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KEIO ENGINEERING REPORTS 
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ON THE FLOW OUTSIDE A NONSADDLE 
COMP ACT INVARIANT SET 

TOSIY A SAITO 

Dept. of Mathematics, Keio University, Yokohama. 223 Japan 

(Received, fun. I, 1976) 

ABSTRACT 

In this paper, we deal with a nonsaddle compact invariant set M of abstract dynamical 
systems placing special emphasis on the behaviour of orbits lying in the vicinity of M. 
Given a neighbourhood U of M, we divide 0-M into several subsets according to the 
behaviour of orbits in them. These subsets will be called hyperbolic, parabolic and elliptic 
regions and our aim is to clarify how these regions are distributed in 0-M. 

1. Introduction and Preliminaries 

Let (X, rr) be an abstract dynamical system with phase space X and phase map 
rr defined by usual axioms. Also, as our standing hypothesis, we assume that X is 
a locally compact metric space. 

The following notation will be used throughout the paper. 
For any x E X, we denote by : 

C+(x), a positive half-orbit from x; 
c-(x), a negative half-orbit from x; 
C(x), an orbit through x, i.e. C(x) =C-(x) U C-(x); 
L +(x), an w-limit set of x; 
L-(x), an a-limit set of x; 
f+-(x), a positive prolongatzonal limit set of x; 
J-(x), a negative prolongational limit set of x. 

The object of this paper lies in the study of the behaviour of orbits in the 
vicinity of a compact invariant set which is the most fundamental part of the 
local theory of dynamical systems. For that purpose, we introduce following 
concepts. 

Let M be a compact invariant set of (X, rr) which is not open, and U be its 
arbitrary neighbourhood. We divide 0 -M into following subsets: 

Gu=[x; XE 0-M, C(x)Q:U, c-(x)Q:UJ, 
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Nu =[x; x E 0-M, C+(x)c U], 

Nij=[x; xE0-M, C-(x)cU], 

and we call each connected component of: 

Gu, a hyperbolic region, 
Ni7-Nu, a positive parabolic region, 
Ni]-Nu, a negative parabolic region, 
Nu, an elliptic region. 

Obviously Gu is open and NJ, Nu and Nu are closed in 0 - M, and 

0-M=GuUNJ UNiJ, 

GunNJ=0, GunNu=0. 

It is also obvious that Nu is an invariant set. 
The following definition gives a very important classification of compact 

invariant sets. 

Definition. If there exists a neighbourhood U of M such that Gun M=F0, then 
M is called a saddle set. Otherwise it is called a nonsaddle set. 

Compared with the saddle set, the nonsaddle set is much easier to treat. This 
is mainly due to the fact that, if M is a nonsaddle set, we may suppose that 
0 - M has no hyerbolic regions as we shall see later. 

Saddle property of a compact invariant set will be characterized by following 
theorems. 

or 

Theorem A. If there exists either 
1) an x $ M such that 

L+(x)nM=F0, 

2) an x' $ M such that 

L-(x')nM=F0, 

then M is a saddie set. 

]' (x)<tM, 

Theorem B. (Converse of Theorem A). If M is a saddle set isolated from 
minimal sets (i. e. there exists a neighbourhood U of M such that 0 - M contains 
no minimal sets), then there exist 

1) an x $ M such that 

L'(x)nM=F0, ]·(x)<tM, 

and 
2) an x' $ M such that 
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L-(x') n M=t0, 

Theorem C. (Contraposition of Theorem A). If M is a nonsaddle set, then 
x$M and £t(x)nM=t0 implies M~J (x)~L'(x), and x$M and L-(x)nM=t0 
implies M~J-(x)~L-(x). 

To investigate the behaviour of orbits in some neighbourhood of M, we have 
to determine all possible configurations of hyperbolic, parabolic and elliptic regions. 
This is by no means an easy problem and results obtained so far are quite meagre 
except for some very special dynamical systems. As a first step towards the 
complete solution of this problem, we shall be concerned with the case when M is 
a nonsaddle set which is undoubtedly an easier part of the study. 

