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ABSTRACT

A matroid is an axiomization of linear independence of column vectors of a matrix.
It was first described by WHiTNEY (1935) (TuTTE 1965; HARARY and WELSH 1969; WILsON
1973). This paper proposes an algorithm for finding a common basis of two matroids,
M,=(E, 9,) and M,=(F, Y,), for which several algorithms have been proposed (Ir1 and
Tomizawa 1976 ; GREENE and MaGNaNTI 1975; LawLER 1975). The algorithm generates a
sequence of pairs of bases of M, and independent sets of the dual matroid M} of M,,
which increases the cardinality of their union. It will be shown that just one of the
following cases occurs when this process does not generate such a sequence any more:

(i) A pair whose union is E is obtained so that the corresponding basis of M, is a

common basis,

(i) M, and M, have no common basis.
This algorithm can be considered as a modification of EpmonDs’ algorithm (EpmonDs 1968)
in Irr and Tomizawa’s manner (Irt and Tomizawa 1976).

Existence Theorem of a Common Basis

Let E be a finite set of undefined objects called elements. Let g be a collec-
tion of subsets of E. M=(FE, J) is a matroid on the domain E if 4 satisfies the
following axioms;

(I1) If Ic] and Je 9, then [€ 9.

(I2) If I,Je g and |I{<|J|, then there is an element e € /—1I such that IU{e} € 9.
For convenience we shall call a member of 9 an independent set. A basis is a
maximal independent set contained in the domain E. A circwit is a minimal
dependent (not independent) set. ,

Axiom (/2) can be replaced with one of the following axioms (/2—1) and
(I2—2) (EpmonDs 1968).
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(I2—1) For any subset X of E, every maximal independent set contained in X has
the same number of elements.

We refer to the number of elements asserted in Axiom (/2—1) as the rank r(X)
of X. It is known that the rank function #(.) satisfies the relation

HXUY)+r( XN Y)=r(X)+7(Y) (1)

for any subsets X and Y of £ (Mirsky 1971).
(I2—2) The union of any independent set I and any element e contains at most
one circuit.

We shall denote the unique circuit asserted in Axiom (/2—2) by C(e, I, M). Let
X and Y be subsets of £. The subset of Y consisting of XN Y and each element
e € Y such that #( XN Y)=r(XN YU{e})) is called the span of X in Y, and denoted
by S(X,Y,M). We also say that each element in the span of X is dependent
on X.

By the above definitions we get the following lemmas (Ir1 and TomizawA
1976).

Lemma 1. Let X and Y be any subsets of E such that Y2oX. Let I be a
maximal independent set in X. Then

S(X,Y,M)=S,Y,M).

Lemma 2. Let 7/ and J be independent sets and /< /. Then, for each element
eeS(I,E,M)—1,

Cle,J, M)=Cle, I, M).

Lemma 3. Let I be an independent set, e€ I, ¢’ € S(I,E,M)—1I. Then e is con-
tained in C(e’, I, M)—{e’} if and only if ¢’ is not in S(/—{e}, E, M).

Let M,=(E, 4,), M,=(FE, 9,), -, My=(E, 9x) be k matroids defined on the
domain E. We shall write .

J={[I=LULU---Uly,[;€ 9}

Then M=(FE, ) is a matroid, which is known as the wnion matroid (EDMONDS
1968; Mirsky 1971). We shall denote it by M=M, UM,U--- U M.

We here introduce an important theorem by NasH-WiLLiaMs without proof
(Mirsky 1971).

Theorem 1. Let M, M,,---, M, be matroids defined on the domain E. If 7,7, -,
7 and r» denote the rank functions of M, M, -, My and the union matroid
M=M,UM;U--- UM, respectively, then for each subset Y of E, we have the
relation

H(Y)=ming y {r(X)+7r(X)+-- +rn(X)+| Y - X|}. (2)
Let M=(F, ) be a matroid and let for some subset X of E,
'={I:1e 9,ICcX).
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Then (E, 9’) is also a matroid. This matroid is the contraction of M to X and is
denoted by MxX. Let @& be the collection of all bases of a matroid M and let
gJ*={I:ICE—B for some Be B}

Then (E, 9*) is also a matroid which is called the dual matroid of M and is
usually denoted by M* (TurTe 1965). A basis of M* is the complement of some
basis of M, and vice versa. Let M, and M, be two matroids defined on the
domain E. A common basis of M, and M, is a subset of £ which is a basis of
both M, and M,. Then it is evident that M, and M, have a common basis if and
only if there are disjoint bases of M, and M}* whose union is E.

Theorem 2. M, and M, have a common basis if and only if
n(E)=ry(E), (3)
and there is no subset X of E such that
1X]>71(X) +7XX), (4)
where 7} is the rank function of M*.

