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KEIO ENGINEERING REPORTS 
VOL. 29, NO. 5, pp. 53-60, 1976 

A PARAMETRIZATION OF BENDERS DECOMPOSITION 

KAORU TONE 

Dept. of Mathematics, Keio University, Yokohama, 223, Japan 

(Received May 17, 1976) 

ABSTRACT 

Benders decomposition is a multi-step procedure effestive for solving mixed variables 
programming problems. 

In this paper, we shall present a parametrization of Benders decomposition with respect 
to a parameter on the right hand side of constraints. 

1. Preliminaries -Basic Theorems of Benders Decomposition and Parametric 
Analysis by Primal-Dual Algorithm-

In our analysis, we use two procedures, as subroutines, namely Benders decom­
position and a parametric analysis of linear programmings by primal-dual algorithm, 
which are summarized as follows. 

1.1 Basic Theorems of Benders Decom position 

BENDERS (1962) has presented a partitioning procedure for solving mixed vari­
ables programming problems of the type 

(1.1) Max {c'x+ f(y)jAx+F(y)~b, O~xERP, yES}, 

where xERP (the p-dimensional Euclidean space), yERq and S is an arbitrary subset 
of Rq. Furthermore, A is an (m,p) matrix, f(y) is a scalar function and F(y) an 
m-component vector function both defined on S, b and c are fixed vectors in Rm and 
RP, respectively, and prime denotes transposition. 

His basic idea is a partitioning of the given problem into two subproblems: a 
programmimg problem (which may be linear, nonlinear, discrete, etc.) defined on S, 
and a linear programming problem defined on RP. 
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In this connection, he defined two sets C and G as follows : 
( a) A polyhedral convex cone C in Rin ' 1 

: 

(1. 2) C={(uu, u)IA'u-cuo;::::O, u;::::O, uo;::::O}. 

( b ) A set G in Rq, 1 • 

(1.3) G = n {(xo, y)!UoXo +u' F(y)-uof(y)-:_:;, u'b, yES}. 
(110,n)EC 

Then, he states the basic theorem for a partitioning procedure: 

Theorem 1.1 
( 1 ) Problem (1.1) is not feasible if and only if the programming problem 

(1.4) Max{xol(xo,Y)EG} 

is not feasible, i.e. if and only if the set G is empty. 
( 2) Problem (1.1) is feasible without having on optimum solution, if and only if 
Problem (1. 4) is feasible without having on optimum solution. 
( 3 ) If (x, fl) is an optimum solution of Problem (1.1) and 

xo=c'x+f(fl), 

then (xo, fl) is an optimum solution of Problem (1. 4) and x is an optinzum solution 
of the linear programming problem 

(1. 5) Max{c'x!Ax::;,b-F(fl), x;::::O}. 

( 4 ) If (xo, fl) is an optimum solution of Problem (1. 4), then Problem (1. 5) is feasible 
and the optimum value of the objective function in this problem is equal to Xo - f(tl). 
If x is an optimum solution of Problem (1. 5), then (x, fl) is an optimum solution of 
Problem (1.1), with optimum value x 0 for the objective function. 

Based on this theorem, he has designed a multi-step procedure for solving 
Problem (1.1). 

The procedure starts from a subset Q of C and solves a programming problem 

(1. 6) Max{xol(xo, y)EG(Q)}, 

where G(Q) is a set defined by 

(1. 7) G(Q) = n {(xo, y)luoxo+u' F(y)-uof(y)::;, u'b, yES}. 
(no,u)EQ 

Let an optimum solution of (1.6) be (l'o, fl). Then, solve the problem 

(1. 8) Min{(b-F(fl))'ulA'u;::::c, u;::::O}. 

Let an optimum solution of (1. 8) be u. Then, we have: 

Theorem 1. 2 
If (x0 , fl) is an optimum solution of Problem (1. 6), it is also an optimum solution 

of Problem (1. 4) if and only if 
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(b-F('Y))'u=xo- f(y). 

And, if equality holds, we get an optimum solution (x, y) of Problem (1.1), where x 
is an optimum solution of the linear programming problem (1. 5). 

