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ON THE FLOW OUTSIDE A NONSADDLE
COMPACT INVARIANT SET
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Dept. of Mathematics, Keio University, Yokohama. 223 Japan

(Received, Jun. 1, 1976)

ABSTRACT

In this paper, we deal with a nonsaddle compact invariant set M of abstract dynamical
systems placing special emphasis on the behaviour of orbits lying in the vicinity of M.
Given a neighbourhood U of M, we divide U—M into several subsets according to the
behaviour of orbits in them. These subsets will be called hyperbolic, parabolic and elliptic
regions and our aim is to clarify how these regions are distributed in U—M.

1. Introduction and Preliminaries

Let (X, z) be an abstract dynamical system with phase space X and phase map
7 defined by usual axioms. Also, as our standing hypothesis, we assume that X is
a locally compact metric space.
The following notation will be used throughout the paper.
For any x ¢ X, we denote by:
C+(x), a positive half-orbit from x;
C-(x), a negative half-orbit from zx;
C(z), an orbit through x, i.e. Clx)=C(x)UC (z);
L+(x), an w-limit set of x;
L~(x), an a-limit set of x;
J(x), a positive prolongational limit set of x;
J(x), a negative prolongational limit set of x.
The object of this paper lies in the study of the behaviour of orbits in the
vicinity of a compact invariant set which is the most fundamental part of the
local theory of dynamical systems. For that purpose, we introduce following

concepts.
Let M be a compact invariant set of (X, ) which is not open, and U be its
arbitrary neighbourhood. We divide U —M into following subsets:

Gu=[z; 2e U=M, C'(x)¢ U, C(x)¢ U],
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Ny =[x; xe U-M, C'(x)cU],
Ny=[z; e U-M, C-(z)cU],
Ny=NgN Ny,

and we call each connected component of :

Gy, a hyperbolic region,

N; — Ny, a positive parabolic region,
Nj — Ny, a negative parabolic region,
Ny, an elliptic region.

Obviously Gy is open and Ng, N; and Ny are closed in U—M, and
U-M=GyUNy UNy,

It is also obvious that Ny is an invariant set.
The following definition gives a very important classification of compact
invariant sets.

Definition. If there exists a neighbourhood U of M such that G,N M+, then
M is called a saddle set. Otherwise it is called a nonsaddle set.

Compared with the saddle set, the nonsaddle set is much easier to treat. This
is mainly due to the fact that, if M is a nonsaddle set, we may suppose that
U—M has no hyerbolic regions as we shall see later.

Saddle property of a compact invariant set will be characterized by following
theorems.

Theorem A. I[f there exists either
1) an x¢ M such that

L (xynM+8, J (x)&M,

or
2) an x' ¢ M such that

L~(z"yn M=+0, J ()M,
then M is a saddie set.

Theorem B. (Converse of Theorem A). If M is a saddle set isolated from
minimal sets (i.e. there exists a neighbourhood U of M such that U—M contains
no minimal sets), then there exist

1) an x¢ M such that
Lix)nM+0, ] (x)EM,

and
2) an x' ¢ M such that
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L-(NM+0, J(«)EM.

Theorem C. (Contraposition of Theorem A). If M is a nonsaddle set, then
x&M and Lt (x)NM=0 implies MD] (x)DL'(x), and x&M and L-(x)n M+0
implies M>DJ (x)D L (x).

To investigate the behaviour of orbits in some neighbourhood of M, we have
to determine all possible configurations of hyperbolic, parabolic and elliptic regions.
This is by no means an easy problem and results obtained so far are quite meagre
except for some very special dynamical systems. As a first step towards the
complete solution of this problem, we shall be concerned with the case when M is
a nonsaddle set which is undoubtedly an easier part of the study.

We conclude this section with the statement of one more theorem which will
be used in the next section.

Theorem D. A compact invariant set M is positively (negatively) asymptotically
stable if and only if Nj=0 (Nj=0) for some neibourhood U of M.

2. The Case when Ny=0

Hereafter M always denotes a nonsaddle compact invariant set which is not
open and isolated from minimal sets. U always denotes an open neighbourhood
of M such that U—M contains no minimal sets. Since our study is entirely
local-theoretic, all we need is a sufficiently small neighbourhood of M. So we
may always assume that U7 is compact because of the local compactness of X.
Also we assume that 9U=0. This means that we exclude the case when U
coincides with the whole (or a connected component containing M) of X and
therefore is quite a natural assumption.

Since M is a nonsaddle set, GyN M=0 for any neighbourhood U of M. So if
a neighourhood V of M is chosen sufficently small, we have

Guen V=4.