We conclude this section with the statement of one more theorem which will 
be used in the next section. 

Theorem D. A compact invariant set Mis positively (negatively) asymptotically 
stable if and only if Nu =0 (NJ =0) for some neibourhood U of M. 

2. The Case when Nu='IJ 

Hereafter M always denotes a nonsaddle compact invariant set which is not 
open and isolated from minimal sets. U always denotes an open neighbourhood 
of M such that (j - M contains no minimal sets. Since our study is entirely 
local-theoretic, all we need is a sufficiently small neighbourhood of M. So we 
may always assume that (j is compact because of the local compactness of X. 
Also we assume that aU=t0. This means that we exclude the case when U 
coincides with the whole (or a connected component containing M) of X and 
therefore is quite a natural assumption. 

Since Mis a nonsaddle set, GunM=0 for any neighbourhood U of M. So if 
a neighourhood V of M is chosen sufficently small, we have 

Gun V=0. 

Therefore U\Gu~ V which shows that U\Gu= U' is also a neighbourhood of 
M and Gu, =0. In other words, every open neighbourhood U of M contains an 
open neighbourhood U' with Gu, =0. Thus we get 

Proposition 1. If M is a nonsaddle set, there exists a fundamental system of 
neighbourhoods of M such that Gu=0 for every member U of this fundamental 
system. 

So, from now on, we always assume that Gu =0. This greatly simplifies our 
argument. 

(j - M generally consists of several connected components. We denote them 
by Ca(U-M). or simply Ca, a EI, where I is the set of indices a (which might 
even be uncountable). As is well known, Ca is closed in U -M. 

As Gu is supposed to be empty, 
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0-M=NuUNi}. 

Therefore we have only to consider following four cases: 

( I ) NJ=O-M, Nu=0, 

(II ) Nu=O-M, Ni; =0, 

(III) NiJ *-0, Nuof=0, Nu=0, 

(IV) NJ*-0, Nuof=0, Nuof=0. 

By Theorem D stated at the end of the preceding section, we immediately have 

Proposition 2. If tlze case (I) takes place, M is positively asymptotically stable. 
If the case (II) takes p!ace, M is negatively asymptotically stable. 

Next consider the case (III). Since Nt; and Nu are both closed in 0 - M, 
Nii n Ca and Nun C,, are both closed in Ca. As Nu is empty, we have 

Ca =(Ni} n Ca) U (Ni-; n C,,), 

(Nr} n C,,) n (Nr] n Ca) =Nun C,, =0. 

But as C" is connected, we have either 

lvu UC,.=C", 

or 

Therefore C,, is a parabolic region either positive or negative. If C is a 
positive parabolic region, then for any x E Ca, we have c-(x)<tO, c (x)cO and 
L' (x) c 0. As 0 is supposed to be compact, L (x) is a compact invariant set and 
hence contains a minimal set in it. Since 0 - M contains no minimal sets, such a 
minimal set naturally lies in M. Hence L (x) n Mof=0. By Theorem C, this implies 
M:JL (x). 

Analogously if C is a negative parabolic region, x E C, implies C 1 (x) <t 0, 
L-(x)cM. Thus we get 

Proposition 3. If the case (III) takes place, each connected component Ca of 
0 -M is either a positive parabolic region or a negative para~olic region. In the 
former case, every orbit in C" tends to 1\1 positively and leaves Ca negatively. In the 
latter case, every orbit in C,, tends to 1\1 nef{atively and leaves Ca positively. 

3. The Case when Nuof=0 

Next we consider the case (IV). In this case, the situation becomes much 
more complicated because of the existence of elliptic regions. 
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Now C" will be classified into following four types: 

(i) CacNi}-Nu, 

(ii) CacNi]-Nu, 

(iii) CacNu, 

(iv) Can Nu=F0, Ca ct.Nu. 

