慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	An algorithm for finding a common basis of two matroids
Sub Title	
Author	山本，芳嗣（Yamamoto，Yoshitsugu）
Publisher	慶応義塾大学工学部
Publication year	1976
Jtitle	Keio engineering reports Vol．29，No．4（1976．6），p．41－51
JaLC DOI	
Abstract	A matroid is an axiomization of linear independence of column vectors of a matrix．It was first described by WHITNEY（1935）（TUTTE 1965；HARARY and WELSH 1969；WILSON 1973）．This paper proposes an algorithm for finding a common basis of two matroids，$M 1=(E,-1)$ and $M 2=(E$ ， －2），for which several algorithms have been proposed（IRI and TOMIZAWA 1976；GREENE and MAGNANTI 1975；LAWLER 1975）．The algorithm generates a sequence of pairs of bases of M1 and independent sets of the dual matroid - of M 2 ，which increases the cardinality of their union．It will be shown that just one of the following cases occurs when this process does not generate such a sequence any more： （i）A pair whose union is E is obtained so that the corresponding basis of M 1 is a common basis， （ii）M1 and M2 have no common basis． This algorithm can be considered as a modification of EDMONDS＇algorithm（EDMONDS 1968）in IRI and TOMIZAWA＇s manner（IRI and TOMIZAWA 1976）．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00290004－ 0041

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

AN ALGORITHM FOR FINDING A COMMON BASIS OF TWO MATROIDS

Yoshitsugu Yamamoto
Dept. of Administration Engineering Keio University, Yokohama 223, Japan

(Received, May 10, 1976)

Abstract

A matroid is an axiomization of linear independence of column vectors of a matrix. It was first described by Whitney (1935) (Tutte 1965; Harary and Welsh 1969; Wilson 1973). This paper proposes an algorithm for finding a common basis of two matroids, $M_{1}=\left(E, \mathcal{J}_{1}\right)$ and $M_{2}=\left(E, \mathcal{J}_{2}\right)$, for which several algorithms have been proposed (Iri and Tomizawa 1976; Greene and Magnanti 1975; Lawler 1975). The algorithm generates a sequence of pairs of bases of M_{1} and independent sets of the dual matroid M_{2}^{*} of M_{2}, which increases the cardinality of their union. It will be shown that just one of the following cases occurs when this process does not generate such a sequence any more: (i) A pair whose union is E is obtained so that the corresponding basis of M_{1} is a common basis, (ii) M_{1} and M_{2} have no common basis.

This algorithm can be considered as a modification of Edmonds' algorithm (Edmonds 1968) in Iri and Tomizawa's manner (Iri and Tomizawa 1976).

Existence Theorem of a Common Basis

Let E be a finite set of undefined objects called elements. Let \mathcal{G} be a collection of subsets of $E . \quad M=(E, \mathcal{G})$ is a matroid on the domain E if \mathcal{I} satisfies the following axioms;
(I1) If $I \subseteq J$ and $J \in \mathscr{G}$, then $I \in \mathscr{G}$.
(I2) If $I, J \in \mathcal{I}$ and $|I|<|J|$, then there is an element $e \in J-I$ such that $I \cup\{e\} \in \mathcal{I}$. For convenience we shall call a member of \mathcal{I} an independent set. A basis is a maximal independent set contained in the domain E. A circuit is a minimal dependent (not independent) set.

Axiom (I2) can be replaced with one of the following axioms (I2-1) and (I2-2) (Edmonds 1968).
($12-1$) For any subset X of E, every maximal independent set contained in X has the same number of elements.
We refer to the number of elements asserted in Axiom (I2-1) as the rank $r(X)$ of X. It is known that the rank function $r($.$) satisfies the relation$

$$
\begin{equation*}
r(X \cup Y)+r(X \cap Y) \leqq r(X)+r(Y) \tag{1}
\end{equation*}
$$

for any subsets X and Y of E (Mirsky 1971).
($I 2-2$) The union of any independent set I and any element e contains at most one circuit.
We shall denote the unique circuit asserted in Axiom (I2-2) by $C(e, I, M)$. Let X and Y be subsets of E. The subset of Y consisting of $X \cap Y$ and each element $e \in Y$ such that $r(X \cap Y)=r(X \cap Y \cup\{e\})$ is called the span of X in Y, and denoted by $S(X, Y, M)$. We also say that each element in the span of X is dependent on X.

By the above definitions we get the following lemmas (Iri and Tomizawa 1976).

Lemma 1. Let X and Y be any subsets of E such that $Y \supseteq X$. Let I be a maximal independent set in X. Then

$$
S(X, Y, M)=S(I, Y, M)
$$

Lemma 2. Let I and J be independent sets and $I \subseteq J$. Then, for each element $e \in S(I, E, M)-I$,

$$
C(e, J, M)=C(e, I, M)
$$

Lemma 3. Let I be an independent set, $e \in I, e^{\prime} \in S(I, E, M)-I$. Then e is contained in $C\left(e^{\prime}, I, M\right)-\left\{e^{\prime}\right\}$ if and only if e^{\prime} is not in $S(I-\{e\}, E, M)$.

