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KEIO ENGINEERING REPORTS 
VOL. 29, NO. 9, pp. 87-97, 1975 

THE BOUNDARY LAYER EQUATION 
x''' + 2xx'' + 2,{(1- x'2

) = 0 for A> -0.19880 

NORIO KIKUCHI 

KIYOSHI HAYASHI* and T AKASHI KAMINOGOU** 

Dept. of Mathematics, Keio University, Yokohama 223, Japan 

(Received fun. 25, 1975) 

ABSTRACT 

The purpose of this paper is to show the existence of continuous solutions for the 
equation described in the title satisfying the conditions x(O)=x'(O)=O, x'(oo)= 1 and O<x'(t)<l 
for O<t<oo. 

This paper concerns with the following boundary value problem which occurs 
in laminar boundary layer theory in hydrodynamics : 

( 1 ) 

( 2) 

( 3) 

x"' +2xx" +2A(1-x'2)=0, 

x(O)=x'(O)=O, x'(oo)=1, 

0<x'(t)<1 for O<t<oo. 

For A20 H. WEYL (1942) first proved that there exists a continuous solution 
of the problem. 

For A<O (IAI small) S. P. HASTINGS (1971) first showed the existence of solutions 
as far as the authors know. 

On the other hand, it is known (I. T ANI (1957)) that the separation phenomenon 
of boundary layer occurs for A= -0.1988···, and M. IwANO (1974) tried to show 
the existence of solutions for negative A as small as possible. 

In this paper we shall extend the value of such A as closely as possible to the 
value -0.1988···. 

Our method of proof, which is close to that of W. A. CaPPEL (1960), owes to 
Kneser's property, which was shown by M. HuKUHARA (1967). Although we can 
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solve this problem by using the continuity dependence property of solutions to 
initial data, because the equation (1) has the property that the solution for an 
initial value problem is unique, our proof was found by examining the paper of 
M. HuKUHARA (1967). 

We shall state Kneser's property in Section 1 and apply it to our problem in 
Section 2. 

It should be noticed that our method could be applied for not only negative J 
but also every J (> -0.19880, for example). 

1. Kneser's property by M. HuKUHARA (1967) 

Let g be a family of n-vector valued continuous functions (or curves in 
R X Rn) satisfying the following conditions: 

(A) Each curve x (or {(t, x(t)); tElx}) of g is a graph of an n-vector valued 
continuous function defined on a compact definition interval lx. 

( B ) If x belongs to g, every partial arc (xI r : the restriction of x to a 
compact sub-interval I of lx) belongs to g. 

(C) g is compact in the metric space D=D(Rn+ 1
) of all compact sets in Rn+ 1

, 

where the distance Dist (A, B), A, BED, is defined by 

Dist (A, B)=inf {o>O; Oa(A):=>B, Oo(B):=>A}, 

0 6(A)={PERn+ 1
; dist (P, A)~o}. 

(D) If x and y of g assume a same value for t=a, the function which 
coincides with x for t~a and with y for t?;.a belongs to g. 

(E) The extreme points of maximal (with respect to the definition interval) 
curves (which can be shown to exist) belong to the boundary 93=a{f) of {f), where 
g) is the compact set in Rn+ 1 filled by the curves of g. 

The right (left) extreme point (f3x, x(f3x)) (ax, x(f3x)) of a maxial curve 

x={(t, .x(t)); tElx=[ax, f3x]} 

will be called a right (left) extreme point of {f). They form a set which we call 
the right (left) boundary denoted by 93r(931). We define the right emission zone 
:6 + ( c;) of e ( c g)) by 

,Z+(e)={(t,x(t)); xEg for which there exists toElx such that 

(to,x(to) )E G and t?;.to}. 

The set of points PE93\93r such that P is an isolated point in 93 n _z+(P) will be 
denoted by 93+. 

The set of points PE93 193r such that P is an accumulation point of 93 n _z+(P) 
will be denoted by 93.,. Then 93 is expressed as the disjoint sum of 93r, 93+ and 
93+, that is, 
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A point A(a, a)E!DcRxRn will be called a right Kneser point if it satisfies 
one of the following conditions : 

(I) AE9f. 
(II) If AE9r U g) 0 (the interior of !D), then the section of .Z r(A) by the 

hyperplane t=r is a continuum for sufficiently small r-a>O. 
(Ill) If AE 93+, the union 

su (93 n .z;(A)) 

is a continuum for sufficiently small r-a>O, where 

.z;(A)={(t, x(t) )E.Z'(A); t;£r} 

and 

S={(t, x(t) )E.Z+(A); t=r}. 