Proof. We first verify the necessity. Let B be a common basis, so that
r(E)=|B|=r(F).

Since E-B is a basis of M*, E is the disjoint union of bases of M, and M}, that
is, £ is an independent set of M,UM,*. Then, by Theorem 1, for any subset X
of E,

[E|=rE)=r(X)+r¥(X)+|E-X],

then we get the relation (4).

The relation (4) indicates that F is itself an independent set of M, UM, then
there are independent sets of M, and M,* whose union is E. By (3), each indepen-
dent set must be a hasis of M, and M*, respectively, and they are mutually
disjoint. Then the basis of M; is a common basis. Q. E. D.

An Algorithm for Finding a Common Basis of Two Matroids

Let My=(FE, 9:) and M,=(E, J,) be matroids defined on E. We consider the
problem of finding a member of 4,N 9, which contains as many elements as
possible. If there is a common basis of M, and M,, it is obviously the solution
of this problem. Hence we can find a common basis if we solve this problem.
Let 7 be a member of 9,N 9. which has maximal cardinality. Then, I is to be
represented as the intersection of two bases B, and B, of M, and M, as follows;

I:BlnBz.
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Since \[|=|B,( Bl =|B.— (E— By)| = | Bi— B}|
=|B,UB¥ —|B},

and |Bf| is constant, maximizing |I| is equivalent to maximizing |B,U B}|, where
B} is a basis of the dual matroid MF* of M,. On the other hand, any basis B of
M;UM; can be represented as the union of bases of M; and Mj*; B=B,UB}
By Axiom (/2—1), each basis has the maximal cardinality of independent sets and
conversely any independent sets of maximal cardinality are bases. Thus B is a
basis of M,UM* if and only if B, and B} are the pair of bases maximizing
|ByUBY¥|. Thus the problem of finding a common basis is now reduced to the
problem of finding a basis of the union matroid.

We first define a graph G=(V, L) for a basis I, of M, and a basis I of M3¥ X
(£—1I). The vertex-set V is the disjoint union of V,={el, e}, -, e;} and V.={e/,
ey, -, ey} both of which are replicas of E=le,, e,, -, €5}, that is, there are one-to-
one correspondence Fy from V; onto E and F, from V, onto £ such that Fi(e;)=
Fy(e!)=e;. The edge-set L is also the.disjoint union of L, L,;,, and L., Where
Li» is the set of all undirected edges (e}, e), e; € Vi, e/ € Vs, Ly the set of all
directed edges (e/, ¢j) such that e; e Cle;, I1, My)—{e:}, and L,, the set of all directed
edges (ef,ef) such that e;e Cle, I}, MX) —{e;}. We write V,=F"(S(U} E, M*)—
(LUL)YUFNSUTE E, MY — (L, ULF). We also write Ve=F,(E—-S(I*, E, M¥)). A
path P from a vertex e;, or ef in V4 to a vertex e’i’m in Vp is a sequence of edges
of the form ({(e;,e7), (e}, e,), (el ei,), -+, (€l €1,), (€l € )} or the form {(ef), ei,),
(ei), el,), (eiy €5, . (€l s €y, (el 7 )} in which each edge has one endpoint in
common with its predecessor in the sequence and the other endpoint in common
with its successor in the sequence, and all edges of L,;;UL. in the sequence are
oriented along the sequence. The length of the path P is the number of edges
in P.

The algorithm introduced here is a natural modification of the algorithm by
Epmonps (1968). The iteration steps are shown as below:

1) Take a basis I, of M, and a basis I}* of M}*x(E—1I).

2) Construct the graph G for I, and I*.

3) Find a path P of the shortest length from an arbitrary vertex of V4 to an
arbitrary vertex of Vp.

4) If there is no path from ¥V, to V3, terminate the iteration. Otherwise, go to 5).
5) Orient the edges of L., in the path P along P and decompose them into P
and P, where P, is the set of edges from V, to V), and P, from V, to V, Since
P, and P, are the sets of edges of the form (e}, e}), and (e}, ¢f) regard them as the
set of vertices ¢; of V.. Replace I, by

LUF(P)—Fi(Py),
and I* by
XU F(Py) — Fi(Py),

and proceed from 2).

To see the validity of the algorithm, we have to prove the following Theorems
3, 4 and 5.
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Theorem 3. Let I} and I;* be the updated sets in 5). Then I/ is still a basis of
M, I}¥ is a basis of M*x(E—I)) and |L¥|=|L}* +1.

Theorem 4. This algorithm terminates by finding a common basis of M; and M,
or indicating that M, and M. have no common basis when there is no path from
V4 to Vg (including the case that V,=¢ and/or Vz=¢).

Theorem 5. This algorithm terminates by finding a basis of M, UM even if M,
and M, have no common basis.