Let $M_{1}=\left(E, \mathscr{I}_{1}\right), M_{2}=\left(E, \mathscr{I}_{2}\right), \cdots, M_{k}=\left(E, \mathscr{I}_{k}\right)$ be k matroids defined on the domain E. We shall write

$$
\mathscr{I}=\left\{I: I=I_{1} \cup I_{2} \cup \cdots \cup I_{k}, I_{i} \in \mathcal{I}_{i}\right\} .
$$

Then $M=(E, \mathcal{G})$ is a matroid, which is known as the union matroid (Edmonds 1968; Mirsky 1971). We shall denote it by $M=M_{1} \cup M_{2} \cup \cdots \cup M_{k}$.

We here introduce an important theorem by NaSh-Williams without proof (Mirsky 1971).

Theorem 1. Let $M_{1}, M_{2}, \cdots, M_{k}$ be matroids defined on the domain E. If r_{1}, r_{2}, \cdots, r_{k} and r denote the rank functions of $M_{1}, M_{2}, \cdots, M_{k}$ and the union matroid $M=M_{1} \cup M_{2} \cup \cdots \cup M_{k}$, respectively, then for each subset Y of E, we have the relation

$$
\begin{equation*}
r(Y)=\min _{X-Y}\left\{r_{1}(X)+r_{2}(X)+\cdots+r_{k}(X)+|Y-X|\right\} \tag{2}
\end{equation*}
$$

Let $M=(E, \mathcal{G})$ be a matroid and let for some subset X of E,

$$
\mathcal{G}^{\prime}=\{I: I \in \mathcal{G}, I \subseteq X\} .
$$

Then $\left(E, \mathcal{G}^{\prime}\right)$ is also a matroid. This matroid is the contraction of M to X and is denoted by $M \times X$. Let \mathscr{B} be the collection of all bases of a matroid M and let

$$
\mathcal{G}^{*}=\{I: I \subseteq E-B \text { for some } B \in \mathscr{B}\} .
$$

Then $\left(E, \mathcal{I}^{*}\right)$ is also a matroid which is called the dual matroid of M and is usually denoted by M^{*} (Tutte 1965). A basis of M^{*} is the complement of some basis of M, and vice versa. Let M_{1} and M_{2} be two matroids defined on the domain E. A common basis of M_{1} and M_{2} is a subset of E which is a basis of both M_{1} and M_{2}. Then it is evident that M_{1} and M_{2} have a common basis if and only if there are disjoint bases of M_{1} and M_{2}^{*} whose union is E.

Theorem 2. M_{1} and M_{2} have a common basis if and only if

$$
\begin{equation*}
r_{1}(E)=r_{2}(E) \tag{3}
\end{equation*}
$$

and there is no subset X of E such that

$$
\begin{equation*}
|X|>r_{1}(X)+r_{2}^{*}(X), \tag{4}
\end{equation*}
$$

where r_{2}^{*} is the rank function of M_{2}^{*}.
Proof. We first verify the necessity. Let B be a common basis, so that

$$
r_{1}(E)=|B|=r_{2}(E)
$$

Since $E-B$ is a basis of M_{2}^{*}, E is the disjoint union of bases of M_{1} and M_{2}^{*}, that is, E is an independent set of $M_{1} \cup M_{2}{ }^{*}$. Then, by Theorem 1 , for any subset X of E,

$$
|E|=r(E) \leqq r_{1}(X)+r_{2}^{*}(X)+|E-X|
$$

then we get the relation (4).
The relation (4) indicates that E is itself an independent set of $M_{1} \cup M_{2}^{*}$, then there are independent sets of M_{1} and M_{2}^{*} whose union is E. By (3), each independent set must be a basis of M_{1} and M_{2}^{*}, respectively, and they are mutually disjoint. Then the basis of M_{1} is a common basis. Q.E.D.

An Algorithm for Finding a Common Basis of Two Matroids

Let $M_{1}=\left(E, g_{1}\right)$ and $M_{2}=\left(E, \mathscr{I}_{2}\right)$ be matroids defined on E. We consider the problem of finding a member of $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ which contains as many elements as possible. If there is a common basis of M_{1} and M_{2}, it is obviously the solution of this problem. Hence we can find a common basis if we solve this problem. Let I be a member of $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ which has maximal cardinality. Then, I is to be represented as the intersection of two bases B_{1} and B_{2} of M_{1} and M_{2} as follows;

$$
I=B_{1} \cap B_{2}
$$

Since

$$
\begin{aligned}
|I| & =\left|B_{1} \cap B_{2}\right|=\left|B_{1}-\left(E-B_{2}\right)\right|=\left|B_{1}-B_{2}^{*}\right| \\
& =\left|B_{1} \cup B_{2}^{*}\right|-\left|B_{2}^{*}\right|
\end{aligned}
$$