Therefore U\Gy>V which shows that U\Gy=U" is also a neighbourhood of
M and Gy =@. In other words, every open neighbourhood U of M contains an
open neighbourhood U’ with Gy, =0. Thus we get

Proposition 1. If M is a nonsaddle set, there exists a fundamental system of
neighbourhoods of M such that Guy=0 for every member U of this fundamental
system.

So, from now on, we always assume that Gy=0. This greatly simplifies our
argument.

U—M generally consists of several connected components. We denote them
by CU—-M). or simply C., ael, where [ is the set of indices « (which might
even be uncountable). As is well known, C, is closed in U—M.

As Gy is supposed to be empty,
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U—M=Ny UN;.
Therefore we have only to consider following four cases:
(1) Ng=U—-M, Ny=0,
(1) Ny=U-M, N;=0,
(III) Ng=+0, Njy+0, Ny=0,
(IV)  Ng+#0, Ny=+0, Ny+0.
By Theorem D stated at the end of the preceding section, we immediately have

Proposition 2. If the case (1) takes place, M is positively asymptotically stable.
If the case (11) takes place, M is negatively asymptotically stable.

Next consider the case (III). Since N; and N; are both closed in U—M,
NiNC, and NynC, are both closed in C.. As Ny is empty, we have

Co=(NgNCo) UNFNC),
(NgNC)N(NgNC)=NynC.=0.
But as C, is connected, we have either
Ny uUC.=C,,  NyNnC.=0,
or
NynCe=Cun  NinC,=0.

Therefore C, is a parabolic region either positive or negative. If C, is a
positive parabolic region, then for any x¢€C., we have C(z)¢U, C'(z)cU and
L'(z)cU. As U is supposed to be compact, L (z) is a compact invariant set and
hence contains a minimal set in it. Since U —M contains no minimal sets, such a
minimal set naturally lies in M. Hence L (x)NnM=0. By Theorem C, this implies
M>DL (z).

Analogously if C, is a negative parabolic region, xe€C, implies C'(z)¢U,
L-(x)cM. Thus we get

Proposition 3. If the case (111) takes place, each conmected component C, of
U—M is either a positive parabolic region or a negative pavabolic vegion. In the
former case, every orbit in C, tends to M positively and leaves C, negatively. In the
latter case, every orbit in C, tends to M negatively and leaves C, positively.

3. The Case when Ny+#

Next we consider the case (IV). In this case, the situation becomes much
more complicated because of the existence of elliptic regions.
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Now C, will be classified into following four types:
(i) C.cNj—Ny,
(ii) C.cNy—DNy,
(iil) C,c Ny,
(iv) C.NNy#8, C.¢tNy.

When C, is of the type (i) or (ii), C, itself is a parabolic region either positive
or negative. Therefore the behaviour of orbits is just the same as in the case (III).

When C, is of the type (iii), C, itself is an elliptic region and hence every
orbit in C, tends to M both positively and negatively.

It is to be noticed that all the C, cannot be of the type (iii). Indeed, if that
is the case, U~M=Ny and hence U is a compact invariant set. Then evidently
oU is also a compact invariant set and hence contains a minimal set. This is
however impossible because U/ is so chosen that U7 —M contains no minimal sets.
So some of the C, must necessarily be of the type (i), (ii) or (iv).

So far, the discussion is quite simple. All the difficulties concentrate on the
case when C, is of the type (iv).

We start with the proof of the following lemma.
Lemma 1. There exists a neighbourhood W of Ny such that y e W implies
M>DL' (y)+9 and M>D L (y)+0.

Proof. Suppose that there exists a sequence {z,}cX—M such that z, —>=x¢
Ny and L (x,)EM or L*(x,)=0.

If L*(zn)=9¢, the n(x,, )¢ U if ¢ is sufficiently large.

If L*(xn)#9 and L*(x,)E M, then as M is a nonsaddle set, we have L*(z,)N
M=0 by Theorem C. If L*(x,) is not compact, then evidently L*(x,)¢ U because
U is compact. If L+(z) is compact, it contains a minimal set which does not lie
in M. But as U—M contains no minimal sets, we must have L*(x,)dU. So, in
either case, we can find #>7 such that z(z,,¢)¢ U for any positive T.

Thus, anyway, there exists a sequence {#,} such that

tn>0, by —> 00, 7!(.2,‘”, tn)¢ U

Let X be a one-point compactification of X and (X' , %) be a natural extension
of (X, =) onto X. Also denote by r *(x) and 7*(9&') the o-limit set and the positive
prolongational limit set of x in (X, #) respectively.

