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THE BOUNDARY LAYER EQUATION
2"+ 2zx"" +22(1—2'%) =0 for 21> —0.19880

Norio KikucHI
KivosHl HavasHr* and TakAasHI KAMINOGOU**

Dept. of Mathematics, Keio University, Yokohama 223, Japan

(Received Jun. 25, 1975)

ABSTRACT

The purpose of this paper is to show the existence of continuous solutions for the
equation described in the title satisfying the conditions 2(0)=2'(0)=0, z'(c0)=1 and 0<z'(¢)<1
for 0 <t < co.

This paper concerns with the following boundary value problem which occurs
in laminar boundary layer theory in hydrodynamics:

(1) ' 42z 4+ 241 —x'%) =0,
(2) 2(0)=2"(0)=0, z'(c0)=1,
(3) 0<2'(t)<1 for 0<¢<oo.

For 2z=z0 H. WEyL (1942) first proved that there exists a continuous solution
of the problem.

For 2<C0 (|4} small) S.P. HasTings (1971) first showed the existence of solutions
as far as the authors know.

On the other hand, it is known (I. TaN1 (1957)) that the separation phenomenon
of boundary layer occurs for 1=—0.1988---, and M. Iwano (1974) tried to show
the existence of solutions for negative 2 as small as possible.

In this paper we shall extend the value of such 4 as closely as possible to the
value —0.1988-.-

Our method of proof, which is close to that of W.A. CoppEL (1960), owes to
Kneser’s property, which was shown by M. HukuHARA (1967). Although we can
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solve this problem by using the continuity dependence property of solutions to
initial data, because the equation (1) has the property that the solution for an
initial value problem is unique, our proof was found by examining the paper of
M. HukuHARA (1967).

We shall state Kneser’s property in Section 1 and apply it to our problem in
Section 2.

It should be noticed that our method could be applied for not only negative 2
but also every 4 (> —0.19880, for example).

1. Kneser’s property by M. Hukunara (1967)

Let & be a family of n-vector valued continuous functions (or curves in
RX R") satisfying the following conditions:

(A) Each curve z (or {(¢,2(f)); tels}) of & is a graph of an n-vector valued
continuous function defined on a compact definition interval 7.

(B) If x belongs to &, every partial arc (z|;: the restriction of = to a
compact sub-interval 7 of I,) belongs to &%.

(C) & is compact in the metric space D=D(R"*!) of all compact sets in R"*!,
where the distance Dist (A4, B), A, BeD, is defined by

Dist (A, B)=inf {6>>0; O0;(A)DB,0sB)D A},
Os(A)={PeR"+; dist (P, A)=4d}.

(D) If x and y of & assume a same value for f=ea, the function which
coincides with z for =« and with y for {=a belongs to &.

(E) The extreme points of maximal (with respect to the definition interval)
curves (which can be shown to exist) belong to the boundary =049 of &), where
P is the compact set in R"+* filled by the curves of &F.

The right (left) extreme point (8, 2(z)) (aa, 2(Bz)) of a maxial curve

.r={(t, x(t) ); te[.tz[al‘y ﬁx]}

will be called a right (left) extreme point of . They form a set which we call
the right (left) boundary denoted by B($Y). We define the right emission zone
ZH(&) of £(cY) by
ZH(E)={t, x(@)); xeF for which there exists #,e€/, such that
(to,.ﬂ(tg))eg and tito}.

The set of points Pe B\B" such that P is an isolated point in BN Z+(P) will be
denoted by @*.

The set of points Pe $3\ %" such that P is an accumulation point of $NZ*(P)

will be denoted by @.. Then & is expressed as the disjoint sum of #’, $#* and
AB., that is,

B=B"UB"U Bs.
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A point Ala, a)e D Rx R" will be called a right Kneser point if it satisfies
one of the following conditions:

(1) Aeg.

(I1) If AeptUQ° (the interior of &), then the section of Z7(A) by the
hyperplane #=r is a continuum for sufficiently small ¢ —a>0.

(III) If Ae $., the union

SUBNZH(A)
is a continuum for sufficiently small r—a>0, where
FHA)={t, 21))eZ"(A); t=7}
and
: S={{t, x())eZ"(A); t=x1}.