and $\left|B_{2}^{*}\right|$ is constant, maximizing $|I|$ is equivalent to maximizing $\left|B_{1} \cup B_{2}^{*}\right|$, where B_{2}^{*} is a basis of the dual matroid M_{2}^{*} of M_{2}. On the other hand, any basis B of $M_{1} \cup M_{2}^{*}$ can be represented as the union of bases of M_{1} and $M_{2}^{*} ; B=B_{1} \cup B_{2}^{*}$. By Axiom ($I 2-1$), each basis has the maximal cardinality of independent sets and conversely any independent sets of maximal cardinality are bases. Thus B is a basis of $M_{1} \cup M_{2}^{*}$ if and only if B_{1} and B_{2}^{*} are the pair of bases maximizing $\left|B_{1} \cup B_{2}^{*}\right|$. Thus the problem of finding a common basis is now reduced to the problem of finding a basis of the union matroid.

We first define a graph $G=(V, L)$ for a basis I_{1} of M_{1} and a basis I_{2}^{*} of $M_{2}^{*} \times$ $\left(E-I_{1}\right)$. The vertex-set V is the disjoint union of $V_{1}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{n}^{\prime}\right\}$ and $V_{2}=\left\{e_{1}^{\prime \prime}\right.$, $\left.e_{2}^{\prime \prime}, \cdots, e_{n}^{\prime \prime}\right\}$ both of which are replicas of $E=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$, that is, there are one-toone correspondence F_{1} from V_{1} onto E and F_{2} from V_{2} onto E such that $F_{1}\left(e_{i}^{\prime}\right)=$ $F_{2}\left(e_{i}^{\prime \prime}\right)=e_{i}$. The edge-set L is also the disjoint union of L_{12}, L_{11}, and L_{22}, where L_{12} is the set of all undirected edges $\left(e_{i}^{\prime}, e_{i}^{\prime \prime}\right), e_{i}^{\prime} \in V_{1}, e_{i}^{\prime \prime} \in V_{2}, L_{11}$ the set of all directed edges ($e_{i}^{\prime}, e_{j}^{\prime}$) such that $e_{j} \in C\left(e_{i}, I_{1}, M_{1}\right)-\left\{e_{i}\right\}$, and L_{22} the set of all directed edges $\left(e_{i}^{\prime \prime}, e_{j}^{\prime \prime}\right)$ such that $e_{j} \in C\left(e_{i}, I_{2}^{*}, M_{2}^{*}\right)-\left\{e_{i}\right\}$. We write $V_{A}=F_{1}^{-1}\left(S\left(I_{2}^{*}, E, M_{2}^{*}\right)-\right.$ $\left.\left(I_{1} \cup I_{2}^{*}\right)\right) \cup F_{2}^{-1}\left(S\left(I_{2}^{*}, E, M_{2}^{*}\right)-\left(I_{1} \cup I_{2}^{*}\right)\right)$. We also write $V_{B}=F_{2}^{-1}\left(E-S\left(I_{2}^{*}, E, M_{2}^{*}\right)\right)$. A path P from a vertex $e_{i_{1}}^{\prime}$ or $e_{i_{1}}^{\prime \prime}$ in V_{A} to a vertex $e_{i_{m}}^{\prime \prime}$ in V_{B} is a sequence of edges of the form $\left\{\left(e_{i_{1}}^{\prime}, e_{i_{1}}^{\prime \prime}\right),\left(e_{i_{1}}^{\prime \prime}, e_{i_{2}}^{\prime \prime}\right),\left(e_{i_{2}}^{\prime \prime}, e_{i_{2}}^{\prime}\right), \cdots,\left(e_{i_{m-1}}^{\prime}, e_{i_{m}}^{\prime}\right),\left(e_{i_{m}}^{\prime}, e_{i_{m}}^{\prime \prime}\right)\right\}$ or the form $\left\{\left(e_{i_{1}}^{\prime \prime}, e_{i_{1}}^{\prime}\right)\right.$, $\left.\left(e_{i_{1}}^{\prime}, e_{i_{2}}^{\prime}\right),\left(e_{i_{2}}^{\prime}, e_{i_{2}}^{\prime \prime}\right), \cdots,\left(e_{i_{m-1}}^{\prime}, e_{i_{m}}^{\prime}\right),\left(e_{i_{m}}^{\prime}, e_{i_{m}}^{\prime \prime}\right)\right\}$ in which each edge has one endpoint in common with its predecessor in the sequence and the other endpoint in common with its successor in the sequence, and all edges of $L_{11} \cup L_{22}$ in the sequence are oriented along the sequence. The length of the path P is the number of edges in P.

