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_.ABSTRACT

In this paper, we present a postoptimization analysis of convex quadratic program-
mings, that is, (i) modification of coefficients or constants of the problem, (ii) addition of
a constraint or a variable  and (iii) parameterization of coefficients or constants. The
analysis is done mainly by means of the principal pivoting method of DanTziG and COTTLE.

1. Introduction

We consider the convex quadratic programming :
Minimize Q=x'Dx/2+c’x, subject to Az>b, x>0 where the matrix D is of order
(n, n), positive semi-definite and symmetric and the matrix A is of order (m,n)
and the symbol / denotes the transposition of vector or matrix. As is well known,
the Kuhn-Tucker conditions for the optimal solution of this quadratic program-
ming are the following linear complementarity problem: To find out w and z
which satisfy

(1.1) w—Mz=q, w'z=0, w, 2>0,

x u ¢ o DA
where M M I I

If we could find w and z then x-part of z is an optimal solution of the
quadratic program. We can solve this problem by the principal pivoting method
(abbreviated to PPM, hereafter) of Dantzic and CoTTLE (DaNTZIG and COTTLE
(1967) ).
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Suppose we have already had an optimal solution and let the final canonical
form of (1.1) be:

1.2) w—Mz=3,

where @, Z are the basic and the nonbasic variables, respectively, and M is the
principal pivot transform of M at the final step. The optimal solution is (i, z)=
(7,0). In the following analysis, the optimal basis B and its inverse B~' are
supposed to be known.

2. Modification of b and/or ¢

This modification causes the change of the vector ¢ in (1.1) which we denote
by g¥. At the final step, this makes § become B-'¢Y. Then, we have:

(i) If B¢g¥>0, then the present basis is still optimal. And the solution is
(@, 2)=(B""¢",0).

(ii) Otherwise, apply PPM to the system w—M:z =B"1g".

[Validity of PPM in case (ii)]

Dantzic and CotToLE (1967) have shown that we can apply PPM to (1.1) to
find out the nonnegative complementary solution or to see that (1.1) has no solu-
tion, so long as the matrix M is positive semi-definite, regardless of g. And the
matrix M of (1.2) is also positive semi-definite because the principal pivot trans-
form of a positive semi-definite matrix is also positive semi-definite. So, we can
apply PPM to solve successfully the system @—Mz=B"¢", w’2=0 and w,Z>0, or
to see the system is infeasible.

3. Addition of a constraint

Let the added constraint be
(3 1) Um | lzarlvm+1x_bm+1207

and its dual varible be yu,i.

If present optimal solution also satisfies this constraint, then the problem is
over. Otherwise, let the augumented system of (1.1) be

(3.2) w=Mzt| 0 |m 1=
and
(3.3) Vmi1— Q2= —bmi1.
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By multiplying (3.2) by B-!, we have
— = -1 am—rl“ =
(3.4) w—Mz+B [0 J?/mu:q.

And by eliminating the basic variables from (3.3) using (3.4) (this can be done
by usual pivoting or substitution), we have

(3' 5) vm;»l_(_l;n+1z-+dm1 l.mrlymklz_bnwl,

where —bmi1<0.

That is, the new system is

i M —af z q
56 I | O |
(3-6) VUm i) nor Gmitmi1 L Ym —bumir

where al., =B*‘[gm”] .

The augumented matrix of (3.6) is positive semi-definite, because initially the
matrix of the system (3.2) and (3.3) is positive semi-definite and we have derived
the system (3.6) by some principal pivot transform, keeping w.., nonbasic and
keeping v,.: basic. So, we can apply PPM to the augumented system (3. 6).

4. Addition of a variable

Let the new variable be x,,;, the cofficient vector of w,., in the constraints
be a,.., and the added term in the objective fuction be (d'x)xu.1+doxh /24 Cni1Zaiie
Then, the augumented system is

@.1) Wi Mozt =g,
u T rc D d —A’

where w“:{un.lJ, Za:{xnl:’, qa={cn~1], M*=1d" d, —GZH]
v Y —‘b A an .1 O

and M* is assumed to be still positive semi-definite.
Thus, we have

4.2) w‘Mz—[d ]xn,,=q,
An-1

4.3) Un1— (', —ap1)2—don 1 =Cni1.

Multiplying (4.2) by B-!, we have

(4.4) w-Mz—B*[d ]xm \=3.