X being compact, a sequence {x(x,, t.)}={#(xn, t»)} has a cluster point z in X.
Since n(xa, tx) ¢ U, we have

ze X—UcX—-M.
Since z, —» z and £, —> oo, z€ J *(x). Hence
THa)ycM.

On the other hand, as x € Ny, we necessarily have
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L*(z)n M+0.

As it is obvious that [ ‘(z)DL"(z), this implies L H@)n M+0.

Consequently, by Theorem A, M is a saddle set of the dynamical system (X, 7.
Since the saddle property is entirely a local one, this implies that M is also a
saddle set of (X, x) contrary to our assumption.

Thus we conclude that, if y is sufficiently close to Ny, we have M>DL ' (y)#80.

In a similar way, one can show that MDL~(y)+0 if y is sufficiently close to
Ny, and this completes the proof.

Based on this lemma, we prove the following

Lemma 2. Suppose that U is locally commected. Then, if C. is of the type
(iv), we have

(N —Np)NCo#0, (Ng —Np)N C,#0.
Proof. For simplicity, we write
NynC.=N;}, NyjnC.,=N;, NynC,=N.,.
Then what we have to show is that
NS#N,,  N;#N..

Assume that N; =N, to derive a contradiction. Then N, +#N, because N;=
N,=N; implies C,c Ny contrary to the assumption. Thus we have

N;DN,=Nj;, N;—N,+0.
Since (Gy being empty) N;UN;=C,, we have
Co=N;=(N; —N,)UN,,
Ny —N,+6,  N.#0.

As N, is closed in C, and C, is connected, N, is not open in C,. Therefore we
can find a sequence {z,}CN;—N, tending to x ¢ N,. Then, by Lemma 1, we may
suppose that M:)L*(xn)q_bﬂ. However, as a, € N;—N,, x(aa,t) leaves U when ¢

increases and re-enter U to stay there forever. So there exists ¢,>0 for each z,
such that

w(xn, )¢ U,  ti>t>ta—e,
Yn=n(Ln, ta) € OU, C‘(yn)cl-/',

where ¢ is a suitably small positive number. Then obviously y,e€ Nf—Ny. We
shall prove that at most a finite number of y, can lie outside C,.

Let us assume the contrary. Then there exists an infinite subsequence
{yn,; £=1,2,---} of {y,} which lies outside C.. Since y,€ dU and dU is compact,
we may suppose that y,, — y € oU.

Since U is supposed to be locally connected and U—M is open in U, C, is an
open set in U—M. Hence the set (U—M)—C, is closed in U—~M. As yn, € (U—M)
—C, and
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Yny—> y €U CU—M,

we have y e (U—M)—C,. Hence y¢C..

Since m(@ny, try) =yn, > ¥4 Ca and x,, — x € N, as k— co and N, is an invariant
set in C,, {tz,} cannot be bounded. So we may suppose that #,, — co, and this
implies y € J*(x). As y € aoU, this shows that

T (@) e M.

On the other hand, as z € N,.Cc Ny, we have L*(x)N M+@. Thus, by Theorem
A, M must be a saddle set contrary to our assumption.

Therefore almost all y, belong to C,. Since y, e Nj—Ny as we have already
remarked, we have

C.N{(Ng —Ny)=N;j—N,+0.

This contradiction shows that N;+#=N..

N;# N, can be proved similarly.

From this lemma, we see that, if C, is of the type (iv) and U is locally
connected,

CaN(Ng —Np)#0,  CanN(Ng —Np)#0,  C.N Ny+0.

Hence C, includes several positive parabolic regions, several negative parabolic
regions and several elliptic regions simultaneously. Thus we get

Proposition 4. If the case (IV) takes place, C, are classified into four types
(1), (ii), (iii) and (iv) stated above, and

1) if C, is of the type (1), C. is a posilive parabolic region in which every
orbit tends to M positively and leaves C, negatively,

2) if C, is of the type (i1, C, is a negative parabolic region in which every
orbit tends to M megatively and leaves C, positively,

3) if C, is of the type (ii1), C, is an elliptic region in which every orbit tends
to M both positively and negatively,

4) if C, is of the type (iv), C, is @ union of positive parabolic regions, negative
parabolic vegions and elliptic regions none of which is empty.

Also at least one C, must be different from the type (iii.

Summarizing Propositions 1~4, we have the following fundamental Theorem.