The algorithm introduced here is a natural modification of the algorithm by Edmonds (1968). The iteration steps are shown as below:

1) Take a basis I_{1} of M_{1} and a basis I_{2}^{*} of $M_{2}^{*} \times\left(E-I_{1}\right)$.
2) Construct the graph G for I_{1} and I_{2}^{*}.
3) Find a path P of the shortest length from an arbitrary vertex of V_{A} to an arbitrary vertex of V_{B}.
4) If there is no path from V_{A} to V_{B}, terminate the iteration. Otherwise, go to 5).
5) Orient the edges of L_{12} in the path P along P and decompose them into P_{1} and P_{2}, where P_{1} is the set of edges from V_{2} to V_{1} and P_{2} from V_{1} to V_{2}. Since P_{1} and P_{2} are the sets of edges of the form ($e_{i}^{\prime \prime}, e_{i}^{\prime}$), and $\left(e_{i}^{\prime}, e_{i}^{\prime \prime}\right)$ regard them as the set of vertices e_{i}^{\prime} of V_{1}. Replace I, by

$$
I_{1} \cup F_{1}\left(P_{1}\right)-F_{1}\left(P_{2}\right)
$$

and I_{2}^{*} by

$$
I_{2}^{*} \cup F_{1}\left(P_{2}\right)-F_{1}\left(P_{1}\right),
$$

and proceed from 2).
To see the validity of the algorithm, we have to prove the following Theorems 3,4 and 5 .

Theorem 3. Let I_{1}^{\prime} and $I_{2}^{* \prime}$ be the updated sets in 5). Then I_{1}^{\prime} is still a basis of $M_{1}, I_{2}^{* \prime}$ is a basis of $M_{2}^{*} \times\left(E-I_{1}^{\prime}\right)$ and $\left|I_{2}^{* \prime}\right|=\left|I_{2}^{*}\right|+1$.

Theorem 4. This algorithm terminates by finding a common basis of M_{1} and M_{2} or indicating that M_{1} and M_{2} have no common basis when there is no path from V_{A} to V_{B} (including the case that $V_{A}=\phi$ and/or $V_{B}=\phi$).

Theorem 5. This algorithm terminates by finding a basis of $M_{1} \cup M_{2}^{*}$ even if M_{1} and M_{2} have no common basis.

Proofs of the Theorems

In preparation for the proof of Theorem 3, we shall introduce a lemma confirmed by Iri and Tomizawa (1976).

Lemma 4. Let I be an independent set of a matroid M. If there are $2 q$ elements $\left\{e_{1}, e_{2}, \cdots, e_{q}, f_{1}, f_{2}, \cdots, f_{q}\right\}$ such that $e_{i} \notin I, f_{i} \in I$ for $1 \leqq i \leqq q$ and

$$
\begin{array}{ll}
f_{j} \in C\left(e_{j}, I, M\right)-\left\{e_{j}\right\} & 1 \leqq j \leqq q, \\
f_{j} \notin C\left(e_{i}, I, M\right)-\left\{e_{i}\right\} & 1 \leqq i<j \leqq q, \tag{6}
\end{array}
$$

then $I^{\prime}=I \cup\left\{e_{1}, e_{2}, \cdots, e_{q}\right\}-\left\{f_{1}, f_{2}, \cdots, f_{q}\right\}$ is independent.
Proof. If $q=1$, then the assertion is trivial from Axiom (I2-2). We suppose that the assertion holds when $q \leqq p-1$ as the inductive hypothesis. The set $I^{\prime \prime}=$ $I \cup\left\{e_{p}\right\}-\left\{f_{p}\right\}$ is independent by (5). To complete the proof, we have to show that the set $I^{\prime \prime}$ and the elements $\left\{e_{1}, e_{2}, \cdots, e_{p-1}, f_{1}, f_{2}, \cdots, f_{p-1}\right\}$ satisfies the condition (5) and (6). Since, for any $i<p$,

$$
f_{p} \notin C\left(e_{i}, I, M\right)-\left\{e_{i}\right\},
$$

we have, by Lemma 3,

$$
e_{i} \in S\left(I-\left\{f_{p}\right\}, E, M\right)
$$

Then, by Lemma 2,

$$
\begin{aligned}
C\left(e_{i}, I, M\right) & =C\left(e_{i}, I-\left\{f_{p}\right\}, M\right) \\
& =C\left(e_{i}, I-\left\{f_{p}\right\} \cup\left\{e_{p}\right\}, M\right) \\
& =C\left(e_{i}, I^{\prime \prime}, M\right) .
\end{aligned}
$$

Thus the lemma follows.
Q.E.D.

