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A PROOF OF PERRON’S THEOREM ON DIOPHANTINE
APPROXIMATION OF COMPLEX NUMBERS

IEKATA SHIOKAWA

Ryuyr KanNeEiwa* and Jun-icHr TAMURA**

Dept. of Mathematics, Keio University, Yokohama, 223 Japan

(Received, Nov. 20, 1975)

ABSTRACT

In this paper we give, by defining a new continued fraction algorithm for complex
numbers, a constructive proof of PERRON’s theorem with some refinements.

A. Hurwrrz (1891) proved, using the theory of continued fractions, that for
any irrational number @ there exist infinitely many rational integers p, ¢ such that

b
[0 |<'\/ 5 qZ ’
where the constant /5 cannot be improved if 0=%(1+«/ 5). An extension of

this theorem to complex numbers was obtained by O. Perron (1931). He proved
the following

THEOREM 1. For any complex number 0 not belonging to the imaginary quad-
ratic field Q(«/—=3) there exist infinitely many integers p, q in Q(~/ =3) such that

- ’<71§ ql*

If 0=%((+«/C2+4 ), where C=—;—(1+ v/ =3), the constant ¥ 13 cannot be improved.

*,%%  Dept. of Mathematics, Tokyo Metropolitan University.

131



IEKATA Sutiokawa, Ryujsi KANEIWA AND Jun-icHi TAMURA

PrrRON proved it by making use of a lemma on CAssINI’s curve. G. Porrou
(1953) made some refinements on PERRON’s theorem using a certain kind of
complex continued fraction algorithm. His results are the following: The first
three constants of approximations over Q(+/ =3 ), corvesponding to MARKOV numbers,

Y ' 3243 ;
are Y13, 2, and \/ A

2.0701693--+ is an accumulation point of constants.

every other exceeds 2.070068; and N/ ,2,8+11§“£3:

In this paper we give, by defining a new continued fraction algorithm for
complex numbers, a constructive proof of PERRON’s theorem with some additional
refinements. (cf. Theorem 2 and 3.) This algorithm is of simple geometric type
and may be considered in some sense as a natural extension of the real one.
Moreover through this algorithm we can exhibit some interesting analogous fact
between approximations of real numbers and of complex numbers over Q(+/—3).
Indeed, by means of this algorithm the first badly approximable number

1 (A ZEFA) can be expanded in the from

2
e D Do

and the second badly approximable number which just attains the second con-
stant 2 given by PorTou is

—— 1 1
» I2) — .
IHVEFT =20+ o + or +

We note that there are another type of simple geometric continued fraction
algorithms for complex numbers defined by HurwiTz (1888). Recently with the
help of Hurwirz's algoerithm R.B. LAkEeIN (1975) gave a "constructive proof of
Forp’s theorem which is an extention of the theorem of HurwiTz to the case of

Q(V=1).

1. Definition of a complex continued fraction algorithm

- Every complex number z can be uniquely written in the form. z=ul+0l,
where # and v are real and @ is the complex conjugate of a complex number .
We put

[2] =[]+ [v]E,

where [z] is the largest rational integer not exceeding a real number «x, and define
a continued fraction algorithm (#) as follows;
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o1

ta=tn(2)= tnl_l —[ 1 -| n=>1), t=z—[z2],
(%)

anzan(2)=[ tl

n—1

] n=1), an=I[l.

We note that these procedures terminate, i.e., #,=0 for some #>0, if and only if
z belongs to Q(+/=3). Hence every complex number z can be represented in the
form

z=a0+r,1 l_.|_+ ,,,71,,__‘

Tt raan =0, ()

provided #,+0 for all k<.
Let N; be the subset of Q(/—3) defined by

Ne={uf+vZ; u,v, non-negative integers with #+v>1}.
We put
D={ul+vL; u, v=>0, u+v>0},
X={u+vl; 0<u, v<1},
and
Y=D\{2'; zeX}.