On the other hand, if 

(b-F('Y))'u <xo- f(Y), 

then extend the set Q by adding a certain vertex of the feasible region of Problem 
(1. 8) and/or a certain extremal ray of the convex cone C. And return to Problem 
(1. 6). Repeat the above procedures until an optimum solution of Problem (1.1) is 
found or Problem (1. 6) and hence (1.1) are decided to have no feasible solution or 
Problem (1.1) is decided to have no finite optimum solution, since Problem (1. 8) 

has no feasible solution. 

1. 2 Parametric Programming and Primal-Dual Algorithm 

KELLEY (1959) has presented a primal-dual algorithm for solving such a type of 
parametric programming problems as 

(1. 9) Max{y'bly' A~c' +Ad'}, 

where A is an (m, n) matrix, b and y are m-vectors, c and d are n-vectors and .?. 

is a scalar parameter. 
We assume that an optimum solution y of Problem (1.9) for A=Ao is known. 

And we are going to find an optimum solution of Problem (1. 9) for A less than A0 • 

First, define an index set S by 

(1.10) 

where (c+Aod)i is the j-th element of vector (c+Aod) and Aj is the j-th column of 
matrix A. 

And then, define the restricted problem as follows : 

(1.11) 

where a is an m-vector. 
Now, KELLEY'S algorithm is as follows: 

Step 1. Solving the restricted problem (1.11) 
Slove Problem (1.11). If it has no optimum solution, then Problem (1. 9) has 
no feasible solution for A less than Ao. (The end.) Otherwise, let an optimum 
solution of (1.11) be a. 

Step 2. Finding the bound of {) 

(l .12) 

Let f3i=di-a' Ai(l ~j ~ n). 
Find a positive number Oo by 
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Step 3. Getting optimum solutions 
Step 3.1. An optimum solution of Problem (1.9) for J.=J.o-0 (OsOsOo), is 

y' -Oa'. 
Step 3. 2. Let x be an optimum solution of the dual problem of (l .11). Then, 

x is also an optimum solution of the dual problem of (1. 9) for ). =Ao-0 
(OsOsOo). 

(This completes one cycle of the algorithm.) 

2. A Parametrization of Benders Decomposition 

We consider the following parametric programming problem. 
[Problem I(J.)] (with variables x and y) 

Max{c'x+ f'yiAx+Fysb+J.d, OsxERP, yEScRq, J.ER}, 

where A is an (m,p) matrix, F an (m, q) matrix, b and d m-vectors, c a p-vector, 
and f a q-vector. 

Notice that the variable y appears in linear forms in our problem. 
Now, we define several problems and sets corresponding to those in Section 1.1. 

[Problem Il(yiJ.)] (with variable x) 

Max{z1 =c' xix 2 0, Ax s b +Ad- Fy}. 

[Problem III (yiJ.)] (with variable u) 

Min{z2=u'(b+J.d-Fy)IA'u2c, u20}. (The dual problem of Problem II) 

[Polyhedral Convex Cone C and Set G] 

C={(uo, u)IA'u-cuo20, u20, Uo20}. 

G= n {(xo, y)iuoxo+u' Fy-uof'ysu'(b+J.d), yES}. 
(uo,u)EC 

[Sets Q and G(QIJ.)] 

Q=A finite subset of C. 

G(QIJ.)= n {(xo, y)iuoxo+u' Fy-uof'ysu'(b+Ad), yES}. 
(uo,u)EQ 

[Problem IV(G(QIJ.))] (with variables xo and y) 

Max{xol(xo, y)EG(QIJ.)}. 

Notice that the polyhedral convex cone C has no relation to the parameter J.. 
In what follows, we assume that an optimum solution (x, y) of Problem /(J.) is 

known for J.=J.o. (If not, we may use Benders decomposition to find out one.) Also, 
we can naturally assume, from the above assumption, that we have a set Q and a 
point (1, u)EQ and we have the relation showing the optimality of fi, u and x: 

min{z2=u'(b+J.od-Ffi)IA'u2c, u20} =u'(b+J.od-Fy) =xo- f'y =c' x, 
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where xo is the optimum value for the objective function of Problem IV (G(Ql.Ao)). 
And we are going to find an optimum solution of Problem I(A) for .A less than .Ao. 
We will deal with two cases corresponding to the kinds of S, namely, the case 
S=Rq and the case S=a set of discrete points in Rq. 