Theorem. Let M be a nonsaddie compact invavint set isolated from minimal
sets. Then M has a fundamental system of neighbourhoods whose members have no
hyperbolic regions. Let U be any such neighbourhood and {C,} be the connected
components of U—M.

If U is compact and locally connected and U9, then each C, belongs to one
of the following four types and at least ome of C, must be different from the type
C):

A C, is a positive parabolic region,

B) C, is a negative parabolic region,

Q) C, is an elliptic region,
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DY C. is a union of positive parabolic regions, negative parabolic regions and
elliptic regions none of which is empty.

4. Further Study of Elliptic Regions

Here we investigate the structure of U—M in more detail where Uis always
supposed to be locally connected.

Proposition 5. If C, is of the type D), C.,—N, is not connected.
Proof. Evidently we have
Co— N, =(N}—=NJUN;—N,)
and
N, —N.+0, N;—N,+0,
by Lemma 2. Since
(N& = Na) N (N7 —No) =0,
we have only to show that N, — N, and N; — N, are both open in C,—N,. But since
NS —=N,=N;UN;—N;7=C,—Ny,

and N; is closed in C, (because Ny =N;NC, and Ny is closed in U—M), N} —N,
is open in C,. The openness of Ny —N, can be proved similarly.

Proposition 6. If C, is of the type D), then every elliptic region in C, inter-
sects oU.

Proof. Since an elliptic region E in C, is a connected component of Ny which
is a closed set in U—M, E is closed in C,. As C,—E+6 and C, is a connected
set, £ is not open in C,. Therefore £ has a boundary point x which is a cluster
point either of N;j—N, or of NJ—N,.

Suppose that x is a cluster point of Nj—N,. Then there exists a sequence
{z,}c N}~ N, such that z, — x.

Since C-(z,)¢ U, there exists #,<0 such that

7(2n, t) € C,y t>ty,
7(Tny tn) € OUNC,.

As C, is closed in U—M and aU is compact, we may suppose that
7(xn, tn) > y € 0UNC..

If the sequence {¢#,} is unbounded, we may suppose that ¢, —> —oco. Hence
yeJ (x). As yeoU, we have
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J(@)¢ M.

On the other hand, x € £ implies L-(x)NnM=0. So, by Theorem A, M is a saddle
set contrary to the assumption.

Therefore {¢,) is bounded and we may suppose that #, — > —co. Then, by
the continuity of z, it follows that

y=n(x, T).
As z e E and E is an invariant set, y ¢ £. Hence y € EN6U and E intersects aU.

Proposition 7. Let the number of connected components of X—M be finite.
Then every elliptic region of U intersects oU if U is chosen sufficiently small.

Proof. Let X,,---, X, be the connected components of X—M. We choose an
open neighbourhood U of M so that

U:Dle Tty U:DXﬂr

and let {C.} be the connected components of U—M. If C, contains an elliptic
region, it must be either of type C) or of type D).

Let C. be of type C), i.e. C, itself is an elliptic region. As U is locally
connected, C, is open in U—M. Also C, is closed in U—M as C, is a connected
component of Ny which is closed in /—M. Therefore C, is open and closed in
U—M. Consequently if C,cU, C, is open and closed in X—M and hence must
coincide with one of Xi,---, X,. But since U has been so chosen that none of
X, -, X, is contained in U, this is obviously impossible. Thus we have C,¢ U
and C, intersects aU.

If C, is of type D), then the conclusion follows directly from Proposition 6.
Thus we have completed the proof.

From now on, we always assume that X—AM has only a finite number of
connected components and the neighbourhood U is chosen so small that the conclu-
sion of the Proposition 7 holds.

From Proposition 7, we see that, if Vc U, Ny is actually smaller than NynV.
In fact, let £ be an elliptic region with respect to U/. Then ENV does not belong
to Ny, because if y € ENV is a boundary point of E, then, as Cy)NoU=0, Cly)
does not belong to V and hence y ¢ Ny.

Thus we have the following alternative:

1) if U is chosen sufficiently small, then Ny=0, or

2) Ny+@ for every neighbourhood U.

In the former case, the situation is quite simple, because, by choosing U
sufficiently small, we can avoid the complicated case (IV) and C, is either of the
type A) or of the type B).

So the most difficult part of the study lies in the case when 2) takes place.
In this case, we can prove the following

Proposition 8. If the case 2) takes place, then for any neighbourhood U of
M, at least one elliptic region has an interior point.