Thus it is easily seen that

theX (=0, (2)
aeN.cDNX (n=1), (3)
and
12132‘3/3 (ze Y), (4)
|z12$ (zeD X). (5)

Let zi, 2, -++, 2, be any # complex numbers in DN\ X. Then we have z'e Y\ {0}
and so z,-1+2,"'e D\ X. Repeating this process we get

1 1

| .
Gt b ek eDNX (6)
4 | 2n
and
| 1 1+‘L\.+...+“_HGY\{O}. (7)
4 | 22 i Zn

Note that each step of the above argument is well-defined, since the fractions
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Zn7!, Zny+ 2,70, oo are different from zero.
Let @ @, -~ be any sequence of integral elements of Q(4/—3) such that a,
belongs to N; whenever #>1. Every finite continued fraction

ao_}_‘,,l,,,, +...+l_];,, (nZO)
bay i An

has a canonical representation p./g., called nth approximant, in the form of an
ordinary fraction, i.e.
a°+r’ 1 P 1 :Bﬁ.’
bay | A qn

where p, and ¢, are integers in Q(+/—3). Especially if the sequence @, @, -+ is
given by the algorithm (%) we call pa./g. the nth approximant of z. Thus, from
the general theory of finite continued fractions (see O. PErroON (1967)), we have
the following formulae ;

Du=anPur+pPas, Gn=0anqdn-1tqn-2 (n=1) (8)
1 1 qn
nti—+ 4 = >1), 9
“ +i An-1 + +“ a; qn-1 (nzD) (9)
ann—l—pn~~lq1z=(_1)n_l (nZO); (10)

where p.1=1, ¢-1=0, po=a,, qo=1. Further if p,/g. is the nth approximant of z,
then

Dn n G-\ 1
Z_Z:(_l) (01511+tn;1+q—7l1> EL; (11)
Lemma 1. Let ay, a,, - be any infinite sequence of integers in Q(+/—3) such

that a. belongs to N, whenever n>1 and let q, be the demominator of the nth
approximant. Then we have

gn —> O as n—> 0o,

Proof. Suppose on the contrary, that g, oo as #-—oo. So we can choose
an infinite subsequence {g.;} of {g.} such that |g,,| <M for all j>1, where M is a
constant independent of 7. But from (4) and (7) we get

| on 243
’Qn <|ao| + 3

and so
2v'3
u’nﬂ < <|a0| +kg4>M,
where the right-hand side is also independent of j. It follows from these inequalities
that pnj/qnj=Pnk/4nk for some j and k with j<k, since the ring of all intergers

in Q(4/—3) is discrete. Hence we have
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1 l‘l‘ 1 J+._.+‘ 720,

Qpj+1 I anj+2 | Ay,

which contradicts (7).

LEMMA 2. Let z be any complex number not belonging lo Q(v/—3) and let
Dnlqn be its nth approximant. Then we have

z=lim 2" .

n—oo {n

Proof. From (11) as well as (2), (5), (6), and (9) we have

243 1
3 gl

Dn

\__

qn

<

The lemma follows at once from Lemma 1.

LemMA 3. Let by, by, -+ be any infinite sequence of integers in Q(+/—3) such
that b. belongs to N; whenever n>1, and let p./q. be its nith approximant. Then
Dnlgn converges to some complex number which belongth to b+ Y.

Proof. Let m>n>1. Replacing z and #4,,;, in (11) by pm/gn and \—13_1_—!
n+1
+ 1 N 1 respectively, we have
bn+2 bm
m n 1 1 n—']- -1
p*—l)*:(_l)n(bnu‘l"*‘F'“-F +L> 3
qm Qn bn i2 bn QH qn

which tends to zero as #n — co. And from (7) the limit belongs to b,+ Y.

By means of Lemma 2 and 3 the algorithm (%) well-defines a complex
continued fraction expansion of a complex number. This complex continued frac-
tion algorithm is natural extension of the ordinary real one, since both algorithms
coincide with each other when z is real. As a corollary of Lemma 2 we remark
that any two different complex numbers have different continued fraction expansions
defined by the algorithm (*). But at the same time Lemma 3 suggests the exist-
ance of some complex number z for which there is a sequence by, b, -+ different
from a(2), ai(z), ---, but satisfying the conditions in Lemma 3, whose »#th approxi-
mant converges to z. Indeed we can show that there are uncountably many such
complex numbers. We omit the proof of it, since about these phenomena we shall
need in the sequel no more information than the next lemma. A sequence b, by, -
is said to be admissible if there is a complex number z such that a,(z)=b, for all
n>0.