Proof of Theorem 3. We first observe that Theorem 3 is true when the number of edges of L_{12} in P is even. We call the edges of L_{11} in P along $P g_{1}, g_{2}, \cdots, g_{r}$, the edges of L_{22} in P along $P h_{1}, h_{2}, \cdots, h_{r-1}$, as shown in Fig. 1. Let the initial endpoint and terminal endpoint of g_{i} be e_{i}^{\prime} and f_{i}^{\prime} and let the initial endpoint and

Fig. 2.
terminal endpoint of h_{i} be $f_{i}^{\prime \prime}$ and $e_{i+1}^{\prime \prime}$. Since, by the construction of L_{11},

$$
\begin{array}{ll}
e_{i}=F_{1}\left(e_{i}^{\prime}\right) \notin I_{1} & 1 \leqq i \leqq r, \\
f_{i}=F_{1}\left(f_{i}^{\prime}\right) \in I_{1} & 1 \leqq i \leqq r,
\end{array}
$$

we get

$$
\begin{aligned}
\left|I_{1}^{\prime}\right| & =\left|I_{1} \cup F_{1}\left(P_{1}\right)-F_{1}\left(P_{2}\right)\right| \\
& =\left|I_{1} \cup\left\{e_{1}, e_{2}, \cdots, e_{r}\right\}-\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}\right|=\left|I_{1}\right| .
\end{aligned}
$$

Then we have only to verify that I_{1}^{\prime} is an independent set of M_{1} to prove that I_{1}^{\prime} is a basis of M_{1}. By the construction

$$
f_{j} \in C\left(e_{j}, I_{1}, M_{1}\right)-\left\{e_{j}\right\} \quad 1 \leqq j \leqq r
$$

which implies that $\left\{e_{1}, e_{2}, \cdots, e_{r}, f_{1}, f_{2}, \cdots f_{r}\right\}$ satisfies (5). To prove that $\left\{e_{1}, e_{2}, \cdots, e_{r}\right.$, $\left.f_{1}, f_{2}, \cdots, f_{r}\right\}$ satisfies (6) we suppose that

$$
f_{j} \in C\left(e_{i}, I_{1}, M_{1}\right)-\left\{e_{i}\right\}
$$

for some i and j such that $1 \leqq i<j \leqq r$. Then there should exist an edge $g=\left(e_{i}^{\prime}, f_{j}^{\prime}\right)$ of L_{11}. Though the path P can be written in the form

$$
P=\left\{\cdots,\left(e_{i}^{\prime \prime}, e_{i}^{\prime}\right),\left(e_{i}^{\prime}, f_{i}^{\prime}\right),\left(f_{i}^{\prime}, f_{i}^{\prime \prime}\right), \cdots,\left(e_{j}^{\prime \prime}, e_{j}^{\prime}\right),\left(e_{j}^{\prime}, f_{j}^{\prime}\right),\left(f_{j}^{\prime}, f_{j}^{\prime \prime}\right), \cdots\right\}
$$

we could find a path P^{\prime}

$$
P^{\prime}=\left\{\cdots,\left(e_{i}^{\prime \prime}, e_{i}^{\prime}\right),\left(e_{i}^{\prime}, f_{j}^{\prime}\right),\left(f_{j}^{\prime}, f_{j}^{\prime \prime}\right), \cdots\right\}
$$

of shorter length. This contradicts the choice of P. Hence I_{1}^{\prime} is an independent set of M_{1}.

Next let us consider I_{2}^{*}. By the construction of L_{22}

$$
\begin{array}{ll}
e_{j+1} \in C\left(f_{j}, I_{2}^{*}, M_{2}^{*}\right)-\left\{f_{j}\right\} & 1 \leqq j \leqq r-1 \\
e_{j+1} \notin C\left(f_{i}, I_{2}^{*}, M_{2}^{*}\right)-\left\{f_{i}\right\} & 1 \leqq i<j \leqq r-1
\end{array}
$$

then

$$
I_{2}^{* \prime \prime}=I_{2}^{*} \cup\left\{f_{1}, f_{2}, \cdots, f_{r-1}\right\}-\left\{e_{2}, e_{3}, \cdots e_{r}\right\}
$$

is an independent set of M_{2}^{*}, and $\left|I_{2}^{* \prime \prime}\right|=\left|I_{2}^{*}\right|$. If we recall that $S\left(I_{2}^{* \prime \prime}, E, M_{2}^{*}\right)=$ $S\left(I_{2}^{*}, E, M_{2}^{*}\right)$, by Lemma 1 , then f_{r} is not in $S\left(I_{2}^{* \prime \prime}, E, M_{2}^{*}\right)$. Therefore,

$$
\begin{align*}
I_{2}^{* \prime} & =I_{2}^{*} \cup F_{1}\left(P_{2}\right)-F_{1}\left(P_{1}\right) \\
& =I_{2}^{*} \cup\left\{f, f_{2}, \cdots, f_{r-1}\right\}-\left\{e_{2}, e_{3} \cdots, e_{r}\right\} \cup\left\{f_{r}\right\} \\
& =I_{2}^{* \prime \prime} \cup\left\{f_{r}\right\} \tag{7}
\end{align*}
$$

is an independent set of M_{2}^{*} and $\left|I_{2}^{* \prime}\right|=\left|I_{2}^{*}\right|+1$.
As shown before,

$$
I_{1}^{\prime}=I_{1} \cup\left\{e_{1}, e_{2}, \cdots, e_{r}\right\}-\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}
$$

then

$$
\begin{aligned}
E-I_{1}^{\prime} & =\left(E-I_{1}\right) \cup\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}-\left\{e_{1}, e_{2}, \cdots, e_{r}\right\} \\
& \subseteq\left(E-I_{1}\right) \cup\left\{f_{1}, f_{2}, \cdots, f_{r-1}\right\} \cup\left\{f_{r}\right\} .
\end{aligned}
$$