Proofs of thq Theorems

In preparation for the proof of Theorem 3, we shall introduce a lemma con-
firmed by Ir1 and Tomizawa (1976).

Lemma 4. Let I be an independent set of a matroid M. If there are 2¢ elements
{ew, €2, -y eq, 1, 2, -+, fq} SUCh that e; &1, fie I for 1=i=q and

fieCles, I, M)—{ej} 1=j=q, (5)
fj¢c(ei) IyM)_{el} 1§l<]§q: (6)
then I'=IU{es, ez, -, eq) —{f1, fo, -, fq} 1S independent.

Proof. If g=1, then the assertion is trivial from Axiom (/2—2). We suppose that
the assertion holds when g=p—1 as the inductive hypothesis. The set I''=
TUf{eyt—{fp} is independent by (5). To complete the proof, we have to show that
the set I’” and the elements {ey, e, -, €p_1, f1, f2, -*-, fp-1} Satisfies the condition (5)
and (6). Since, for any i<p,

fréCle I, M)—{eil,
we have, by Lemma 3,
e; € SU—{fp), E, M).
Then, by Lemma 2,
Cles, I, My=Cles, I—{fp}, M)
=Clei, I—{fp} U{ep}, M)
=Cle;, I", M).
Thus the lemma follows. Q. E. D.

Proof of Theorem 3. We first observe that Theorem 3 is true when the number
of edges of L,, in P is even. We call the edges of L;;, in P along P gi, gz -, gr,
the edges of L,; in P along P Ay, A, -+, B,_1, as shown in Fig. 1. Let the initial
endpoint and terminal endpoint of ¢; be ¢} and f/ and let the initial endpoint and
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terminal endpoint of 4; be f} and e}, Since, by the construction of L.,
e;=Fi(e)y¢ I, 1=i<y,
fi=Fi(f)el, l=izy,
we get
L =1 U Fy(Py) — Fy(Py)]
=l Ufes, €5, -, e} —{f1, fo, o, frl| = L)

Then we have only to verify that 7, is an independent set of M, to prove that I]
is a basis of M;. By the construction

fje C(eh Il) Ml)—{ej} ].é]éf’,

which implies that {ei, es, -, ey, f1, f2, ---f) satisfies (5). To prove that {e,, e, ey,
J1, fa, -+, f7) satisfies (6) we suppose that

i€ Cles, I, My)—{es}

for some 7 and j such that 1=i{<j=<7». Then there should exist an edge g=(e}, f})
of L;;. Though the path P can be written in the form

P:{, (e,i’? e;), (e;rfg)’ (f;’f;,)v Ty (09/’ e,;)v (e;'vf_;')y (f,;y }/)) "'}
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we could find a path P’
(eme uf]) (f]’f_;/);'

of shorter length. This contradicts the choice of P. Hence ] is an independent
set of M,.

Next let us consider [¥. By the construction of L,,

e €CULH I MP)—1f)  1=j=r—1,
ej1 € C(fi, L¥, M) —{f3} l=i<j=r—1,
then
L¥'=LXU{f1, fo o Fral—{en, €5, s}

is an independent set of M, and |I*’|=|I¥|. If we recall that S}, E, M¥) =
S(I¥, E, M¥), by Lemma 1, then f, is not in S(I*’, E, M;). Therefore,

LY =L}¥UF\(P)—Fi(P)
=LFU{S fo o fra)—{ez, €5 -, e} U{SH)
=" Ulfs) (7)

is an independent set of M and |L¥|=|[* +1.
As shown before,

I,(—_—Il U{el, €gy **y er}_{fl;f% '”’ff},
then
E I (E Il)U fl,va" yf'r {el)eZ)"')eT}
Q(E—[l)u{flyf% ""fr—l}U {fr}'

By the construction of L, since [XcFE—1I,,

{flyf2y o vf'r 1 CS(IZ*’E M*)CS(E II)E M*)
Thus

rHE-I)ZSr¥((E—L)U{fy, fo o, frod UL
=rX}E-L)+1. (8)

Hence, by (7) and (8), [}* is a basis of M*X(E—1I)).
The same argument holds for the case where the number of edges of L, is
odd, as shown in Fig. 2. Q. E. D.

Proof of Theorem 4. We shall confirm Theorem 4 with aid of Theorem 2. There
is no path P if one of the following cases occurs:

case (1) Both V4 and Vjp are empty.

case (2) Vs is not empty but V, is empty.

case (3) V4 is not empty but Vp is empty.

case (4) Neither V4 nor Vp is empty but there is no path P from V4 to V.
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In case (1), since Va=F;(E—S(I}, E, MF*)) is empty, we get E=S(I}, E, M)
which implies that I* is a basis of M. On the other hand, since V,=F7(S(I¥,
E, M¥—(LULX))UFSUK E, M} —([LUL¥) is empty, the union of 7, and ¥ is
S(I¥, E, M}¥)=FE. Thus I, and [}* are disjoint bases of M, and M, respectively,
and [, is a common basis of M; and M..