LEvMmA 4. Let ao, a,, -+ be any admissible sequence.
@ If a.=C [or a,=C] for some n>1, then a,..#2; {or a,..+2C].
b If an=an1=( [or an=a,1=0], then an .+ [or an2=(].

Proof of (a). Let a,=¢ for some n>1. From (2) we have
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t'rLAlz(C""tn)_leX'

This implies in particular

Re ((C+)v D)<
or equivalently
G- (2e+3)| >¥3, 12)

where v'T=L(vF+v=T) (and vE=twT-v=D)).

Suppose that a,.,=2{. We have again from (2)

Im @&GYHY=Im 2L +t,.1)> ég

and so
(1. 15\ V3.
tn ( 3g+3C)‘< 3

a contradiction. Considering the complex conjugates of the above inequalities we
have the second part of (a) stated in the brackets.

Proof of (b). Let a,=a,,,={, for some n>1. Suppose that a,..=C. Then
we have from (2)

Im (@n 2+ tni2)=Im C+2,.2) <0
or equivalently

Im (tn ) =Im (€ +£n.2))>0.
And so

Im (£;)=Im <¢+tn+1>>ﬁg§ .

Hence we have also

which contradicts (12). Similarly we have the second part of (b).

2. Inequalities

In this section we give a series of inequalities needful later. Let ze¢X and
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seY. Then the following inequalities (a)—(g) can readily be verified.

@ l@+9)—-C+I<v/3 (@=1,¢20.
() le+s)—2|<2  (aeN, l|a|</3).
© l(a+s)—3|<3  (aeN;, |a|<2).

(d) [¢]1<1.

©) VE st/ {520.
) s

(8 ls—1|<1.

Each inequality regarded as a circle with variable ¢ or s transforms into another
circle through a linear transformation

10 1] 1
+\dz+ +‘an+z

=<O 1>(0 1)“_<O 1)2

1 a/\1 a 1 a.

in matrix notation. For completeness we give here elementary formulae of circles
transformed by a linear transformation. Let

w_(a b)z_az—l—b
“\e dJf7 cz+d’

w=; !
| @1

or

where a, b, ¢, d, be complex numbers with ad—bc==+1. Let |z—y|=7 be a circle.
Then it transforms into

lw—h-'e|=|h|""r if h=+0,

swtow=1[ if %2=0,
where h=|d+yc|>*—7|c|?, o=(a+b)Fe+d)—r*ac, and [=|b+ya|>*—7*|al.
Let 72+7Z=0 be a straight line. Then it transforms into

lw—k~'c|=k7] if k+0,

Tw+t=m if k=0,
where k=ycd+7éd, v=7bc+rad, and m=yab+7ab.

Using these formulae we obtain the following inequalities. The inequality (a)
transforms into

N
Re(vi—i:)=%2 @102 13)

The inequality (b) transforms into
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The inequality (c) transforms into

1 1
Re <a+s>2€ (ae N, |a|<2).

The inequality (d) transforms into

e e ()|
B
The inequality (e) transforms into
T ¢4 |EE S )
R (A9 |E
i 2% 14| EL AR R A
R (a1
The inequality (f) transforms into
E: ‘J’l % iﬂ s ~(mrwd)l %
T | E
Re(vE(g s )2

The inequality (g) transforms into
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- (Bed)|sp (2)
N N
R R I D
et el e

We may use, if necessary, the complex conjugate of these inequalities, since
X=X and Y=Y where X and ¥ are the complex conjugates of X and Y respec-
tively. Later we also require the next lemma.

LEMMA 5. Let w be a complex number satisfying the inquality
|lw— (@l +v0)| <7,
where u and v are rveal. Then we have
Re w)>(u+v)/2—7,
Re Cw)>v—u/2—7, Re Cw)>u—v/2—7,
Re (V Zw)>+ 3v/2—7, Re (VL w)>~ 3 u/2—7.

Proof. Clear.

3. Proof of the theorem

PerrON’s proof of the second part of the theorem, that is, the statement that
the constant cannot be improved, is very brief, besides, the elabolate lemma on
CassiNr’s curve (O. PERRON (1931)) is not required. So we prove only the first
part of the theorem. Let a,,a,, - be the partial denominators of a complex number
¢ not belonging to @(+/—3). Put, in (11)

dnzdn(e):an !—1+t7H 1+ Sa, Sn';q'n~1/Qn
and define
d(#)=1im sup |d.(0)|.

