geq 1), \quad r_{0}=z-[z] \tag{1}\\
a_{n}=a_{n}(z)=\left[r_{n-1}^{-1}\right] \quad(n \geq 1), \quad a_{0}=[z]
\end{array}\right\}
$$

These procedures terminate, i.e. $r_{n}=0$ for some $n \geq 0$, if and only if z belongs to $Q(\sqrt{-3})$. Hence every complex number z can be expanded in the form

$$
\begin{equation*}
z=a_{0}+\frac{1}{\mid a_{1}}+\cdots+\frac{1}{\sqrt{a_{n}+r_{n}}} \quad(n \geq 0) \tag{2}
\end{equation*}
$$

provided $r_{k} \neq 0$ for all $k<n$. We put

$$
X=\{u \zeta+v \bar{\zeta} ; 0 \leq u, v<1\},
$$

and define a trnsformation T of X onto itself by

$$
\begin{equation*}
T z=\frac{1}{z}-\left[\frac{1}{z}\right] \quad(z \in X), \tag{3}
\end{equation*}
$$

which is an extension of the well-known 'continued fraction transformation'

$$
\begin{equation*}
T x=\frac{1}{x}-\left[\frac{1}{x}\right] \quad(x \in[0,1)) \tag{4}
\end{equation*}
$$

(cf. [1]). Thus the remainder $r_{n}=r_{n}(z)$ in the algorithm (1) is the nth power of the transformation (3) (i.e. $r_{n}=T^{n} z$, for all $z \in X$.)

Now we exhibit some basic properties of the algorithm (1). Let Z_{ζ} be the ring of all integers in $Q(\sqrt{-3})$ and let N_{ζ} be the subset of Z_{ζ} defined by

$$
N_{\zeta}=\{a \zeta+b \bar{\zeta} ; a, b \text { non-negative integers with } a+b \geq 1\}
$$

We put

$$
D=\{u \zeta+v \bar{\zeta} ; u, v \geq 0\},
$$

and set

$$
Y=D \backslash\left\{z ; z^{-1} \in X\right\} .
$$

Thus by the definitions we have

$$
\begin{align*}
& \left\{a_{0}(z) ; z \in C\right\}=Z_{\zeta}, \\
& \left\{a_{n}(z) ; z \in C\right\}=N_{\zeta}=\left(D \cap Z_{\zeta}\right) \backslash\{0\} \quad(n \geq 1), \tag{5}
\end{align*}
$$

where C is the set of all complex numbers; and

$$
\begin{equation*}
\max _{z \in Y}|z|=\frac{2}{\sqrt{3}} \tag{6}
\end{equation*}
$$

Some Ergodic Properties of a Complex Continued Fraction Algorithm

$$
\begin{equation*}
\min _{z \in D \backslash X}|z|=\frac{\sqrt{3}}{2} \tag{7}
\end{equation*}
$$

Let $a_{1}, a_{2}, \cdots, a_{n}, \cdots$ be any sequence of complex numbers in $D \backslash\{0\}$ not necessarily integral. Every finite continued fraction

$$
\left|\frac{1}{\left|a_{1}\right|}+\frac{1}{\mid a_{2}}\right|+\cdots+\frac{1}{a_{n} \mid}
$$

is well-defined, since the fractions $a_{n}^{-1}, a_{n-1}+a_{n}^{-1}, \cdots$ are different from zero. If, more precisely, $a_{n} \in D \backslash X$ for all $n \geq 1$, then $a_{n}^{-1} \in Y \backslash\{0\}$ and so $a_{n-1}+a_{n}^{-1} \in D \backslash X$. Repeating this process we get

$$
\begin{equation*}
a_{1}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}} \epsilon D \backslash X \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}} \in Y \backslash\{0\} . \tag{9}
\end{equation*}
$$

Let $a_{0} \in Z_{\zeta}$ and $a_{n} \in N_{\zeta}(n \geq 1)$. Every finite continued fraction

$$
a_{0}+\frac{1}{\mid a_{1}} \left\lvert\,+\cdots+\frac{\bar{I}}{\mid a_{n}}\right.
$$

has a canonical representation $p_{n} / q_{n}\left(p_{n}, q_{n} \in Z_{\xi}\right)$, called nth approximant, in the form of an ordinary fraction. Especially if the sequence a_{0}, a_{1}, \cdots is given by the algorithm (1) we call the fraction p_{n} / q_{n} the nth approximant of z. Thus from the general theory of finite continued fractions we have the following formulae: (For the proofs see [5].)