When Ca is of the type ( i) or (ii), Ca itself is a parabolic region either positive 
or negative. Therefore the behaviour of orbits is just the same as in the case (III). 

When Ca is of the type (iii), Ca itself is an elliptic region and hence every 
orbit in Ca tends to M both positively and negatively. 

It is to be noticed that all the Ca cannot be of the type (iii). Indeed, if that 
is the case, 0-M=Nu and hence 0 is a compact invariant set. Then evidently 
au is also a compact invariant set and hence contains a minimal set. This is 
however impossible because U is so chosen that 0 -M contains no minimal sets. 
So some of the Ca must necessarily be of the type ( i ), (ii) or (iv). 

So far, the discussion is quite simple. All the difficulties concentrate on the 
case when Ca is of the type (iv). 

We start with the proof of the following lemma. 

Lemma 1. There exists a neighbourhood W of Nu such that y E W implies 

M--::JL 1 (y)=t0 and 

Proof. Suppose that there exists a sequence {xn} cX-M such that Xn-+ x E 

Nu and V(xn)ct.M or U(xn)=0. 
If L-' (xn) =cp, the rr(xn, t) $ 0 if t is sufficiently large. 
If L+(xn)=F0 and U(xn)ct.M, then as Mis a nonsaddle set, we have L+(xn)n 

M=0 by Theorem C. If L'(xn) is not compact, then evidently Lr(xn)ct.0 because 
0 is compact. If L +(x) is compact, it contains a minimal set which does not lie 
in M. But as 0 -M contains no minimal sets, we must have L~(xn) ct. 0. So, in 
either case, we can find t> T such that rr(xn, t) $ 0 for any positive T. 

Thus, anyway, there exists a sequence {tn} such that 

Let X be a one-point compactification of X and (X, if) be a natural extension 
of (X, rr) onto X. Also denote by l +(x) and f +(x) the w-limit set and the positive 
prolongational limit set of x in (X, if) respectively. 

X being compact, a sequence {rr(xn, tn)}={if(xn, tn)} has a cluster point z in X. 
Since rr(xn, tn) $ 0, we have 

zEX-UcX-M. 

Since Xn-+ x and tn-+ oo, z E f-1 (x). Hence 

On the other hand, as x E Nu, we necessarily have 
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U(x)nM-*0. 

As it is obvious that L'(x)-:JU(x), this implies l 1-(x)nM*0. 
Consequently, by Theorem A, M is a saddle set of the dynamical system (X, it). 

Since the saddle property is entirely a local one, this implies that M is also a 
saddle set of (X, rr) contrary to our assumption. 

Thus we conclude that, if y is sufficiently close to Nu, we have M-:JL ! (y)::;t=0. 
In a similar way, one can show that M-:J L--(y) ::;t=0 if y is sufficiently close to 

Nu, and this completes the proof. 
Based on this lemma, we prove the following 

Lemma 2. Suppose that 0 is locally connected. Then, if Ca is of the type 
(iv), we have 

(N1J-Nu)nCa=F0, (N,7-Nu) n Ca=t=0. 

Proof. For simplicity, we write 

Then what we have to show is that 

Assume that Na+= Na to derive a contradiction. Then Na-* Na because Na+= 
Na= Na- implies Ca c Nu contrary to the assumption. Thus we have 

As Na is closed in Ca and Ca is connected, Na is not open in Ca. Therefore we 
can find a sequence {xn} cNa- -Na tending to x E Na. Then, by Lemma 1, we may 
suppose that M-:JV (xn)=F0. However, as Xn E Na- -Na, n(xn, t) leaves 0 when t 
increases and re-enter 0 to stay there forever. So there exists tn>O for each Xn 
such that 

where c is a suitably small positive number. Then obviously Yn E Ni} - Nu. We 
shall prove that at most a finite number of Yn can lie outside Ca. 