To prove the first part of the theorem it is enough to show that
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d®)> ¥713 =1.8988.-. (33)

for all complex number # not belonging to Q(+/—3"). But this follows from the
next inequality: Let o, ai, --- be any admissible sequence. Then we have

max (|dx|; n—12<k<n+6)>1.9 (34)

for all »>12, provided (@, @ni1, Gni2)# &, 50 or & 2,0). We need now what
prepared in §2, to get the inequality (33). By the definition we have easily

11 1
tni1= T 7 L R R > 2),
" | Qn+z | @n+s + +1 aj'*'tj (] nt )
1, 1 1
= e ‘e e < —1 ,
=, +i PR +\ak+1+s;c (k<n—1)

and tx€X, sn€Y (m>1). At the same time we have
|dn|>Re (Pan-rl)‘l‘Re (Ptnrl—l)"f‘Re (084),

where p={7 (i=0, i%, il). Hence we may use the inequalities (13)—(32) together

with Lemma 5 in order to estimate the absolute value of d, from below.

Proof of the inequality (33). The proof shall be done in 14 steps A—N. In
each step we give an estimate of |d.| only for the first case, since the conjugate
case written in the brackets can be obtained by the conjugate argument of the
first. We may assume without loss of generality that |a,|<2 and a,+2, since
we have clearly |dn|>2 if |@z:1|>2 or @n.1=2.

A, @n1=20+E [or £+28].
A, Let a,=2f or a,.=2f. Noticing that
Re ({72)>0  (j=+1/2), (35)
for all complex numbers z in D, we have from (13),
Re (V' Zd)=+3 ++/3/6>1.9.
As. Let |a.|<4/3 or |an<+/3. From (14) and (16) we have
Re (dn)=3/2+1/6+1/4>1.9.
There remains only the next case.
A, Let a@n=an..=2{. From (19) and (35) we have
Re (v/Tdn)=+/3++/3/4-1/10>1.9.
In any case we have

|da]>1.9.
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In what follows we may assume that @,=2%, 2 or |a.|=1 for all n>1.

B. a...=2¢ [or 28].

B,.. Let a,={. This case is excluded, by Lemma 4.

Bs. Let a,= 1,2, or a,.=Z1,2. From (13) and (35) we have
Re (V' {d)=+3+3/6>1.9.

B;. Let @,=2 and @,..={. Moreover if @,+2{ for some kB (n—3<k<n
—1), then we have by A:

max (|dy| ; n—3<k<n—1)>1.9.
Otherwise, i.e., dn-3=an-s=an-,=2¢, we have from (25) and (28)
Re (dn-1)= /3 +(+/3 —1)/9+4+34/3/46>1.9.

B, Let an=an.2=2{. If ap+2{ for some k with n—2<k<n-+4, then we
have from B,;—B;

max (|dy| ; n—2<k<n+1)>1.9.
Otherwise, i.€., @n 2=An-1=0n.3=av;4=2, then we have from (25)
Re (V' Edn)>+3+2-34/3/46>1.9.
In any case we have
max (|dy| ; n—3<k<n+1)>1.9.

From A and B we may assume that |a,|=1 for all #>1. The rest of the
proof employs all possible cases of 3 consecutive partial denominators (@,, @n.1, @n:2)
with norm 1.

C. (@n, @us1, anz)=(1,1,1). From (18) and (21) we have
Re (d)=>1+1/2+@B/4—+/3/6)>1.9.
D. (an @nis, @)=, 8,0, [or (0.
D,. Let a,.,=Z or 1. From (17) and (23) we have
Re ((d)>1+1/2+(1—-4/3/3)>1.9.
D,. Let a,-,=f. From (17) and the conjugate of (22) we have
Re ((dx)=1+1/2+(3/4—+/3/6)>1.9.
In either case we have
|da]>1.9.
E. (@ @ni1,@0=¢ 1,0, [or ¢ 1,0].
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E.. Let an,=( or 1. This case is divided further into the following cases;

Ap—-1 An Au+1 Cuiz Quis Apia

Corl ; 1°, say,

{orl O 1 ¢ {5 ldui2}>1.9 (by D),
4 g 27 say,
1 3°, say.