Proof. Let U be an arbitrary neighbourhood of M and V be a neighbourhood

69



Tosiya Saito

of M with VcU. Then, by assumption, Ny=0. If 2 ¢ Ny, then C(z)cV c U and
hence z belongs to some elliptic region with respect to U, E say. Since C(x)cV,
C(x) does not intersect aU. Therefore, as the proof of Proposition 6 shows, z is
not a boundary point of £. Hence £ has an interior point. This completes the
proof.

It is also clear that, if there exists an elliptic region E (with respect to U)
with interior points, then there exists a neighbourhood V of M with VcU such
that Ny-#0. In fact, let x be an interior point of £, then C(z) deos not meet 6U
since the interior of £ is an invariant set. Se we can construct a neighbourhood
V of M so that VcU and VoC(x). Then z € Ny and Ny is not empty.

As a result, we have

Proposition 9. For the case 1) to be realized, it is necessary and sufficient
that there exists a neighbourhood U of M such that no elliptic vegions have interior
hoints.

Concerning this, we add one more proposition.

Proposition 10. Let C, be of the type C) or D), i.e. C, includes an elliptic
region. If there exists a neighbourhood V of M such that VcU and VNC,. is
connected, that at least one elliptic rvegion in C, has an interior point.

Proof. First notice that ¥V NC,#@ since C.n M=0. Let us put
V.=VnC.=(V-M)nC.

By the assumption on C,, N,'#0 and N;+0. Let x be a point in N;. Then since
L'(x)c M, there exists T>0 such that =(x,¢) eV for t=7. Then

mlx, T) e V.N Ny

which shows that V,NN;/+0. Similarly V.n N;#0. As we assumed that Gy =60,
we have

Ve=V.NNHUF.NNp).

Since V, is connected by assumption and V,N Ny and V.NN; are both nonempty
and closed in V,, the above relation implies

VN NHN VN Ny)=V.n Ny+0.
If yeV.N Ny, then since C'(y)cV and C*(y)cC,,
Cy)cV..

Analogously we have C-(y)cV,. Therefore C(y)cV.cC, which shows that y belongs
to some elliptic region, £ say. Since C(y)cV.cU,C(y) does not meet 6U. Hence
y is not a boundary point of E£. Thus E must have an interior point. This
completes the proof.

Suppose that M has a fundamental system of neighbourhoods such that U-M
is connected for every member U of this system. If there exists a neighbourhood
with elliptic regions, the case 1) can never take place. In fact, if 1) takes place,
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there must exist a neighbourhood U of M such that no elliptic regions have
interior points (Proposition 9). Let V be a neighbourhood of M with VcU. Since
we may suppose that U—M and V—M are both connected, C,=U—M and V' NC,
=VnU-M)=V—-M. Hence VNC, is connected. So, by Proposition 10, at least
one elliptic region in U—M must have interior points which is a contradiction.

We conclude this paper by proving two propositions concerning the number of
elliptic regions with interior points.

Proposition 11. The number of elliptic regions with interior points is at most
countable.

Proof. Let {E,} be the totality of elliptic regions with interior points. Let
us denote by 7/ and I, the interior of Ny and FE, respectively. Then we have
I=Ul, and I,nI;=0 if a#p8. As U is compact, U has a countable base of open
sets. Since U/, is a non-overlapping covering of an open set I, the number of 7,
must be at most countable.

Proposition 12. Let U be an arbitrary neighbourhood of M and V be a neigh-
bourhood of M with VcU. Then the member of elliptic regions (with respect to U)
which intersects Ny is finite.

Proof. Let {El} be the totality of elliptic regions with respect to U such that
E.NNy+#0. Let x be a point of Ny. Then C(z)cVcU and hence C(z)NoU=8.
This implies that x is an interior point of some E.. Conversely every E. includes
a point of Ny by definition which should necessarily be an interior point of FE..
So if we denote by I. the interior of E., every I, is nonempty and UI.DNy.

Let W be any open neighbourhood of M with W< V, and consider the set

K=NyN(X—W).

Then K is nonempty and compact and U/, is an open convering of K.
Therefore we can select a finite covering of K from U L.

As every I contains a point of Ny, it contains at least one elliptic region E
with respect to V. Then since ENaV+0 by Proposition 7 and éVcX—W, E
contains a point of K in it. Consequently every I, contains a point of K. More-
over we have I N[;=0 if a#p. So, in selecting a finite covering of K from U7,
none of I can be excluded. This means that U/, is itself a finite covermg Hence
the number of E is finite.

Remark. Propositions 1~4 were already published in my book *Iso-Rikigaku
(Topological Dynamics)”, Kyoritsu, Tokyo, in Japanese.
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