By the construction of L_{22}, since $I_{2}^{*} \subseteq E-I_{1}$,

$$
\left\{f_{1}, f_{2}, \cdots, f_{r-1}\right\} \subseteq S\left(I_{2}^{*}, E, M_{2}^{*}\right) \subseteq S\left(E-I_{1}, E, M_{2}^{*}\right)
$$

Thus

$$
\begin{align*}
r_{2}^{*}\left(E-I_{1}^{\prime}\right) & \leqq r_{2}^{*}\left(\left(E-I_{1}\right) \cup\left\{f_{1}, f_{2}, \cdots, f_{r-1}\right\} \cup\left\{f_{r}\right\}\right) \\
& \leqq r_{2}^{*}\left(E-I_{1}\right)+1 \tag{8}
\end{align*}
$$

Hence, by (7) and (8), I_{2}^{*} is a basis of $M_{2}^{*} \times\left(E-I_{1}^{\prime}\right)$.
The same argument holds for the case where the number of edges of L_{12} is odd, as shown in Fig. 2.

Proof of Theorem 4. We shall confirm Theorem 4 with aid of Theorem 2. There is no path P if one of the following cases occurs:
case (1) Both V_{A} and V_{B} are empty.
case (2) $\quad V_{B}$ is not empty but V_{A} is empty.
case (3) $\quad V_{A}$ is not empty but V_{B} is empty.
case (4) Neither V_{A} nor V_{B} is empty but there is no path P from V_{A} to V_{B}.

In case (1), since $V_{B}=F_{2}^{-1}\left(E-S\left(I_{2}^{*}, E, M_{2}^{*}\right)\right)$ is empty, we get $E=S\left(I_{2}^{*}, E, M_{2}^{*}\right)$ which implies that I_{2}^{*} is a basis of M_{2}^{*}. On the other hand, since $V_{A}=F_{1}^{-1}\left(S\left(I_{2}^{*}\right.\right.$, $\left.\left.E, M_{2}^{*}\right)-\left(I_{1} \cup I_{2}^{*}\right)\right) \cup F_{2}^{-1}\left(S\left(I_{2}^{*}, E, M_{2}^{*}\right)-\left(I_{1} \cup I_{2}^{*}\right)\right)$ is empty, the union of I_{1} and I_{2}^{*} is $S\left(I_{2}^{*}, E, M_{2}^{*}\right)=E$. Thus I_{1} and I_{2}^{*} are disjoint bases of M_{1} and M_{2}^{*}, respectively, and I_{1} is a common basis of M_{1} and M_{2}.

In case (2), $V_{B} \neq \phi$ implies that I_{2}^{*} is not a basis of M_{2}^{*}. Moreover $V_{A}=\phi$, that is, $S\left(I_{2}^{*}, E, M_{2}^{*}\right) \subseteq I_{1} \cup I_{2}^{*}$, implies that $I_{1} \cup I_{2}^{*}=E$. Because, otherwise, for any element e in $E-\left(I_{1} \cup I_{2}^{*}\right), I_{2}^{*} \cup\{e\}$ would be an independent set of M_{2}^{*} and $I_{2}^{*} \cup\{e\} \subseteq E-I_{1}$, which contradicts that I_{2}^{*} is a basis of $M_{2}^{*} \times\left(E-I_{1}\right)$. Therefore,

$$
r_{1}(E)+r_{2}^{*}(E)>\left|I_{1}\right|+\left|I_{2}^{*}\right|=|E|
$$

that is,

$$
r_{2}(E)=|E|-r_{2}^{*}(E)<r_{1}(E) .
$$

Thus there is no common basis by virtue of (3) of Theorem 2.
In the similar way, we can prove that there is no common basis in case (3). Since $V_{B}=\phi$ implies that I_{2}^{*} is a basis of $M_{2}^{*}, E-I_{2}^{*}$ is a basis of M_{2}. For $V_{A} \neq \phi$,