For each case we have the following estimates;
1°. Re(v/{dn)2+/3/2++/33+4/3/3>1.9 (by (23)).
2°. Re(WTdn)2v312+(v3/[3-1/9)++/3/3>1.9 (by (23), (31)).
3°. Re(w/7Tdn)=4/3/2+34/3/104++/3/3>1.9 (by (23), (26)).
In any case we have
max (|de| ; n<k<n+2)>1.9.

E,. Let @,.s={ or 1. This case can be reduced to E,, since the above
estimates are also valid if we replace @1, @n,*, @nia DY @nis, Gnoizy *+*y An-z TESPEC-
tively. (Note that the condition (@, @ne1, @ne2)=(,1,£) is invertible.) Hence we
have

max (|dy|; n—2<k<n)>1.9.
Es. Let an-i=an.s=C. The next table gives all possible cases.

An-3 Qp-1 Ap CQpiy @niz Qpiz. Qnys

1« i i |da-al>1.9 (by (D)),
i ¢ ¢ 1 ¢ ¢
4 ; excluded by Lemma 4,
{ ¢ |das|>1.9 (by D),
1 £ ¢ 1 £ 4 g 1°, say,
1, 2°, say.

1° Re(/Cdu)=+/3/2+B+/3-1)/9+34/3/10>1.9 (by (26), (31)).
2°. Re(y/Tdn)=+/3/2+2:34/3/10>1.9 (by (26)).
In any case we have
max (|di|; n—2<k<n+2)>1.9.
Thus we have from E,;, E;, and E;

max (|dy|; n—2<k<n+2)>1.9.
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F' (an, Ans 1y An ?'2)=(C: 1’ 1) [Or (C’ 1) 1)]'

An-3 QAn-2 Qp-1 Qn Au1 Ao

:
} ;  Fy, osay,
1

< i dus|>1.9 (by D),

£ ¢ 1 1 ;  excluded,
< ¢ ; Iy, say,
e 1 ; Ty, say,
< ; max (lde|; n—5<k<n—1)>1.9 (by E)

Fi. Re(d)=14+12+1—-4/3/3)>1.9 (by (18), (23)).
Fo. Re(V Zd)>+3/24++43/4+543/12>1.9 (by (21), 7).
Fi. Re(V {d)>+3/2++/3/4+(13+/3/32-1/16)>1.9 (by (21), (30)).
In any case we have
max (|di|; n—5<k<n—D>1.9.
G. (an @ner, @ni)=1,1,0) [or 4,1, &)].'
max (|ds| ; n—6<k<n—1)>1.9 (by C,F)

H. (@ny Anr 1y G 2)=(Zy - 1) [OI' (& C-; 1)]

Qn-2 Qn-1 An Qpy1 CGniz Qnis

g ;o |da[>1.9 (by D),
gy & ¢ 1 : excluded,
g 1 ; max (|di|; n—4<k<n)>1.9 (by E),
1 1 ; max (|di|; n—8<k<n—3)>1.9 (by G),

: ) {C ; max (Jdil; n—1<k<n+3)>1.9 (by E),
1 ; max(l|dil; n—4<k<n+3)>1.9 (by F),
¢ 1 Z ¢ 1 T H,say.
Hi.. Re (W7 dn-1)>+3/245/3/124+(54/3 —4)/14>1.9 (by (15), 27)).
In any case We.have

max (|dx|; n—8<k<n+3)>1.9.
L (@ @nir, a0 2)=1,4,0) [or 1,01
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Ap-1 @n Qpi1 CQpiz Bpis CQuig Apys Apig
C} ) ; max (|dk|; n—3<k<n+1)>1.9 (by E),
€
; max (|di]; n—T<k<n—2)>1.9 (by G),

]

- JC ; |dni1]>1.9 (by D),
; max (|del; n—T<k<n+4)>1.9 (by H),

; excluded,

U

¢ ; excluded,

excluded,

[
-

I,, say,

(]
[y
U2
[}
]
U]
']
[

1; I, say,

1 ; I,, say,

1 ; 1,, say.
L. Re(wTdn)>+3/24(v3/4—1/10)4+5,/3/12>1.9 (by (27), (32)).
L. Re (v {dni)>+/3/2+0B~3/8-1/4)+543/12>1.9 (by (20), (27)).
L. Re(v/Tdni)>+/3/24+/3/4+5y/3/12>1.9 (by (24), (27)).
L. Re(v/gdi)=+/3/2454/3/124+(543 —4)/14>1.9 (by (15), (24)).
In any case we have

max (jdx|; n—T<k<n+4)>1.9.
J. (an @nis, @02) =, 5, Q) for (€, E, D)
From D, I, and Lemma 4 we have

max (|di|; n—8<k<n+3)>1.9.
K. (@n @nisy ani)=@1,8, 1) [or (1, D]