3. The Case S = Rq 

3. 1 Algorithm 

In this section, we will show an algorithm for finding an optimum solution of 
Problem I(.A) in the case S=Rq for .A less than .Ao, in the knowledge of an optimum 
solution (x, y) of Problem I(.Ao). 

Step 1. Solving the restricted problem 

(3.1) 

Based on the optimum solution (xo, jj) of Problem IV(G(Ql.Ao)), derive its re­
stricted problem corresponding to Problem (1.10) of Section 1 and solve it. 
If it has no optimal solution, then Problem I(.A) has no feasible solution for 
.A less than .Ao. (The end.) Otherwise, let an optimum solution be (~o, rj). And 
let 

Xo(O)=xo-O~o, y(O)='f}-Orj 

Also, determine the range Po-Oi, .Ao] of .A where (xo(O), y(O)) remains optimal 
for Problem IV(G(Ql.A)), using formula (l .12). 

Step 2. Solving Problem !(.Ao -0) 
Step 2.1. Derive the restricted problem of Problem Il(y(O)l.Ao-0), in the know­

ledge of its optimum solution x for 0=0 and solve it. Let an optimum 
solution be ~ and let 

(3.2) x(O) =x-0~. 

Then, determine the range [.Ao-02, .Ao] of .A where x(O) remains optimal for 
Problem Il(y(O)/.A). In this range, u remains optimal for Problem Ill(y(O)l.A). 

Step 2.2. Let 

(3.3) 

Step 2.3. An optimum solution of Problem I(.Ao-0) for O~O~Oo, is (x(O), y(O)). 

Step 3. Finding next starting solution 
When 0 goes out of the range, then (x(O), y(O)) is no longer optimal. Apply 
Benders decomposition, starting from the present Q and using y(O) or u if 
necessary, to find an optimum solution of Problem I(.Ao-Oo-s) where c is a 
sufficiently small positive number. 

(This completes one cycle of the algorithm.) 

3. 2 Validity of the Algorithm 

Proposition 3.1. 
If tkq restricted problem in Step 1 has no optimum solution, then Problem l(.A) 
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has no feasible solution for J. less than Ao. 

Proof: By Theorem 1.1, Problem l(J.) is not feasible if and only if Problem IV(GIJ.) 

is not feasible. Since QcC, we have G(Q) ~G. Hence, if G(Q) is empty, then also G. 
Q.E.D. 

This proposition works in Step 1 as the termination criterion. 

Proposition 3. 2. 
(x(O), y(O)), obtained in Step 1 and Step 2, is an optimum solution of Problem 

l(J.o-0) for OsOsOo. 

Proof: ( i) First, we will demonstrate the equality 

(3.4) x(O)+u' Fy(O)- f'y(O)=u'(b+(Ao-O)d). (OsOsOo) 

Let Qi be a subset of Q such that (uo, u)EQ1 satisfies 

Uoxo+u' F'Y-uof''Y=u'(b+J.od). 

Of course, (1, u)EQ1 by assumption. 
Then, the restricted problem in Step 1 is 

Min{.;oluo.;o+u' Fr;-uof'r;?:.u'd, (uo, u)EQ1}. 

Its optimum solution (~o, r;) must satisfy, for some (1, u*)EQ1, the equality 

~o+u*'Fr;-J'r;=u*'d. 

We can assume that this (1, u*) is (1, u), without losing generality, because u* is 
also an optimum solution of Problem Ill('YIJ.o). 

Thus, we have 

~o +ii' Fr;- f'YJ =u' d. 

Therefore, 

This shows the equality (3. 4). 
(ii) Since y(O) is an optimum solution of Problem IV(G(QIJ.o-0)) and ii is an 

optimum solution of Problem Ill(y(O)IJ.o-0) in the range OsOsOo, and we have 
the equality (3.4), we can conclude that (x(O), y(O)) is optimal for Problem l(J.o-0) 
(Osos00), by Theorem 1.2, x(O) being an optimum solution of Problem Il(y(O)iAo-0). 

Q.E.D. 
The above propositions demonstrate the validity of the algorithm. 