$$
\left|I_{1}\right|+\left|I_{2}^{*}\right|<|E|,
$$

therefore

$$
r_{2}(E)=\left|E-I_{2}^{*}\right|>\left|I_{1}\right|=r_{1}(E)
$$

Thus there is no common basis.
To complete the proof we have to verify that there is no common basis in case (4). Choose an arbitrary pair of vertices e_{0}^{\prime} and $e_{0}^{\prime \prime}$ in V_{A}. Let the set U be the set of all vertices to which there is a path from one of the pair. Let $U_{1}=$ $U \cap V_{1}$ and $U_{2}=U \cap V_{2}$. As $F_{1}\left(U_{1}\right)=F_{2}\left(U_{2}\right)$, we put $A=F_{1}\left(U_{1}\right)$. By the construction of L_{11} and L_{22},

$$
\left(U-\left(\left\{e_{0}^{\prime}\right\} \cup\left\{e_{0}^{\prime \prime}\right\}\right)\right) \cap V_{A}=\phi
$$

that is,

$$
\begin{equation*}
A-\left\{e_{0}\right\} \subseteq I_{1} \cup I_{2}^{*} \tag{9}
\end{equation*}
$$

By the construction of A and the fact that there is no path from V_{A} to V_{B},

$$
\begin{aligned}
& A \subseteq S\left(I_{1}, A, M_{1}\right) \\
& A \subseteq S\left(I_{2}^{*}, A, M_{2}^{*}\right)
\end{aligned}
$$

which implies that $I_{1} \cap A$ and $I_{2}^{*} \cap A$ are maximal independent sets in A of M_{1} and M_{2}^{*}, respectively. Hence

$$
\begin{aligned}
& r_{1}(A)=\left|I_{1} \cap A\right| \\
& r_{2}^{*}(A)=\left|I_{2}^{*} \cap A\right| .
\end{aligned}
$$

An Algorithm for Finding a Common Basis of Two Matroids

Recalling the relation (9), we get

$$
\begin{aligned}
|A| & =\left|\left(I_{1} \cap A\right) \cup\left(I_{2}^{*} \cap A\right) \cup\left\{e_{u}\right\}\right| \\
& =\left|I_{1} \cap A\right|+\left|I_{2}^{*} \cap A\right|+1 \\
& >\left|I_{1} \cap A\right|+\left|I_{2}^{*} \cap A\right| \\
& =r_{1}(A)+r_{2}^{*}(A),
\end{aligned}
$$

which violates the condition (4).
Q.E.D.

Proof of Theorem 5. We shall verify Theorem 5 in each cases as in the proof of Theorem 4. Let $B_{1}=I_{1}$ and B_{2}^{*} be an arbitrary basis of M_{2}^{*} containing I_{2}^{*}, where I_{1} and I_{2}^{*} are the sets obtained when the algorithm terminates. To verify Theorem 5, we have only to show that $\left|B_{1} \cup B_{2}^{*}\right| \geqq\left|B_{1}^{\prime} \cup B_{2}^{* \prime}\right|$ for any pair of bases B_{1}^{\prime} and $B_{2}^{* \prime}$ of M_{1} and M_{2}^{*}.

As shown in the proof of Theorem 4, case (1) and (3) imply that I_{1} and I_{2}^{*} are the disjoint bases of M_{1} and M_{2}^{*}. Then,

$$
\left|B_{1} \cup B_{2}^{*}\right|=\left|I_{1} \cup I_{2}^{*}\right|=\left|I_{1}\right|+\left|I_{2}^{*}\right|
$$

which implies that $B_{1} \cup B_{2}^{*}$ is a basis of $M_{1} \cup M_{2}^{*}$.
Let us consider the case (2). Generally,

$$
\begin{equation*}
\left|B_{1}^{\prime} \cup B_{2}^{*}\right| \leqq|E| \tag{10}
\end{equation*}
$$

However, in the case (2), $E=I_{1} \cup I_{2}^{*}$. Thus we get the relation

$$
\left|B_{1}^{\prime} \cup B_{2}^{* \prime}\right| \leqq\left|I_{1} \cup I_{2}^{*}\right|=\left|B_{1} \cup B_{2}^{*}\right| .
$$

Case (4) is left to prove. Let $U_{j}(1 \leqq j \leqq t)$ be the set of all vertices to which there is a path from e_{j}^{\prime} or $e_{j}^{\prime \prime}(1 \leqq j \leqq t)$ in V_{A}. And let $U_{1 j}=U_{j} \cap V_{1}$ and $U_{2 j}=$ $U_{j} \cap V_{2}$. As $F_{1}\left(U_{1 j}\right)=F_{2}\left(U_{2 j}\right)$, let $A_{j}^{\prime}=F_{1}\left(U_{1 j}\right)$. If some of them intersect, we combine them and denote it by $A_{i}(1 \leqq i \leqq u)$. We assume that A_{i} is the union of $m_{i} A_{j}^{\prime \prime} s$, that is, $A_{i}=A_{j_{1}}^{\prime} \cup A_{j_{2}}^{\prime} \cup \cdots \cup A_{j_{m_{i}}}^{\prime}$ Then

$$
\begin{gather*}
A_{i} \cap A_{k}=\phi \quad i \neq k \tag{11}\\
\sum_{i=1}^{u} m_{i}=t . \tag{12}
\end{gather*}
$$