$$
\begin{align*}
& p_{n}=a_{n} p_{n-1}+p_{n-2}, q_{n}=a_{n} q_{n-1}+q_{n-2} \quad(n \geq 1), \tag{10}\\
& \frac{1}{\mid a_{n}}+\frac{1}{\mid a_{n-1}}+\cdots+\frac{1}{\mid a_{1}}=\frac{q_{n-1}}{q_{n}} \quad(n \geq 1), \tag{11}\\
& p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1} \quad(n \geq 0), \tag{12}
\end{align*}
$$

where $p_{-1}=1, q_{-1}=0, p_{0}=a_{0}, q_{0}=1$. Further if p_{n} / q_{n} is the nth approximant of z, then

$$
\begin{equation*}
z-\frac{p_{n}}{q_{n}}=(-1)^{n}\left(a_{n+1}+T^{n_{+1}} z+\frac{q_{n-1}}{q_{n}}\right)^{-1} q_{n}^{-2} . \tag{13}
\end{equation*}
$$

Lemma 1. (R. Kaneiwa, I. Shiokawa, and J. Tamura [2]) Let $a_{0} \in Z_{\zeta}$ and $a_{n} \in N_{5}$ ($n \geq 1$). Then we have

$$
\left|q_{n}\right| \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

where q_{n} is the denominator of the nth approximant.

For completeness we prove this lemma.
Proof. Suppose, on the contrary, that $q_{n} \rightarrow \infty$ as $n \rightarrow \infty$. So we can choose an infinite subsequence $\left\{q_{n_{j}}\right\}_{j=1}^{\infty}$ such that $\left|q_{n_{j}}\right|<M$ for all $n \geq 1$, where M is a constant independent of j. But from (6) and (9) we have

$$
\left|\frac{p_{n}}{q_{n}}\right|<\left|a_{0}+\frac{2}{\sqrt{ } 3}\right|
$$

and so

$$
\left|p_{n_{j}}\right|<\left(\left|a_{0}\right|+\frac{2}{\sqrt{3}}\right) M
$$

where the right-hand side is also independent of j. It follows from these inequalities that $p_{n_{j}} / q_{n_{j}}=p_{n_{k}} / q_{n_{k}}$ for some j and k with $j<k$, since the ring of all integers in $Q(\sqrt{-3})$ is discrete. Hence we have

$$
\left.\frac{1}{\mid a_{n_{j}}+1}+\frac{1}{\mid a_{n_{j}}+2}+\cdots+\frac{1}{a_{n_{k}}} \right\rvert\,=0,
$$

which contradicts (9).
Lemma 2. (ibid.) Let z be any complex number not belonging to $Q(\sqrt{-3})$ and let p_{n} / q_{n} be its nth approximent. Then we have

$$
z=\lim _{n \rightarrow \infty} \frac{p_{n}}{q_{n}}
$$

Proof. By (13) as well as (7), (8), (11) we have

$$
\left|z-\frac{p_{n}}{q_{n}}\right|<-\frac{2}{\sqrt{3}}\left|q_{n}\right|^{-2}
$$

which tend to zero as $n \rightarrow \infty$.
Lemma 3. (ibid) With the same notations as in Lemma 1, the nth approximant p_{n} / q_{n} converges to some complex number which belongs to $a_{0}+Y$.

Proof. Similar to that of Lemma 2.
By means of Lemma 2, every complex number z can be expressed as an infinite regular continued fraction whose partial denominators $a_{n}(z)$ are integers in $Q(\sqrt{-3})$;

$$
\left.z=a_{0}(z)+\frac{1}{\mid a_{1}(z)} \right\rvert\,+\frac{1}{\mid a_{2}(z)}+\cdots
$$

This continued fraction expansion is a natural extension of the ordinary real one, since both algorithms coincide when z is real. (For further properties of the algorithm see [2] and [3].)

2. Admissible sequences and fundamental cells

We put

$$
A^{(n)}=\left\{a_{1}(z) \cdots a_{n}(z) ; z \in X\right\} \quad(1 \leq n \leq \infty)
$$

Sequences belonging to $A^{(n)}(1 \leq n \leq \infty)$ will be called admissible. (Note that Lemma 3 suggests the existence of non-admissible sequences.) For any $a_{1} \cdots a_{n} \in A^{(n)}$ we define

$$
X_{a_{1} \cdots a_{n}}=\left\{z \in X ; a_{k}(z)=a_{k}, 1 \leq k \leq n\right\},
$$

which will be called a fundamental cell of rank n. Thus we have

$$
X=\underset{a_{1} \cdots a_{n} \in A A^{(n)}}{\cup} X_{a_{1} \cdots a_{n}}
$$

where $X_{a_{1} \cdots a_{n}} \cap X_{b_{1} \cdots b_{n}}=\phi$ if $a_{k} \neq b_{k}$ for some k with $1 \leq k \leq n$; i.e. the set of all fundamental cells of rank n forms a partition of X. Besides, for any fixed infinite admissible sequence $a_{1} a_{2} \cdots$ we find

$$
X \supset X_{a_{1}} \supset \cdots \supset X_{a_{1} \cdot a_{n-1}} \supset X_{a_{1} \cdot \cdots a_{n}}
$$

and (by Lemma 2)

$$
\operatorname{diam}\left(X_{a_{1} \cdots a_{n}}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Hence every Lebesgue measurable subset of X may be approximated with any accuracy by finite unions of mutually disjoint fundamental cells.