Let us assume the contrary. Then there exists an infinite subsequence 
{Ynk; k=l,2,···} of {Yn} which lies outside Ca. Since YnEiJU and iJU is compact, 
we may suppose that Ynk ~ y E oU. 

Since 0 is supposed to be locally connected and 0-M is open in 0, Ca is an 
open set in 0-M. Hence the set (0-M)-Ca is closed in 0-M. As Ynk E (0-M) 
-Ca and 
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Ynk---+ y E oUcU-M, 

we have y E ( U - M)-C.,. Hence y $Ca. 
Since n(xnk' tnk) =ynk---+ y $Ca and Xnk---+ x E Na as k---+ CXJ and Na is an invariant 

set in Ca, {tnk} cannot be bounded. So we may suppose that tnk ---+ CXJ, and this 
implies y E f+(x). As y Eau, this shows that 

]'(x)ctM. 

On the other hand, as x E NacNu, we have L+(x)nM=f:0. Thus, by Theorem 
A, M must be a saddle set contrary to our assumption. 

Therefore almost all Yn belong to Ca. Since Yn E NJ - Nu as we have already 
remarked, we have 

This contradiction shows that Na+=f=Na. 
Na-=f=Na can be proved similarly. 
From this lemma, we see that, if Ca is of the type (iv) and 0 is locally 

connected, 

Can (NJ-Nu)=f:0, 

Hence Ca includes several positive parabolic regions, several negative parabolic 
regions and several elliptic regions simultaneously. Thus we get 

Proposition 4. If the case (IV) takes place, Ca are classified into four types 
( i ), (ii), (iii) and (iv) stated above, and 

1) if Ca is of the type ( i ), Ca is a positive parabolic region in which every 
orbit tends to M positively and leaves Ca negatively, 

2) if Ca is of the type (ii), Ca is a negative parabolic region in which every 
orbit tends to M negatively and leaves Ca positively, 

3) if Ca is of the type (iii), Ca is an elliptic region in which every orbit tends 
to M both positively and negatively, 

4) if Ca is of the type (iv), Ca is a union of positive parabolic regions, negative 
parabolic regions and elliptic regions none of which is empty. 

Also at least one Ca must be different from the type \iin. 

Summarizing Propositions 1,..__,4, we have the following fundamental Theorem. 

Theorem. Let M be a nonsaddle compact invarint set isolated from minimal 
sets. Then M has a fundamental system of neighbourhoods whose members have no 
hyperbolic regions. Let U be any such neighbourhood and {Ca} be the connected 
components of 0 - M. 

If 0 is compact and locally connected and oU=f:0, then each Ca belongs to one 
of the fallowing four types and at least one of Ca must be different from the type 
C): 

A) Ca is a positive parabolic region, 
m Ca is a negative parabolic region, 
C) Ca is an elliptic region, 
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m Ca is a union of positive parabolic regions, negative parabolic regions and 
elliptic regions none of which is empty. 

4. Further Study of Elliptic Regions 

Here we investigate the structure of 0-M in more detail where 0 is always 
supposed to be locally connected. 

and 

Proposition 5. If Ca is of the type D), Ca - Na is not connected. 

Proof. Evidently we have 

Ca - Na= (N,: - Nrr) u (N,.- - N,,) 

by Lemma 2. Since 

we have only to show that N,,+ - Na and N,,- - Na are both open in Ca - Na. But since 

and N,,- is closed in C (because N,,- =Nun Ca and Nu is closed in 0-M), N"+ -Na 
is open in Ca. The openness of N,,- - Na can be proved similarly. 

Proposition 6. If Ca is of the type D), then every elliptic region in Ca inter
sects au. 

Proof. Since an elliptic region E in Ca is a connected component of Nu which 
is a closed set in 0-M, E is closed in Ca. As C-E'*-0 and C is a connected 
set, E is not open in C. Therefore E has a boundary point x which is a cluster 
point either of N,,+ - Na or of N,,- - Na. 