Now we write $A=\bigcup_{i=1}^{u} A_{i}$. Since each element of A_{i} is dependent on both $A_{i} \cap I_{1}$ and $A_{i} \cap I_{2}^{*}$,

$$
\begin{aligned}
& r_{1}\left(A_{i}\right)=\left|I_{1} \cap A_{i}\right|, \\
& r_{2}^{*}\left(A_{i}\right)=\left|I_{2}^{*} \cap A_{i}\right| .
\end{aligned}
$$

Then, using the property that $I_{1} \cap I_{2}^{*}=\phi$,

$$
r_{1}\left(A_{i}\right)+r_{2}^{*}\left(A_{i}\right)=\left|I_{1} \cap A_{i}\right|+\left|I_{2}^{*} \cap A_{i}\right|
$$

$$
\begin{align*}
& =\left|\left(I_{1} \cup I_{2}^{*}\right) \cap A_{i}\right| \\
& =\left|A_{i}\right|-\left|A_{i}-\left(I_{1} \cup I_{2}^{*}\right)\right| \\
& =\left|A_{i}\right|-m_{i} . \tag{13}
\end{align*}
$$

If we now recall (1), then we have that

$$
\begin{aligned}
r_{1}(A) & =r_{1}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{u}\right) \\
& \leqq r_{1}\left(A_{1}\right)+r_{1}\left(A_{2}\right)+\cdots+r_{1}\left(A_{u}\right) \\
& =\sum_{i=1}^{u} r_{1}\left(A_{i}\right), \\
r_{2}^{*}(A) & \leqq \sum_{i=1}^{u} r_{2}^{*}\left(A_{i}\right) .
\end{aligned}
$$

By (12) and (13),

$$
\begin{aligned}
r_{1}(A)+r_{2}^{*}(A) & \leqq \sum_{i=1}^{n}\left(r_{1}\left(A_{i}\right)+r_{2}^{*}\left(A_{i}\right)\right) \\
& =\sum_{i=1}^{u}\left(\left|A_{i}\right|-m_{i}\right) \\
& =\sum_{i=1}^{u}\left|A_{i}\right|-t .
\end{aligned}
$$

Hence by (11),

$$
\begin{aligned}
r_{1}(A)+r_{2}^{*}(A)+|E-A| & \leqq \sum_{i=1}^{n}\left|A_{i}\right|-t+|E|-|A| \\
& =|A|-t+|E|-|A|=|E|-t .
\end{aligned}
$$

Then using Theorem 1 , the rank $r(E)$ of E with respect to $M_{1} \cup M_{2}^{*}$ satisfies the relation that

$$
\begin{equation*}
r(E) \leqq|E|-t \tag{14}
\end{equation*}
$$

On the other hand $I_{1} \cup I_{2}^{*}$ is an independent set of $M_{1} \cup M_{2}^{*}$ and

$$
\left|I_{1} \cup I_{2}^{*}\right|=|E|-t .
$$

Then,

$$
\begin{equation*}
r(E) \geqq|E|-t . \tag{15}
\end{equation*}
$$

(14) and (15) imply that

$$
r(E)=|E|-t .
$$

For an arbitrary pair of bases B_{1}^{\prime} and $B_{2}^{* \prime}$

$$
\left|B_{1}^{\prime} \cup B_{2}^{* \prime}\right| \leqq r(E)=|E|-t=\left|B_{1} \cup B_{2}^{*}\right| . \quad \text { Q. E. } D .
$$

An Algorithm for Finding a Common Basis of Two Matroids

REFERENCES

Edmonds, J. (1968): Matroid Partition, Mathematics of the Decision Science Part II, American Mathematical Society, Providence, Rhode Island.
Greene, C. and Magnanti, T. (1975): Some Abstract Pivot Algorithm, SIAM J. Appl. Math., 29, pp. 530-539.
Harary, F. and Welsh, D. (1969): Matroids versus Graphs, Lecture Note in Mathematics 110, The Many Facets of Graph Theory, Springer-Verlag.
Iri, M. and Tomizawa, N. (1976): An Algorithm for Finding an Optimal "Independent Assignment", J. Opns. Res. of Japan, 19, 1 pp. 32-57.
Lawler, E. L. (1975): Matroid Intersection Algorithms, Math. Prog. 9, pp. 31-56.
Mirsky, L. (1971): Transversal Theory, Mathematics in Science and Engineering, 75, Academic Press.
Tutte, W. T. (1965): Lectures on Matroids, J. Res. Nat. Std. 68B 1-47.
Whitney, H. (1935): On the Abstract Properties of Lineat Dependence, Amer. J. Math., 57 pp. 509-533.
Wilson, R. J. (1973) : An Introduction to Matroid Theory, Amer. Math. Monthly, 80, pp. 500-525.