If the above family & further satisfies the following condition (F), then & will
be called a right Kneser family:

(F) Each point of @ is a right Kneser point and $* is open in 4@ and
contained in @

M. Hukuhara (1967) proved the following fundamental

Theorem 0. If F is a vight Kneser family, then the intersection Z*(&)N
(BTU B+) is a continuum, when & is a continuum in 9.

2. An Existence Theorem of Solutions

Theorem 1. If 2> —1/6, then the equation (1) has a continuous solution
satisfying (2), (3).

Let x(f) be a solution of (1) on some ¢-interval satisfying 2’(£)>0 (so that
xz(¢) is increasing). We choose z as a new independent variable and y=zx'* as a
new dependent variable (D. Grohne and R. Iglisch (1945)). Then we have

1 1
S =%y x”’:%ﬁy,

where a dot denotes differentiation with respect to z. The equation (1) is trans-

formed into

dy

i
(4) VT2 + 41 -0)=0, g=-,

the boundary condition (2) into
(5) ¥(0)=0, y(oo)=1

and the condition (3) into
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(6) 0<y(x)<l for 0<zx<oo.
The equation (4) is equivalent to the system

(7) y=2z,

i= —y T Raz A1~y =f(z, 1, 2).

Consequently, Theorem 1 is replaced by the following

Theorem 1. If 2>—%, then (4) (or (7)) has a continuous solution satisfying

(8), (6).

To prove this we will first prove the following

Lemma 1. Let i1<0, 0<a=l and 0<B<1. If >0 is sufficiently large, the
solution y(x) of (4) determined by

y@)=p8, yla)=y
satisfies that y(x)=2 as long as a=zx=a+1 and f<y(z)<l.

Proof. Write the equation (4) as
L 4 1 4 d L
o= — 2 (] — 2 4 2 ),
j=—Ay 2(1-y)+4y s (wy >

Along the arc y(z) with g=y(x)=1 we have

i= —4% (zy%>
and hence a quadrature gives that
¥(x) 27—4.1'11% +4aﬁ%
zr—4(a+1)zy-8
for a=x=a+1. Hence, if y=10, the assertion of Lemma 1 is true.

Remark. The property similar to that of Lemma 1 holds for not only negative
2 but also for every 4.

Proof of Theorem 1’. Let us define three continuous functions 2(x,¥), 2(z, v)
and w(x) as follows:

1
Qw,y)=2zy 2(1—y) (x>0, 0<y=1),
Kz, y)=2z"y  (@>0, 0<y=1),
w(x) is defined implicitly by

(8) so T(1—0)=N (>0, 0<w<1),
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where N is a constant with %<N<1+2/L Differentiation of (8) gives

(9) o(z)=AN Ta+

We shall show that if 0<z<oco and w(x)=y<1, then

(10) Qz,y) <Az, y), Lz9)<2,

11) 2u(2, y)+ 2y(x, )2z, v) —f(=, y, Az, y)) >0,

12) D@, v)+2y(x, 1)z, y)—f(x, y, Az, y))>0.
In fact,

11 1 1
Az, ) =2(x,0)=2N2 0+ (1-0)?2 <20* (1-w)<2,

11 1 1
Oz, )=z, w)=2N"2w* (1—0)z >2w* (1—w),

hence (10) is valid;
00 +0,0—F=2y F(1—y){1+20—ay " 2 (1—y))
=9y F (1— )L+ 20— 2% T (1 —a))
=2y T (1—y)(1+21—N)>0,
Oot Oy —f =202y +4y T +43y~ T (1—y)

1
>2x 2w+4i0” 2 (1—w)
=2z w+4ANz %0
=2(14+22N)z 2w >0,

hence (11), (12) are valid.
Along the arc o(x) we have

-
|
&

Az, o(x))—o(x) =2N%w%(1 —w)% —4N—%wT —

and hence
13) Az, o(x))>o(x) (0<zo0).
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Let {as} {8s} be any sequence such that

0<an<%; ,Bn=5an,
lim &, =0.