For any given $a_{1} \cdots a_{n} \in A^{(n)}$ we define a function of z by

$$
\psi_{a_{1} \cdots a_{n}}(z)=\frac{1}{\mid a_{1}}+\cdots+\frac{1}{\left\lceil a_{n-1}\right.}+\frac{1}{\mid a_{n}+z}
$$

or equivalently

$$
\begin{equation*}
=\frac{p_{n}+p_{n-1} z}{q_{n}+q_{n-1} z} \quad(z \in X) . \tag{14}
\end{equation*}
$$

Because of the formula (12) the linear transformation $\psi_{a_{1} \cdots a_{n}}$ has the inverse

$$
\begin{equation*}
\left(\psi_{a_{1} \cdots a_{n}}\right)^{-1}(z)=\frac{p_{n}-q_{n} z}{-p_{n-1}+q_{n-1} z} \quad\left(z \in \psi_{a_{1} \cdots a_{n}}(X)\right) . \tag{15}
\end{equation*}
$$

But the equality (2) can be rewitten in the form

$$
z=\phi_{a_{1} \cdots a_{n}}\left(T^{n} z\right) \quad(z \in X)
$$

Hence for each $a_{1} \cdots a_{n} \in A^{(n)}$ the nth power of T restricted on the cell $X_{a_{1} \cdots a_{n}}$ is identical with the inverse of $\psi_{a_{1} \cdots a_{n}}$; i.e.

$$
\begin{equation*}
T^{n} z=\left(\psi_{a_{1} \cdots a_{n}}\right)^{-1}(z) \quad\left(z \in X_{a_{1} \cdots a_{n}}\right) . \tag{16}
\end{equation*}
$$

Especially we have

Iekata Shiokawa

$$
\begin{equation*}
X_{a_{1} \ldots} a_{n}=\psi_{a_{1} \cdots a_{n}}\left(T^{n} X_{a_{1} \cdots a_{n}}\right) . \tag{17}
\end{equation*}
$$

Now we need some notations: Put

$$
\begin{aligned}
& U_{1}=\left\{z \in X ;\left|z+\frac{\sqrt{-3}}{3}\right|>\frac{\sqrt{3}}{3}\right\}, \\
& U_{2}=\{z \in X ; \quad \operatorname{Im}(z)>0\}, \\
& U_{3}=\left\{z \in X ; \quad \bar{z} \in U_{1}, \operatorname{Im}(z)>0\right\},
\end{aligned}
$$

and define

$$
U_{-j}=\left\{\bar{z} ; z \in U_{j}\right\} \quad(j=1,2,3) .
$$

Further we set $U_{0}=X$ for notational convenience. Considering the reciprocals $U_{3}^{-1}=$ $\left\{z ; z^{-1} \in U_{j}\right\}$, we obtain (see Fig. 1)

$$
\begin{align*}
& X=\psi_{5}\left(U_{1}\right) \cup \psi_{\bar{\xi}}\left(U_{-1}\right) \cup\left(\underset{\substack{a \in N_{5} \\
a \neq 5, \xi}}{ } \psi_{a}(X)\right), \tag{18.0}
\end{align*}
$$

$$
\begin{align*}
& U_{2}=\phi_{\bar{\xi}}\left(U_{-1}\right) \cup\left(\bigcup_{k=1}^{\infty} \psi_{k}\left(U_{-2}\right)\right) \cup\left(\underset{\substack{\operatorname{c} \in N_{\zeta}, a \neq \zeta \\
\operatorname{sm}(a)<0}}{\bigcup} \psi_{a}(X)\right), \tag{18.2}
\end{align*}
$$

and

$$
\begin{equation*}
U_{3}=\psi_{\overline{5}}\left(U_{3}\right) \cup \bigcup_{k=1}^{\infty}\left(\psi^{\prime} k\left(U_{-2}\right) \cup \psi_{\xi, k}\left(U_{2}\right)\right) \tag{18.3}
\end{equation*}
$$

Taking the complex conjugate of (18.1)-(18.3) we have also the same relations for U_{-1}, U_{-2}, and U_{-3} to which we assign (18.-1), (18.-2), and (18.-3) resp.

In any case U_{j} can be written in the form

$$
\begin{equation*}
U_{j}=\bigcup_{a \in M_{j}} \psi_{a}\left(U_{k}\right) \tag{19}
\end{equation*}
$$

where M_{j} is a subset of N_{ξ} and $k(-3 \leq k \leq 3)$ are chosen uniquely according as j and a. In addition, we note that

$$
\begin{equation*}
\psi_{a}(X) \cap \psi_{b}(X)=\phi \tag{20}
\end{equation*}
$$

whenever $a \neq b\left(a, b \in N_{\zeta}\right)$.
Lemma 4. Let $n \geq 1$ and let $a_{1} \cdots a_{n} \in A^{(n)}$. Then we have

$$
\begin{equation*}
X_{a_{1} \cdots a_{n}}=\psi_{a_{1} \cdots a_{n}}\left(U_{j}\right), \tag{21}
\end{equation*}
$$

and so

$$
\begin{equation*}
T^{n} X_{a_{1} \cdots a_{n}}=U_{j} \tag{22}
\end{equation*}
$$