Kaoru ToNE

After eliminating the basic variables from (4.4), we have
(4.5) Un 1 — (@', —0hs)Ei—doTn. 1 =Cn. 1.

Thus,
(i) if ¢,.,>0, then (i, 2)=(g,0), x,,:=0 and #,.,=¢C,.1 is optimal, (ii) otherwise,
apply PPM to (4.4) and (4.5), where the constants on the right hand side except
€1 have nonnegative values.

5. Modification of coefficients of a variable

This modification implies changes of coefficients of a variable x; in A, D and
¢ and may cause the changes of the &-th row and the k-th column of the matrix
M and the k-th element of the vector g. We denote the modified M and ¢ by MY
and ¢V, respectively. And consequently, the basis B may become BY which
differs from B at most in a certain row and in a certain column. When BY is
regular (as can be decided in the course of the following algorithm), we can get
(B¥)~! from B-' as follows.

Suppose BY differs from B in the p-th row (3,) and in the g-th column (y,).
First, let a row vector f, be '

5.1 fp=ppB!

and fp:,(/fplrv“'yfppy "',fp_n, | m)-
If f,,#0, then let the matrix J, be

(5.2) fpz Jp ,

7
€pi1

L €nim J
where e; is the i-th unit vector and
9o =Sl o s =Foo-slFops Y pws —Fop slf ops 5 —Fou mlfp)-
Then let
(5.3) B-'=B-1],.

B-' is the inverse of the matrix B which differs from B by the p-th row' j,.
Next, let a column vector %, be

~

(5.4) hy=B""q,

and ll';:(/llqv R ]qulqy /qu’ Ty /ln : mq)
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If h4,#0, then let the matrix K, be

(5.5) Ky=(e1, -, eq-1, g €q-1, ", Cnim),

where to=(—huglheq, -+, —hg—1q/Paq, 1/ Raq, —lg1q/Paqs *+*3 —PinsmqlPgq)-
Then, we have

(5.6) ' (B¥) 1=K, B,

The validity of the above inversion algorithm can be seen easily by calculus
or see Simonnard (1966).

Two cases may occur. The first, we have (B¥)~!, the second, BY is singular
and is no longer a basis. In the algorithm, the conditions f,,#0 and /7,0
guarantee the first case and if either of them equals to zero, we must go to the
second case.

(i) First case: Multiplying the modified system by (BY)-!, we have
5.7 ‘ B—MNz=g".

Then, if §¥>0, then the optimal solution is (i7,2)=(g",0), otherwise apply
PPM to the system (5. 7).

(ii) Second case: In this case, add to the system a variable x,., with the
coefficients equal to the modified coefficients of the variable z;. And make the
c-coefficient of x; sufficiently large. That is, an addition of a variable and a
modification of the vector g are done.

Thus, we can solve the case by the preceding algorithms. The variable z, ,
takes place of x; which never remains or becomes a basic variable.

6. Modification of coefficients and constant of a constraint

This modification may cause changes of M in a certain row and in a certain
column and a change of an element of g. So, we can solve the modified system
by an algorithm quite analogous to the preceding section.

7. Parameterization of vector ¢

Instead of making ¢ undergo a discrete variation as in section 2, we shall
here make g vary continuously as a linear function of a parameter 6.

Set g=qg,+635, where § and ¢, are fixed vectors, and let B be the optimal
basis for #=0. The optimal solution is (@, 2)=(B¢., 0). Now, we make ¢ increase
from 0. Then, basic solution becomes (i, 2)=(B"'q,+0B4,0), and

(i) if B~'9>0, then (i, 2) remains an optimal program for every value of
0(=0), '



Kaoru TonNE

(ii) otherwise, there exists a critical value ¢, of ¢ beyond which (@,2)=
(B~'qo+0B73,0) ceases to be an optimal solution, at least one element of @ becom-
ing negative ;

th=—T/(B-0)e=min [—@s/(B'0)s]  (se{si(B6),<0})

where (B'9); denotes the s-th element of the vector B-'¢. When 6 crosses through
the value #,, one or several of the & variables pass through zero from above.
Then PPM may be applied. When several of the @ variables decrease to zero at
the same time (degeneracy case), we can make use of the perturbation method or

the lexicographical ordering method to avoid cycling phenomena.
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