In case (2), Va+¢ implies that I;* is not a basis of M;*. Moreover V,4=¢, that
is, S(I}, E, M¥)C I, U I¥, implies that [, U*=FE. Because, otherwise, for any element
e in E—(L;UL¥), I}Ule} would be an independent set of M* and I*U{e}Ck -1,
which contradicts that ¥ is a basis of M} x(E—1I,). Therefore,

n(E)+r(E)> | LI+ I¥ = El,
that is,
r(E)=|E| —r}E) <n(E).

Thus there is no common basis by virtue of (3) of Theorem 2.

In the similar way, we can prove that there is no common basis in case (3).
Since Vz=¢ implies that I}* is a basis of M}*, E—IL* is a basis of M,. For Vi#¢,

||+ | ¥ <|ET,
therefore
ro(E)=|E—LF|>Ii| =n(E).

Thus there is no common basis.

To complete the proof we have to verify that there is no common basis in
case (4). Choose an arbitrary pair of vertices ¢; and ¢y in V4. Let the set U be
the set of all vertices to which there is a path from one of the pair. Let U,=
UnV, and U,=UNV. As F(U)=FyU,), we put A=F,(U,). By the construc-
tion of L;; and L.,

(U—=(let UleD )N Va=9,
that is,
A—{eJcLULX (9)
By the construction of A and the fact that there is no path from V4 to Vs,
ACS(L, A, M),
ACS(IF, A, M),

which implies that ;N A and [N A are maximal independent sets in A of M,
and M;*, respectively. Hence

r(A)=LnA|,
riA)=ILFNAl
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Recalling the relation (9), we get
Al=[(LNnAUIFNA) U el
=|LNA+IFN A+
>|LNA[+F0 Al
=ni(A)+7¥(A),
which violates the condition (4). Q. E.D.

Proof of Theorem 5. We shall verify Theorem 5 in each cases as in the proof
of Theorem 4. Let B,=I, and B* be an arbitrary basis of M}* containing I,
where I, and [* are the sets obtained when the algorithm terminates. To verify
Theorem 5, we have only to show that |B,UBX*|=|B,UB}*| for any pair of bases
B! and B} of M, and M.

As shown in the proof of Theorem 4, case (1) and (3) imply that I, and ¥
are the disjoint bases of M, and M,*. Then,

|BiU B} =L UL | =[] +]1¥],

which implies that B, UBF is a basis of M, UM}*.
Let us consider the case (2). Generally,

|B/UBF =|E] (10)
However, in the case (2), £=1,Ul}*. Thus we get the relation
|B{ u Bz*/| = |[1 UIZ*‘ = iBl U Bz*|

Case (4) is left to prove. Let U; (1=7=¢) be the set of all vertices to which
there is a path from e} or ¢f (1=j=¢) in V4 And let U;=U;nV, and U,;=
UnNVa. As F(U;)=F(U,;), let Aj=F,(U,;). 1f some of them intersect, we
combine them and denote it by A; (1=i=u). We assume that A; is the union of
m; Aj's, that is, AizA}IUA}ZUmUA}mi. Then

AiNAi=¢ i+k, (11)
imizt. (12)
i=1

Now we write A=£JIA,~. Since each element of A; is dependent on both A;N I,
and A;NIF,
r(A)=[LNAdl,
rHA) =11} N Al
Then, using the property that I,Nn =g,
(A +r¥A)=1LN Al + | I¥N Ay
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=|(LUL¥N A
=[Ai| = 1A=L U L))
=1A;| —m. (13)
If we now recall (1), then we have that
r(A)=r(A;UA: U UAd)
=r(A)+n(A)+- +n(A)
Zé.: 71(Aq),

r¥A)= Z_.' r¥(As).

By (12) and (13),

P(A)+7HAE 2 (n(A)+7H(A))
=3 (1Al —m)
=3 14—t

Hence by (11),

AT FE—A|= 3 1A 1+ B~ | A]
=|A|~t+|E|~|Al=|E| -

Then using Theorem 1, the rank #(£) of £ with respect to M, UM3* satisfies the
relation that

HE)=|E|—t. (14)

On the other hand /,UZF is an independent set of M, UM,* and

LU L¥ = |E]—t.
Then,
E)z|E| -t (15)
(14) and (15) imply that
rE)=|E]—

For an arbitrary pair of bases B/ and B;*’

|B/UBX|=r(E)=|E|—t=|B,UB|. Q. E.D.
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