Some Ergodic Properties of a Complex Continued Fraction Algorithm

ω_{-1}^{c-1}

Fig. 1
for some $j(-3 \leq j \leq 3)$.
Proof. By induction on n. First we prove (21). If $n=1$ (21) follows from (18.0). Suppose that (21) holds for all $a_{1} \cdots a_{n} \in A^{(n)}$. Then we have

$$
\begin{aligned}
X_{a_{1} \cdots a_{n-1}} & =\left\{z \in X_{a_{1} \cdots a_{n}} ; a_{n \cdot 1}(z)=a_{1}\left(T^{n} z\right)=a_{n \mid 1}\right\} \\
& =\left\{\psi_{a_{1} \cdots a_{n}}(w) ; w \in U_{j}, a_{1}(w)=a_{n+1}\right\} \\
& =\phi_{a_{1} \cdots a_{n}}\left(\psi_{a_{n+1}}\left(U_{k}\right)\right),(\text { by }(14),(15)) \\
& =\psi_{a_{1} \cdots a_{n+1}}\left(U_{k}\right),
\end{aligned}
$$

for $a_{1} \cdots a_{a-1} \in A^{(n+1)}$, where j is defined by $U_{j}=T^{n} X_{a_{1} \cdots a_{n}}$ and k chosen uniquely in (19). (22) follows from (17) and (21).

Let E be any subset of X. Then by Lemma 4 we have

$$
\begin{align*}
T^{-n} E= & \left\{z \in X ; T^{n} z \in E\right\} \\
& =\cup_{a_{1} \cdots a_{n} \in A(n)}\left\{z \in X_{a_{1} \cdots a_{n}} ; T^{n} z \in E \cap T^{n} X_{a_{1} \cdots a_{n}}\right\} \\
& =\bigcup_{\left.a_{1} \cdots G_{n} \in A A^{n}\right)}^{\cup} \psi_{a_{1} \cdots a_{n}}\left(E \cap T^{n} X_{a_{1} \cdots a_{n}}\right) . \tag{23}
\end{align*}
$$

3. Estimates of the Lebesgue measure

Let m be the Lebesgue measure on the complex plane and let \mathfrak{B} be the σ-field of all measurable subsets of X. Then we have for any $a_{1} \cdots a_{n} \in A^{(n)}$ and any $E \in \mathcal{B}$

$$
\begin{equation*}
m\left(\psi_{a_{1} \cdots a_{n}}(E)\right)=\iint_{E}\left|\psi_{a_{1} \cdots a_{n}}^{\prime}(z)\right|^{2} d x d y, \quad z=x+i y \tag{24}
\end{equation*}
$$

But using (12) we find

$$
\begin{equation*}
\left|\psi_{a_{1} \cdots a_{n}}^{\prime}(z)\right|^{2}=\left|q_{n}\right|^{-4}\left|1+\frac{q_{n-1}}{q_{n}} z\right|^{-4} \tag{25}
\end{equation*}
$$

Hence

$$
\begin{equation*}
3^{-4}<\left|q_{n}\right|^{4}\left|\psi_{a_{1} \cdots a_{n}}^{\prime}(z)\right|^{2}<3^{4} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
3^{-4}<\left|q_{n}\right|^{-4}\left|\left(\psi_{a_{1}-\cdots a_{n}}^{-1}\right)^{\prime}(z)\right|^{2}<3^{4}, \tag{27}
\end{equation*}
$$

because (from (6), (7), (9), (11))

$$
\begin{equation*}
3^{-1}<\underset{2}{\sqrt{3}} \leq\left|1+\frac{q_{n-1}}{q_{n}} z\right| \leq 1+\frac{2}{\sqrt{3}}<3 . \tag{28}
\end{equation*}
$$

(23) and (25) give the estimates

$$
\begin{equation*}
3^{-4} m(E)<\left|q_{n}\right|^{4} m\left(\psi_{a_{1} \cdots a_{n}}(E)\right)<3^{4} m(E) \quad(E \in \mathfrak{B}) \tag{29}
\end{equation*}
$$

Eepecially, taking account of the fact that $3^{-2}<m\left(U_{j}\right)<1(-3 \leq j \leq 3)$, we have

$$
\begin{equation*}
3^{-6}<\left|q_{n}\right|^{4} m\left(X_{a_{1} \cdots a_{n}}\right)<3^{4} \quad\left(a_{1} \cdots a_{n} \in A^{(n)}\right) . \tag{30}
\end{equation*}
$$