If the above family g further satisfies the following condition (F), then g will 
be called a right Kneser family: 

(F) Each point of g) is a right Kneser point and 93+ is open in 93 and 
contained in 93l. 

M. Hukuhara (1967) proved the following fundamental 

Theorem o. If g is a right Kneser family, then the intersection .z I (e) n 
(93r u 93 +) is a continuum, when e is a continuum in g). 

2. An Existence Theorem of Solutions 

Theorem 1. If A> -1/6, then the equation (1) has a continuous solution 
satisfying (2), (3). 

Let x(t) be a solution of (1) on some t-interval satisfying x'(t) >0 (so that 
x(t) is increasing). We choose x as a new independent variable and y =x'2 as a 
new dependent variable (D. Grohne and R. Iglisch (1945) ). Then we have 

d I d ~ d -----=x -=y 2 --
dt dx dx' 

1 
x''=--zi!, 

1 ~ 
x'''=-y 2 y, 

2 

where a dot denotes differentiation with respect to x. The equation (l) is trans­
formed into 

1 

( 4) y 2y+2xy+4A(1-y)=0, 

the boundary condition (2) into 

( 5) y(O)=O, y(co)=1 

and the condition (3) into 
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( 6) 0<y(x)<1 for O<x<oo. 

The equation (4) is equivalent to the system 

( 7) iJ=Z, 

1 

z= -y -2{2xz+4A(1-y)}=:f(x, y, z). 

Consequently, Theorem 1 is replaced by the following 

Theorem 1'. If A> _ _!__, then (4) (or (7)) has a continuous solution satisfying 
6 

(5), (6). 
To prove this we will first prove the following 

Lemma 1. Let A<O, O<a~1 and O<p<l. If r>O is sufficiently large, the 
solution y(x) of ( 4) determined by 

y(a) = p, if( a) =r 

satisfies that y(x)~2 as long as a~x~a+1 and p<y(x)<l. 

Proof. Write the equation (4) as 

-_!_ _!_ d ( _!_) 
y = -4Ay 2 (1-y) +4y 2 -4-(i; xy 2 • 

Along the arc y(x) with p~y(x)~1 we have 

d ( _!_) y~ -4dx xy 2 

and hence a quadrature gives that 

1 1 

y(x)~r-4xy 2 +4ap2 

~r-4(a+1)~r-8 

for a~ x ~a+ 1. Hence, if r ~ 10, the assertion of Lemma 1 is true. 

Remark. The property similar to that of Lemma 1 holds for not only negative 
A but also for every A. 

Proof of Theorem 1'. Let us define three continuous functions f}(x, y), ti(x, y) 
and w(x) as follows: 

1 

f}(x,y)=2xy-2(1-y) (x>O, O<y~1), 

Q(x, y)=2x- 1y (x>O. 0<y~1), 

w(x) is defined implicitly by 

3 

( 8) x 2w-2(1-w)=N (x>O, 0<w<1), 
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where N is a constant with ~ <N<1+2A. Differentiation of (8) gives 

( 9) 

3 

_ _I_ _I_ (1-w)2 
w(x)=4N 2w4~--

3-w 

We shall show that if O<x< oo and w(x)~y<1, then 

(10) f)(x, y)<ti(x, y), f)(x, y)<2. 

(11) ilx(x, y)+f)y(x, y)f)(x, y)-f(x, y, f)(x, y) )>0, 

(12) fix(x, y)+tiy(x, y)ti(x, y)-f(x, y, ti(x, y) )>0. 

In fact, 

1 1 1 1 

f)(x, y)~f)(x, w)=2N2 w 4(1-w)2 <2w 4(1-w)<2, 

1 1 1 1 

ti(x, y)~ti(x, w) =2N-T w 4 (1-w)2 >2w 4 (1-w), 

hence (10) is valid; 

1 3 

f2x+f2yf2-f =2y -2(1-y) {1 +2A-x2y -2(1-y)} 

1 3 

~2y -2(1-y){1 +2A-x2w -2(1-w)} 

1 

= 2y -2 (1- y )(1 + 2A- N) > 0, 

1 1 

fix+fiyti-J=2x- 2y+4y 2 +4Ay -2(1-y) 

1 

>2x-2w+4Aw -2(1-w) 

=2(1 +2AN)x-2w >0, 

hence (11), (12) are valid. 
Along the arc w(x) we have 

and hence 

3 

_!__ _!__ _!__ _ _I_ _!__ (1-w)2 
f)(x,w(x))-w(x)=2N2 w4 (1-w) 2 -4N 2 w 4 (

3
-w) 