Suppose that x is a cluster point of N"+ -Na. Then there exists a sequence 
{xn}CNa+-Na such that Xn---+ x. 

Since C-(xn) ct: 0, there exists tn <0 such that 

rr(xn, tn) E aun Ca. 

As C is closed in 0-M and au is compact, we may suppose that 

If the sequence {tn} is unbounded, we may suppose that tn---+ -oo. Hence 
y E 1-(x). As y Eau, we have 
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On the other hand, x EE implies L-(x) n M=F0. So, by Theorem A, M is a saddle 
set contrary to the assumption. 

Therefore {tn} is bounded and we may suppose that tn----+ T> - co. Then, by 
the continuity of n, it follows that 

y=n(x, T). 

As x EE and E is an invariant set, y EE. Hence y E En au and E intersects au. 
Proposition 7. Let the number of connected components of X- M be finite. 

Then every elliptic region of U intersects au if U is chosen sufficiently small. 

Proof. Let X1, ···, Xn be the connected components of X-M. We choose an 
open neighbourhood U of M so that 

U::t:>Xi, ···, U::t:>Xn, 

and let {Ca} be the connected components of 0-M. If Ca contains an elliptic 
region, it must be either of type C) or of type D). 

Let Ca be of type C), i.e. Ca itself is an elliptic region. As 0 is locally 
connected, Ca is open in 0 - M. Also Ca is closed in 0 - M as Ca is a connected 
component of Nu which is closed in 0-M. Therefore Ca is open and closed in 
0 - M. Consequently if Ca c U, Ca is open and closed in X - M and hence must 
coincide with one of Xi.···, Xn. But since U has been so chosen that none of 
Xi,···, Xn is contained in U, this is obviously impossible. Thus we have Ca ct U 
and Ca intersects au. 

If Ca is of type D), then the conclusion follows directly from Proposition 6. 
Thus we have completed the proof. 

From now on, we always assume that X-M has only a finite number of 
connected components and the neighbourhood U is chosen so small that the conclu
sion of the Proposition 7 holds. 

From Proposition 7, we see that, if V c U, Nv is actually smaller than Nun V. 
In fact, let E be an elliptic region with respect to U. Then En V does not belong 
to Nv, because if y E En v is a boundary point of E, then, as C(y) n aU=F0, C(y) 
does not belong to V and hence y $ Nv. 

Thus we have the following alternative: 
1) if U is chosen sufficiently small, then Nu=0, or 
2) Nu=F0 for every neighbourhood U. 

In the former case, the situation is quite simple, because, by choosing U 
sufficiently small, we can avoid the complicated case (IV) and Ca is either of the 
type A) or of the type B). 

So the most difficult part of the study lies in the case when 2) takes place. 
In this case, we can prove the following 

Proposition 8. If the case 2) takes place, then for any neighbourhood U of 
M, at least one elliptic region has an interior point. 

Proof. Let U be an arbitrary neighbourhood of M and V be a neighbourhood 
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of M with VcU. Then, by assumption, Nv*0. If x E Nv, then C(x)cVc U and 
hence x belongs to some elliptic region with respect to U, E say. Since C(x)cV, 
C(x) does not intersect au. Therefore, as the proof of Proposition 6 shows, x is 
not a boundary point of E. Hence E has an interior point. This completes the 
proof. 

It is also clear that, if there exists an elliptic region E (with respect to U) 
with interior points, then there exists a neighbourhood V of M with V c U such 
that Nv*0. In fact, let x be an interior point of E, then C(x) deos not meet iJU 
since the interior of E is an invariant set. Se we can construct a neighbourhood 
V of M so that V c U and V:=JC(x). Then x E Nv and Nv is not empty. 

As a result, we have 

Proposition 9. For the case 1) to be realized, it is necessary and sufficient 
that there exists a neighbourhood U of M such that no elliptic regions have interior 
.boints. 