We write

$$
S(n)=\sum_{a_{1} \cdots a_{n} \in A^{(n)}}\left|q_{n}\right|^{-4} .
$$

Then for any $n \geq 1$ we have

$$
\begin{equation*}
3^{-5}<S(n)<3^{6} . \tag{31}
\end{equation*}
$$

Indeed it follows from (30) that

$$
3^{4} S(n)>\sum_{A(n)} m\left(X_{a_{1} \cdot a_{n}}\right)=m(X)>3^{-1}
$$

and

$$
3^{-6} S(n)<m(X)<1 .
$$

By means of Lemma 4 the set $A^{(n)}$ of all admissible sequences can naturally be divided into seven subsets; we put

$$
A_{j}^{(n)}=\left\{a_{1} \cdots a_{n} \in A(n) ; T^{n} X_{a_{\mathrm{r}} \cdots a_{n}}=U_{j}\right\} \quad(-3 \leq j \leq 3),
$$

then

$$
A^{(n)}=\bigcup_{j=-3}^{3} A_{j}^{(n)} .
$$

By (18.j) ($-3 \leq j \leq 3$) we have the following relations for $n>1$;

$$
\begin{align*}
& A_{0}^{(n)}=\left\{a_{1} \cdots a_{n} \in A^{(n)} ;\right. a_{1} \cdots a_{n-1} \in A_{0}^{(n-1)}, a_{n} \neq \zeta, \bar{\zeta} ; \\
& \text { or } a_{1} \cdots a_{n-1} \in A_{1}^{(n-1)}, a_{n} \neq \bar{\zeta}, \operatorname{Im}\left(a_{n}\right) \leq 0 ; \\
& \text { or } a_{1} \cdots a_{n-1} \in A_{-1}^{(n-1)}, a_{n} \neq \zeta, \operatorname{Im}\left(a_{n}\right) \geq 0 ; \\
& \text { or } a_{1} \cdots a_{n-1} \in A_{2}^{(n-1)}, a_{n} \neq \bar{\zeta}, \operatorname{Im}\left(a_{n}\right)<0 ; \\
&\text { or } \left.a_{1} \cdots a_{n-1} \in A_{-2}^{(n-1)}, a_{n} \neq \zeta, \operatorname{Im}\left(a_{n}\right)>0\right\}, \tag{32.0}\\
& A_{1}^{(n)}=\left\{a_{1} \cdots a_{n} \in A^{(n)} ; a_{1} \cdots a_{n-1} \in A_{0}^{(n-1)} \cup A_{-1}^{(n-1)} \cup A_{-2}^{(n-1)}, a_{n}=\zeta\right\}, \tag{32.1}\\
& A_{2}^{(n)}=\left\{a_{1} \cdots a_{n} \in A^{(n)} ; a_{1} \cdots a_{n-1} \in A_{-1}^{(n-1)} \cup A_{3}^{(n-1)}, a_{n}-\bar{\zeta} \in N ;\right. \\
&\text { or } \left.a_{1} \cdots a_{n-1} \in A_{-2}^{(n-1)} \cup A_{-3}^{(n-1)}, a_{n} \in N\right\}, \tag{32.2}\\
& A_{3}^{(n)}=\left\{a_{1} \cdots a_{n} \in A^{(n)} ; a_{1} \cdots a_{n-1} \in A_{-1}^{(n-1)} \cup A_{33}^{(n-1)}, a_{n}=\bar{\zeta}\right\}, \tag{32.3}
\end{align*}
$$

and

$$
\begin{equation*}
A_{-j}^{(n)}=\left\{\bar{a}_{1} \cdots \bar{a}_{n} ; a_{1} \cdots a_{n} \in A_{j}^{(n)}\right\} \quad(j=1,2,3), \tag{32.-j}
\end{equation*}
$$

where N is the set of all positive integers.
We write

$$
\begin{gathered}
\text { Iekata Shiokawa } \\
S_{j}(n)=\sum_{a_{1} \cdots a_{n} \in A_{j}(n)}\left|q_{n}\right|^{-4} \quad(-3 \leq j \leq 3) .
\end{gathered}
$$

Thus we have

$$
\begin{equation*}
S_{j}(n)=S_{-j}(n) \quad(-3 \leq j \leq 3), \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n)=\sum_{j=-3}^{3} S_{j}(n) . \tag{34}
\end{equation*}
$$

Lemma 5. For any $j(-3 \leq j \leq 3)$ we have

$$
\begin{equation*}
S_{j}(n)>3^{-12} \quad(n \geq 3) . \tag{35}
\end{equation*}
$$

Proof. Let $a_{1} \cdots a_{n} \in A^{(n)}$ and let p_{n} / q_{n} the nth approximant. Then it follows from (10) and (28) that

$$
\begin{equation*}
3^{-1}\left|a_{n} q_{n-1}\right|<\left|q_{n}\right|<3\left|a_{n} q_{n-1}\right| . \tag{36}
\end{equation*}
$$