An-2 Gpn-1 Qn Cny1 CGpiz Quys

4 ; max (|di]; n—-3<k<n+1)>1.9 (by E),
1} ! : ! ;o max (|ldil: n—7<k<n—2)>1.9 (by G),
£ ; max(|dil; n—1<k<n+3)>1.9 (by F),
! : ! {1 ;0 max (|dl; n—4<k<n)>1.9 (by F),
4 ;0 max (|del; n—10<k<n+1)>1.9 (by H),
4 Z 1 ¢ 1 z
) } ; K., say.
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K. Re(du-1)21+11/20+(1—4/3/3)>1.9 (by (23), (29)).
In any case we have
max (|di]); n—10<k<n+3)>1.9.

L. (@ @nis, an) =, 1,0 for (1,01
n-i @n @nii Gniz Gnis Gneg Oois
g 5 : max (|dx]; #n—9<k<n+2)>1.9 (by H),
1} ; : max (|di]; n—11<k<n+2)>1.9 (by K),
4 : max (|dx]; n—6<k<n+5)>1.9 (by D),
¢ ; excluded,
excluded,
S T A E T L, say,
1 ; L,, say,

o]

1 7 L8) Say’
1 ;. max(|dx|; n—9<k<n+2)>1.9 (by K).

L. Re(d)=1+3/5+(1—4/3/3)>1.9 (by (23), (32)).
L. Re(d)>1+5/8+(1—4/3/3)>1.9 (by (20), (23)).
L, Re(d)=21+(1—+/3/6)+(1—+3/3)>1.9 (by (23), (24)).
In any case we have

max (Jdi|; n—10<k<n+6)>1.9.
M. (an anis, an.2)=(, 1) for (€, D]
From E, F, and L we have

max (|dg|; n—10<k<n+6)>1.9.
N. (@, @ni1,an.0)=(@1,5,0) [or (1, ).
From E, G, and L we have

max (|d|; n—12<k<n+4)>1.9.

Since the cases (an, @ni1, @n-2) =, 5,0 [and (&, 0)] are excluded by Lemma 4,
we have employed all possible cases except ({,£, &) and [({,,0)]. In any case we
find the inequality (34), as required.

Now we proove the inequality (33). Let a,, a,, --- be the partial denominators of a
complex number given arbitrary. If @,=C, @n.1=( an. 2= - or an,=C, an.={,
@n:2=C, --- for all sufficiently large ». Then we have, in either case
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lim |dal= ¥13 .

N--e00

Otherwise, we can choose infinitely many 3 consecutive partial denominators (@,
@n-1, @r. 2) different from (£, 8,8 or (,Z,0). So by the inequality (34) we have
limsup |d.|>1.9> ¥ 13.

As a result we obtain the inequality (33).
We can deduce some refinements of the theorem 1 from the above proof.

THEOREM 2. Let 0 be any complex number not belonging to Q(+/—3) and let
o, @y, -+ be its partial denominators defined by the algorithm (*). A mecessary
and sufficient condition that

d)= 413

is that (@, @n.yy )=E % ) or &, C, ) for some n=0. If 0 is not such number,
then

d0)>1.9,
i.e. the first constant % 13 is isolated.

E. BoreL (1903) improved the theorem of HurwiTz as follows:

Let 0 be any irrational number whose nth approximant is denoted by pu/gn.
Then for any n>1 at least one of 3 consecutive approximants pu/qn, Duii/qne1,
Du- 2/qu .2 salisfies the inequality

i p 1
0—1< - .
‘ q [<«/ 5¢*

In this sense we give a partial improvement of PERRON’s theorem.

THEOREM 3. Let F, be the number of partial demominators p.lq, (1<k<n)
such that

Pn 1

!
= S Y13 gl

If (@, an.o1y@ni0) #2520 ov C,2,0) for all sufficiently large n. Then

A
> 19 b,

where B is a constant depending possibly on 0.
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