4. The Discrete Variable Case 

4. 1 Algorithm 

We will show an algorithm for solving the parametric Problem l(J.) when S 
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is a finite set of discrete points in Rri. Similarly to the preceding section, we as­
sume that we have already found an optimum solution (x, y) of Problem l(Ao), the 
set Q, an optimum solution u of Problem III(YIAo) and an optimum solution (x0 , y) 

of Problem IV (G(QIAo)); and we have the equality u'(b+Aod-Fy)=xo- f'y. 

Step 1. Finding the bound of decrease of A 
Step 1.1. Try the parametric analysis of Problem IV(G(QIA)) with respect to 

A and determine the range [Ao-01, Ao] (01:2::0) where the solution y remains 
optimal. If there is no feasible solution of Problem IV(G(QIA)) for A<Ao, 
then Problem l(A) has no feasible solution for A less than Ao. (The end.) 

Step 1. 2. Otherwise, by applying the parametric analysis of Problem III(Y I A) 
with respect to A, determine the range Po-02, Ao] (02 :2::0) where the solution 
u remains optimal. 

Step 1. 3. Let Oo=min {Bi, 02}. 

Step 2. Determining an optimum solution of Problem l(A) 
If Oo=O, go to Step 3. Otherwise, solve Problem Il('YIAo-0) (0~0~80). Let 
an optimum solution be x-8~, where ~ is an optimum solution of the re­
stricted problem Il(YIAo). Then, we have an optimum solution (x-0~, y) of 
Problem l(Ao-0) for O~O~Oo. 

Step 3. Finding next starting solution 
Apply Benders decomposition, starting from the present Q and using y or u 
if necessary, to find an optimum solution of Problem l(Ao-80-.s) where .s is 
a sufficiently small positive number. 

(This comp!etes one cycle of the algorithm.) 

4.2 Validity of the Algorithm 

Proposition 4.1. 
If Problem IV(G(QIA)) has no feasible solution for A <J.o in Step 1.1, then Pro­

blem l(A) has no feasible solution for A< Ao. 

Proof: The same as Proposition 3.1. Q.E.D. 

Proposition 4. 2. 
Let the maximum value for the objective function Xo of Problem IV(G(QIA0 -0)) 

(0~8~8o) be Xo(O). Then, Xo(O) satisfies 

Xo(O)=xo-Ou'd. 

Proof: By the definition of 00 , y is an optimum solution of Problem IV(G(QIA0 -0)) 
(0~0~00). Therefore, for every (u 0 , u)EQ, we have 

UoXo(O) +u' Fy-uof'y~u'(b+(Ao-O)d ). 

And, since (1, u)EQ, we have 

Xo(O)+u' Fy- f'y~ u'(b+(Ao-O)d). 

But, for 0=0, from the optimality of (xo, y) and (1, u), we have 
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xo+u' FtJ- f'tJ=u'(b+'Aod). 

Hence, the following relation holds : 

xo(O)S,xo-Ou'd. 

Now, we demonstrate the equality. Suppose the contrary. Then, for some O(OS,OS, 
Oo), there exists at least a (1, u)EQ, such that 

(4.1) xo(O)= -u' FtJ+ f'tJ-u'(b+('Ao-O)d)> -u' FY+ f'tJ-u'(b+(J-o-O)d). 

But, since u is a feasible solution of Problem III(tJJi.0 -0) and u is an optimum 
solution, we have 

u'(b+ (Ao-O)d-FtJ) S, it'(b+ Uo-O)d-FtJ). 

This contradicts ( 4 .1) Q.E.D. 

Proposition 4. 3. 
The solution (x-0~, tJ) in Step 2 is an optimum solution of Problem l('A) for 

'A =Ao -0(0 S, {) S, Oo). 

Proof: Proposition 4. 2 means 

Xo(O)- f'tJ=u'(b+(Ao-O)d-FtJ). 

By Theorem 1.2, this shows the optimality of (x-0~, tJ). Q.E.D. 
The above propositions demortstrate the validity of the algorithm. 

Concluding Remarks 

Benders decomposition is recognized as an excellent partitioning procedure for 
solving such a mixed type problem that involves both structured variables and non­
structured variables. Our algorithm deals with a parametrization of Benders de­
composition in the descending value of the parameter. But we can easily modify 
the algorithm to be valid for the ascending case. TONE (forthcoming) shows an 
example of applications of algorithms in this paper. 
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