By (32.0), (33) and (36) we have

$$
\begin{aligned}
& 3 S_{0}(n)>\sum_{\left.a \in N_{\zeta} \cup 4 \xi, \zeta\right)}|a|^{-4} \sum_{a_{1} \cdots a_{n-1} \in A_{0}(n-1)}\left|q_{n-1}\right|^{-4} \\
& +2 \sum_{\substack{a \in N(\overline{1}) \\
\operatorname{lm}(a) \leq 0}}|a|^{-4} \sum_{a_{1} \cdots a_{n-1} \in A_{1}(n-1)}\left|q_{n-1}\right|^{-4} \\
& +2 \sum_{\substack{a \in \sum_{1} \mid(G) \\
\operatorname{Im}(a)<0}}|a|^{-4} \sum_{\left.a_{1} \cdots a_{n-1} \in A_{2} n-1\right)}\left|q_{n-1}\right|^{-4} \\
& >S_{0}(n-1)+2 S_{1}(n-1)+2|\xi+1|^{-4} S_{2}(n-1) \\
& >3^{-2}\left(S_{0}(n-1)+S_{1}(n-1)+S_{2}(n-1)\right) \text {. }
\end{aligned}
$$

Hence

$$
S_{0}(n)>3^{-3}\left(S_{0}(n-1)+S_{1}(n-1)+S_{2}(n-1)\right) .
$$

In the same way we get

$$
\begin{aligned}
& S_{1}(n)>3^{-1}\left(S_{0}(n-1)+S_{1}(n-1)+S_{2}(n-1)\right), \\
& S_{2}(n)>3^{-1}\left(S_{1}(n-1)+S_{2}(n-1)+S_{3}(n-1)\right),
\end{aligned}
$$

and

$$
S_{3}(n)>3^{-1}\left(S_{1}(n-1)+S_{3}(n-1)\right)
$$

(using (32.1)-(32.3)). These inequalities as well as (31), (33), and (34) imply that

$$
S_{0}(n)>3^{-6} \sum_{j=0}^{3} S_{j}(n-2)>3^{-7} S(n)>3^{-12}
$$

Similarly we may obtain (35) for any $j(-3 \leq j \leq 3)$.
In what follows we shall use (35) only with $j=0$.

4. Invariant measure and ergodicity

Theorem 1. Let E be any measurable subset of X such that $T^{-1} E=E$. Then $m(E)=0$ or $m(X)$.

Proof. We assume that $m(E)>0$. By Lemma 4 and (23) we find for any $a_{1} \cdots a_{n} \in A^{(n)}$

$$
\begin{aligned}
E \cap X_{a_{1} \cdots a_{n}} & =T^{-n} E \cap \psi_{a_{1} \cdots a_{n}}\left(T^{n} X_{a_{1} \cdots a_{n}}\right) \\
& =\phi_{a_{1} \cdots a_{n}}\left(E \cap T^{n} X_{a_{1} \cdots a_{n}}\right) .
\end{aligned}
$$

From this as well as (29) and (30) we have

$$
\begin{align*}
m\left(E \cap X_{a_{1} \cdots a_{n}}\right) & \geq 3^{-4}\left|q_{n}\right|^{-4} m\left(E \cap T^{n} X_{a_{1} \cdots a_{n}}\right) \\
& \geq 3^{-8} m\left(X_{a_{1} \cdots a_{n}}\right) \min \left\{m\left(E \cap U_{3}\right), m\left(E \cap U_{-3}\right)\right\} . \tag{37}
\end{align*}
$$

But (18.3) and (23) implies that

$$
E \cap U_{3}=T^{-1} E \cap U_{3} \supset \psi_{\bar{\uparrow} 1}\left(E \cap U_{2}\right) \cup \psi_{1}\left(E \cap U_{-2}\right) .
$$

Beside for any measurable subset F of U_{2} we have by (24) with (25)

$$
m\left(\psi_{1}(F)\right)=\iint_{F}|1+z|^{-4} d x d y>\iint_{F}|\bar{\zeta}+1+z|^{-4} d x d y=m\left(\psi_{\bar{\xi}-1}(F)\right) .
$$

Hence

$$
\begin{align*}
m\left(E \cap U_{3}\right) & >m\left(\psi_{5+1}\left(E \cap U_{2}\right)\right)+m\left(\psi_{5+1}\left(E \cap U_{-2}\right)\right) \\
& =m\left(\psi_{5+1}(E)\right)>3^{-4}|\bar{\zeta}+1|^{-4} m(E)=3^{-6} m(E) \tag{38}
\end{align*}
$$

(using (29)). Similarly we get

$$
\begin{equation*}
m\left(E \cap U_{-3}\right)>3^{-6} m(E) \tag{39}
\end{equation*}
$$