=2N-+ w +(1-w)+(N--2(--,---1_-_w_)) 
3-w 

(13) f)(x, w(x) )>w(x) (O<x<oo). 
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Let {an} LBn} be any sequence such that 

n--->= 

For the moment we will fix n and define a continuous fuction wn(x) by 

l Pn 
Wn(x)= 

w( X) ( C n ~X< CXl) , 

where cn(>an) is uniquely determined by the condition w(cn)=f3n· 
For an arbitrary u(>an+1) we will define subsets in the (x, y, z)-space as 

follows: 

So={(x, y, z); an~x<u, y=1, z=O}, 

St={(x, y, z); x=an, wn(x)<y<1, f)(x, y)<z<ti(x, y)}, 

Sz={(x, y, z); an~x<u, wn(x)~y<1, z=Q(x, y)}, 

S3={(x, y, z); an~x<u, y=wn(x), f)(x, y)<z<ti(x, y)}, 

54 ={(x, y, Z); an~X<U, Wn(X)~y<1, z=f}(x, y)}, 

So={(x, y, z); an~x<u, y=1, f)(x, y)<z~Q(x, y)}, 

S6={(x, y, z); x=u, wn(x)~y~1, f)(x, y)~z~Q(x, y)}. 

fiJ is the compact domain in the (x, y, z)-space surrounded by So, S1,. .. , S6. Hence, 
6 

the boundary 93 =am of fiJ is u Si, which is a disjoint sum. Let g be the set 
i=O 

of all continuous functions satisfying (4), which are defined on compact intervals 
and the graphs of which are contained in ff). 

We shall show that the set g forms a right Kneser family. To see this we 
have only to confirm the condition (F). Since the equation (4) has the uniqueness 
property for an initial value problem, we have that 

The inequality (11) shows that 

and (12), (13) show that 

It is clear that 
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Hence, we have that 

and !J3+ is an open subset of $. Consequently, it was shown that g is a right 
Kneser family. 

The set 

is a continuum in fl), so that, by Theorem 0 

is a continuum in g) (hence, in $). We have by Lemma 1 that 

On the other hand, we have by the uniqueness property of (4) for an initial value 
problem that 

.z-'(e) nSo=¢. 

The point (an, (3n, f)( an, (3n) ) belongs to .Z t( e) n S4. Therefore, we have by the 
connectedness of C(u) that _z+(e) ns6 is a nonempty compact set and therefore 
the set 

is also a nonempty compact set. Furthermore, we have by the property of g that 

Hence, the family 

{H(u); u>an+l} 

has a finite intersection property and hence 

Hn= n{H(u); u>an+l} 

is nonvoid. Consequently, if (an, f3n, rn)EHn, then the solution Yn(x) of (4) deter­
mined by 

exists on an 2 x < oo and satisfies Yn( oo) = 1. 

For each a>O the sequences {Yn(x)} and {Yn(x)} are equi-bounded on [a. oo). 
By using Ascoli-Arzela's theorem and an usual diagonalization arguement we can 
choose a subsequence {Ynk(x)} which converges uniformly to a continuous function 
y(x) on (0, oo). This function y(x) can be shown to satisfy (4), (5) and (6). 
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3. More precise estimates for .A 

In order to have a more precise estimate for ..{ we shall construct f}(x, y) by 
the following form 

1 

f}(x, y) =2xy -2(1-y)u(y), 

where u(y) is a continuous function on O~y~1 such that the following conditions 
are satisfied : 

( i ) 0 and piecewise C2 on 0<y<1, 

( ii) 1~u~2, u'~O on 0<y<1, 

u(1)=1, lim (1-y)u'(y) =0, 
y->l 

(iii) g(y) >0 on 0<y<1, 

1 
(iv) there exists a constant N such that N>h(y) on O~y~1 and -----z<N<O. 

Here, v, g, h are defined as follows: 

1+y 
v(y)=1+~1-(u-1)-2yu' (~1 from (ii) ), 

-y 

g(y)=---2y ~+·~' 3-y ( u' v') 
1-y u v 

1 { ( v' 3-y ) } h(y)= g(y) v+u yv- 2(1-y) . 

In this chapter ti(x, y), w(x) are chosen as follows: 

ti(x, y) =4x-1y, 

and y=w(x) is defined implicitly by 

3 ( 2N) y2 1+u 
x2= . 