Concerning this, we add one more proposition. 

Proposition 10. Let Ca be of the type C) or D), i.e. Ca includes an elliptic 
region. If there exists a neighbourhood V of M such that V c U and V n Ca is 
connected, that at least one elliptic region in Ca has an interior point. 

Proof. First notice that VnC*0 since EanM*0· Let us put 

Va=VnC=W-M)nCa. 

By the assumption on Ca, N,,+*0 and N,;*0· Let x be a point in N,-;. Then since 
V(x)cM, there exists T>O such that rr(x,t) EV for t~T. Then 

rr(x, T) E Van N~ 

which shows that VanNJ*0· Similarly VanN;*0. As we assumed that Gv=0, 
we have 

Since Va is connected by assumption and Van Nv and Van N; are both nonempty 
and closed in Va, the above relation implies 

Wan N;)n Wan Nv)=Van Nv*0. 

If y E Van Nv, then since C+(y)cV and C(y)CCa, 

C+(y)cVa. 

Analogously we have C-(y)cVa. Therefore C(y)cVacCa which shows that y belongs 
to some elliptic region, E say. Since C(y)cVac U, C(y) does not meet au. Hence 
y is not a boundary point of E. Thus E must have an interior point. This 
completes the proof. 

Suppose that M has a fundamental system of neighbourhoods such that U - M 
is connected for every member U of this system. If there exists a neighbourhood 
with elliptic regions, the case 1) can never take place. In fact, if 1) takes place, 
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there must exist a neighbourhood U of M such that no elliptic regions have 
interior points (Proposition 9). Let V be a neighbourhood of M with V c U. Since 
we may suppose that 0 - M and V - M are both connected, Ca= 0 - M and V n Ca 
= V n ( 0 - M) = V - M. Hence V n Ca is connected. So, by Proposition 10, at least 
one elliptic region in 0 -M must have interior points which is a contradiction. 

We conclude this paper by proving two propositions concerning the number of 
elliptic regions with interior points. 

Proposition 11. The number of elliptic regions with interior points is at most 
countable. 

Proof. Let {E"} be the totality of elliptic regions with interior points. Let 
us denote by I and Ia the interior of Nu and Ea respectively. Then we have 
I= Ula, and Ian/~ =0 if a*- (3. As 0 is compact, 0 has a countable base of open 
sets. Since U Ia is a non-overlapping covering of an open set I, the number of Ia 
must be at most countable. 

Proposition 12. Let U be an arbitrary neighbourhood of Mand V be a neigh
bourhood of M with V c U. Then the member of elliptic regions (with respect to U) 
which intersects Nv is finite. 

Proof. Let {E;} be the totality of elliptic regions with respect to U such that 
E;nNv*-0. Let x be a point of Nv. Then C(x)cVcU and hence C(x)naU=0. 
This implies that x is an interior point of some E;. Conversely every E; includes 
a point of Nv by definition which should necessarily be an interior point of E~. 

So if we denote by I~ the interior Of E~, every I~ is nonempty and U /~ -::JNv. 
Let W be any open neighbourhood of M with W c V, and consider the set 

K=Nvn(X-W). 

Then K is nonempty and compact and U /~ is an open convering of K. 
Therefore we can select a finite covering of K from U /~. 

As every I~ contains a point of Nv, it contains at least one elliptic region E 
with respect to V. Then since EnaV*-0 by Proposition 7 and aVcX- W, E 
contains a point of K in it. Consequently every I; contains a point of K. More
over we have I~ n /~ =0 if a-::/= (3. So, in selecting a finite covering of K from u 1;, 
none of I; can be excluded. This means that U I; is itself a finite covering. Hence 
the number of E; is finite. 

Remark. Propositions 1,......,4 were already published in my book "Iso-Rikigaku 
(Topological Dynamics)", Kyoritsu, Tokyo, in Japanese. 
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