By (37), (38), and (39) the inequality

$$
\begin{equation*}
m(E \cap F) \geq 3^{-14} m(E) m(F) \tag{40}
\end{equation*}
$$

hold for all fundamental cell F, and so for any measurable set F in X. Thus, putting $F=X \backslash E$ in (40), we have

$$
m(E) m(X \backslash E)=0,
$$

which implies $m(E)=m(X)$.
Theorem 2. There exists an unique, T-invariant probability measure μ equivalent to Lebesgue measure such that the inequalities

$$
\begin{equation*}
3^{-15} \frac{m(E)}{m(X)} \leq \mu(E) \leq 3^{10} \frac{m(E)}{m(X)} \tag{41}
\end{equation*}
$$

hold for all $E \in \mathfrak{B}$.
Proof. To prove the existence it is enough to show that the inequalities

$$
\begin{equation*}
3^{-15} m(E)<m\left(T^{-n} E\right)<3^{10} m(E) \quad(E \in \mathfrak{B}) \tag{42}
\end{equation*}
$$

hold for all $n \geq 0$ (see F. Schweiger [5] §6-§7). By (23), (29), and (31) we have

$$
\begin{aligned}
m\left(T^{-n} E\right) & <\sum_{A^{\prime n}} m\left(\psi_{a_{1} \cdots a_{n}}(E)\right) \\
& \leq 3^{4} m(E) S(n) \leq 3^{10} m(E)
\end{aligned}
$$

To prove the left-hand side inequalities in (42), we suppose first that $E \subset U_{3}$. Then, by (23), (29), and Lemma 5,

$$
m\left(T^{-n} E\right) \geq \sum_{A_{0}^{(n)}} m\left(\psi_{a_{1} \cdots a_{n}}(E)\right) \geq 3^{-16} m(E),
$$

as required. In the same way, these inequalities hold for any $E \subset U_{2} \backslash U_{3}$. The lefthand side of the inequalities (42) is also true for any subset E of U_{-3} or $U_{-2} \backslash U_{-3}$. As a result (42) holds for any subset E of X, since

$$
E=\left(E \cap U_{3}\right) \cup\left(E \cap\left(U_{2} \backslash U_{3}\right)\right) \cup\left(E \cap U_{-2}\right) \cup\left(E \cap\left(U_{-2} \backslash U_{-3}\right)\right) .
$$

By Theorem $1 T$-invariant probability measure μ is uniquely given by the limit

$$
\begin{equation*}
\mu(E)=\frac{1}{m(X)} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} m\left(T^{-k} E\right) \quad(E \in \mathfrak{B}) \tag{43}
\end{equation*}
$$

(see F. Schweiger [5]). So (41) follows from (42) and (43).
Theorem 3. T is ergodic with respect to μ; i.e. for any $f \in L^{1}(X)$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} z\right)=\int_{X} f(z) d \mu \text {, a.e. }
$$

Proof. Follows from Theorem 1, 2 and Birkhoff's individual ergodic theorem. As an application of Theorem 3, we have

$$
\lim _{n \rightarrow \infty}\left(a_{1}(z) \cdots a_{n}(z)\right)^{1 / n}=e^{\alpha}, \quad \text { a.e. }
$$

where

$$
\alpha=\int_{X} \log a_{1}(z) d \mu
$$

(Note that $f(z)=\log a_{1}(z) \in L^{1}(X)$, where $-\frac{\pi}{3} \leq \arg f(z) \leq \frac{\pi}{3}$, since the series $\sum_{a \in N_{\zeta}} a^{-4} \log a$ is convergent.)

5. Exactness

A measure-preserving transformation T on a normalized measure space (X, \mathfrak{B}, μ)
is said to be exact if

$$
\bigcap_{n=0}^{\infty} T^{-n} \mathfrak{B}=\{\phi, X\},
$$

or equivalently, if for every set E of positive measure with the measurable images $T E, T^{2} E, \cdots$ the relation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu\left(T^{n} E\right)=1 \tag{44}
\end{equation*}
$$

holds (see V.A. Rohlin [6].)
Theorem 4. The transformation T is exact.
The proof requires the following
Lemma 6. Let $\varepsilon>0$ and let E be any measurable set such that

$$
\mu\left(U_{J} \backslash E\right)<\varepsilon
$$

for some $j(-3 \leq j \leq 3)$. Then

$$
\mu(T E)>1-3^{31} \varepsilon .
$$

Proof of Lemma 6. It is clearly enough to consider only the case $j= \pm 3$. Further we may assume $j=3$, since the following arguments are available for the conjugate case $j=-3$. Note first that

$$
\begin{equation*}
\psi_{1}\left(U_{-2}\right) \cup \psi_{\bar{\xi}+1}\left(U_{2}\right) \subset U_{3} \tag{45}
\end{equation*}
$$

(by (18.3)). By (41) and (27) with $n=1$ and $a_{n}=1$, we get

$$
\begin{align*}
\mu\left(T\left(\psi_{1}\left(U_{-2}\right) \backslash E\right)\right) & \leq 3^{10} m(X)^{-1} m\left(T\left(\psi_{1}\left(U_{-2}\right) \backslash E\right)\right) \\
& \leq 3^{14} m(X)^{-1} m\left(\psi_{1}\left(U_{-2}\right) \backslash E\right) \leq 3^{29} \mu\left(\psi_{1}\left(U_{-2}\right) \backslash E\right) . \tag{46}
\end{align*}
$$

while, using (27) with $n=1$ and $a_{1}=\bar{\zeta}+1$,

$$
\begin{equation*}
\left.\mu\left(T\left(\psi_{\bar{\xi}+1}\left(U_{2}\right) \backslash E\right)\right) \leq 3^{31} \mu\left(\psi_{\bar{\zeta}+1}\left(U_{2}\right) \backslash E\right)\right) . \tag{47}
\end{equation*}
$$