(1-y)v(y) 

Differentiation of this relation with respect to y gives 

Hence, we have 

1 

dx y 2 { g(y) } 2xdy = (1-y)u -v-(N-h(y) )+1 . 

dx 
0 -> dy 
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and from (ii) 

(1-y)v(y) --+ 0 as y -~ 1. 

Consequently, y=w(x) is surely a continuous function defined for O<x<CXJ and 

y --+ 1 as x --+ CXJ • 

Then, for J.> N, [}, tJ, w shall be shown to satisfy (10'), (11), (12), (13), where 

(10') f}(x, y)<fJ(x, y), Q(x, y)<4 

(In Lemma 1, if r~12, then y(x)~4). 

(10') 

_2_~ 2N w 4 1+-u __!_ 
f}(x,y)~f}(x,w)=2 -y~ 1 _w-y~v w-2(1-w)u 

1 1 

<4w 4(1-w)2 <4, 

- - -yi1-w -yl1) J.... J.... 
Q(x, y)~Q(x, w)=4- w~4w 4 (1-w) 2 

2._ I 2N 
w

4 '\f1+u 

> f}(x, y), 

>2y -+(1-y)u{ 1 + 
2
:: -(or1(y) )2y -+(1-y)v} 

=0, 

1 1 

(12) tJx+tJyfJ-J=12x-2y+8y 2 +4.-<y-2(1-y) 

(1-w)v _ __!_ 

>12 2...( 2N) w+4..<w 2(1-w) 
w 2 1+-

u 

J.... ( 3v ) =4w- 2 (1-w) 
2
N ·+A >0, 

1+-
u 

(13) f}(x, w(x) )>w(x) 

1 1 
¢:~ 2xy-2(1-y)u> dx (y=w(x)) 

dy 

1 

dx y2 
¢::::> 2x dy > (1-y)u 
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¢:::> g(y) (N-h(y) )+1>1 
v 

¢= N>h(y), g(y)>O and v~1 (by (ii), (iii) and (iv) ). 

If we can construct such u, we have by the proof quitely similar to that of 
Theorem 1' that for J.>N (1) has a continuous solution satisfying (2), (3). 

For example, if 
1 

u(y)=1+0.18(1-y)3, 

then we have N= -0.1962. Furthermore, we have N= -0.19880 if u(y) is defined 
as follows: 

where 

and 

u(y)=ui(Y) for tEli (i=1, 2, ···, 10), 

u1(Y) = 1.192803-0. 043576y- 0. 018938y2 -0. 010436y3 -0. 011921y\ 

u 2(y) =u1(y) +0. 000128(y -0. 2)3 -0. 012599(y -0. 2)\ 

u3(y) =u2(y) +0.0010388(y -0 .32)3-0.0222989(y-0. 32)4
, 

u4(y) =U3(y) -0.00007 47(y -0. 44) 3 -0. 0409591(y -0. 44)4
, 

u5(y) = u4(y) + 0. 0019263(y- 0. 52) 3
- 0. 080957(y- 0. 52)4

, 

Us(y) =u5(y) +0.0064752(y-0.6) 3 -0 .193242(y-0.6)4
, 

U7(y) =Us(Y) +0. 0054272(y -0. 68)3 -0. 431317(y -0. 68)4
, 

Us(y) = U7(y) +0. 0015922(y -0.7 4) 3 -0. 825141(y -0.7 4)4
, 

U9(y) =U1o(y) +a(y -0. 78)2 +b(y-0. 78)+c, 

c=Us(O. 78) -Ulo(O. 78), b=u8'(0. 78) -Uio'(O. 78), a =b2 /4c, 

a= -2c/b=0.866··· 

11 =[0, 0.2), 12 =[0.2, 0.32), / 3 =[0.32, 0.44), / 4 =[0.44, 0.52), 

/ 5 =[0.52,0.6), / 6 =[0.6,0.68), !7=[0.68,0.74), ls=[0.74,0.78), 

Remark. Professor M. IwANO (1975) pointed out that the solution thus con­
structed in our paper is not of algebraic type (which means that x'(t) -1 tends to 
zero with the order of a certain negative power of t as t--+co ). Hence, from a 
result of P. HARTMAN (1964) the solution is of exponential type (which means 
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that x'(t)-1 tends to zero exponentialy as t-H:xJ). Consequently, from results of 
P. HARTMAN (1964) and R. IcuscH and F. KEMNITZ (1955) we seem to have all 
solutions of (1) satisfying (2), (3) for J.> -0.19880. 

Our consideration to this problem is still unsatisfactory. Further precise 
analysis is our forthcoming problem. 
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