Combining (45), (46), and (47) we find

$$
\begin{align*}
& \mu\left(T\left(\left(\psi_{1}\left(U_{-2}\right) \cup \psi_{\bar{\xi}+1}\left(U_{2}\right)\right) \backslash E\right)\right) \\
& \quad \leq 3^{31} \mu\left(\left(\psi_{1}\left(U_{-2}\right) \cup \psi_{\bar{\xi}+1}\left(U_{2}\right)\right) \backslash E\right) \\
& \quad \leq 3^{31} \mu\left(U_{3} \backslash E\right) \leq 3^{31} \varepsilon . \tag{48}
\end{align*}
$$

Therefore, by (45), (48), and (18.3), we obtain

$$
\begin{aligned}
\mu(T E) & \geq \mu\left(T\left(\left(\psi_{1}\left(U_{-2}\right) \cup \psi_{\bar{\xi}+1}\left(U_{2}\right)\right) \backslash E\right)\right) \\
& \geq \mu\left(T\left(\phi_{1}\left(U_{-2}\right) \cup \psi_{\bar{\xi}+1}\left(U_{2}\right)\right)\right)-\mu\left(T\left(\left(\psi_{1}\left(U_{-2}\right) \cup \psi_{\bar{\xi}+1}\left(U_{2}\right)\right) \backslash E\right)\right) \\
& >1-3^{31} \varepsilon^{2} .
\end{aligned}
$$

Proof of Theorem 3. We prove (44). Let $E \in \mathfrak{B}$ given arbitrary. (Note that, by the definition of $T, E \in \mathfrak{B}$ if and only if $T E \in \mathfrak{B}$.) Let $\varepsilon>0$. Then there exists a

IEKATA ${ }_{\mathbf{I}}$ Shiokawa

fundamental interval $F=X_{a_{1} \cdots a_{n}}$ such that

$$
\begin{equation*}
m(F \backslash E)<3^{-50} \varepsilon m(F) \tag{49}
\end{equation*}
$$

Otherwise, the inequality

$$
m(F \backslash E) \geq 3^{-50} s m(F)
$$

holds for all fundamental interval F, and so it holds also for arbitrary measurable set F. Putting $F=E$ we have $m(F)=0$; a contradiction.

Using Lemma 4, (41), (16), (27), (30), and (49), we get

$$
\begin{align*}
\mu\left(T^{n} F \backslash T^{n} E\right) & \leq \mu\left(T^{n}(F \backslash E)\right) \\
& \leq 3^{11} m\left(T^{n}(F \backslash E)\right) \leq 3^{15}\left|q_{n}\right|^{4} m(F \backslash E) \\
& \leq 3^{19} m(F)^{-1} m(F \backslash E)<3^{-31} \varepsilon \tag{50}
\end{align*}
$$

Noticing that $T^{n} F=U_{j}$ for some j by Lemma 4, we have from (50) and Lemma 6

$$
\mu\left(T^{n+1} E\right)>1-\varepsilon
$$

Since $\mu(E), \mu(T E), \mu\left(T^{2} E\right), \cdots$ is non-decreasing, the relation (44) is proved.
As a general property of exact transformations (see V.A. Rohlin [4]) we have
Corollary. The transformation T is mixing of all degrees. In particular T is strongly mixing; i.e. for any $E, F \in \mathfrak{B}$ we have

$$
\lim _{n \rightarrow \infty} \mu\left(T^{-n} E \cap F\right)=\mu(E) \mu(F)
$$

REFERENCES

[1] Billingsley, P. (1965): Ergodic theory and Information. J. Wiley, New York.
[2] Kaneiwa, R., Shiokawa, I., and Tamura, J. (1975): A proof of Perron's theorem on Diophantine approximation of complex numbers, Keio Engineering Reports, vol. 28, No. 12, 131-147.
[3] Kaneiwa, R., Shiokawa, I., and Tamura, J. (1976): Some properties of complex continued fractions, to appear.
[4] Perron, O. (1931): Über einen Approximationssatz von Hurwitz und uber die Approximation einer komplexen Zahlen des Körpers der dritten Einheitswurzeln, Sitzber. Bayer, 129-154.
[5] Perron, O. (1967): Die Lahre von den Kettenbrüchen, 2 Aufl. Chelsea.
[6] Rohlin, V.A. (1961): Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR 25, 499-530.
[7] Schweiger, F. (1973): The matrical theory of Jacobi-Perron Algorithm. Lecture Note in Math. No. 334, Springer.