n—oo

For the moment we will fix # and define a continuous fuction w.(z) by

’ ,Bn (anéxécn),
(/)n(l‘)z
(@) (cn=x<00),

where ¢, (>a,) is uniquely determined by the condition w(cy)= 3.
For an arbitrary «(>a,+1) we will define subsets in the (z,y, 2)-space as
follows:

So={(z,v,2); an=ax<u, y=1, z=0},

Si={(w,9,2); v=an, ole)<y<l, Qz,y)<z<z,y)},
Se={(z,v,2); an=a<u, o(x)=y<l, z=0x,y)},
Ss={(z,1,2); an=x<u, y=ou(z), Xz,y)<z<z,)},
Si={(z,9,2); an=x<u, wufr)sy<l, z2=Lz,y)},
Si=((r,9,2); an=z<u, y=1, Az, y)<z=0z,y)},
Ss={(x,v,2); x=u, o (2)=y=1, Qz,y)=2=2z,y)}.

@ is the compact domain in the (z,y, z)-space surrounded by S,, Si,---,Ss. Hence,
6

the boundary $=69 of @ is US;, which is a disjoint sum. Let & be the set
i=0

of all continuous functions satisfying (4), which are defined on compact intervals
and the graphs of which are contained in .

We shall show that the set & forms a right Kneser family. To see this we
have only to confirm the condition (F). Since the equation (4) has the uniqueness
property for an initial value problem, we have that

SeC B
The inequality (11) shows that
Sic @
and (12), (13) show that
S:USsC BN &
It is clear that

SiCc B NP, SsUSsC B
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Hence, we have that
_@+=S1USZUS:3, -@'ﬁ':SOJ
QT=S4U55USG, —@ﬂ:\gl

and @B+ is an open subset of . Consequently, it was shown that & is a right
Kneser family.
The set

& =l(tn,  2); et i) = 2= Aetn, ) =10)
is a continuum in &), so that, by Theorem 0
Clu)=Z*(&€)N(SeUSsU S5 U Ss)
is a continuum in & (hence, in $). We have by Lemma 1 that
ZH(E)NSsxg.

On the other hand, we have by the uniqueness property of (4) for an initial value
problem that

FH(EINSy=¢.

The point (ag, fa, 2an, fr)) belongs to Z'(&)NS, Therefore, we have by the
connectedness of C(x) that Z*(&£)NSe is a nonempty compact set and therefore
the set

Hu)={Pe & ; Z'(P)NSs>¢}
is also a nonempty compact set. Furthermore, we have by the property of & that
Hu)C Hlus) if i >u,.
Hence, the family
{Hw); u>an+1}
has a finite intersection property and hence
Hy=N{Hw); u>an+1}

is nonvoid. Consequently, if (an, fz, 72)€Hn, then the solution ya(x) of (4) deter-
mined by

y(a'n>=,8ny y(an)zTn
exists on a,<x<co and satisfies yn(co)=1.

For each a>0 the sequences {y.(x)} and {ya.(x)} are equi-bounded on [a.co).
By using Ascoli-Arzela’s theorem and an usual diagonalization arguement we can
choose a subsequence {y.,(x)} which converges uniformly to a continuous function
y(x) on (0,00). This function y(x) can be shown to satisfy (4), (5) and (6).
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3. More precise estimates for 2

In order to have a more precise estimate for 2 we shall construct £2(x,vy) by
the following form

XNz, y) =2-ry7}7(1 —y)uly),

where #(y) is a continuous function on 0=y =1 such that the following conditions
are satisfied :

(i) C' and piecewise C? on 0<y<1,
(il) 1=u=2, w'=0 on 0<y<],
u(1)=1, 1;_r§11 1=y’ (y)=0,
(i) ¢(¥)>0 on 0<y<l1,
(iv) there exists a constant N such that N>/%(y) on 0=y =1 and —%<N<0.

Here, v, g, 2 are defined as follows:

o(y)=1+ 1—_Fz(u—1)—2yu’ (=1 from (ii)),
I St A
g(?l)“?_y‘ Z/( " + v ),
1 ’

(y)=

ol 320

In this chapter Q(x,v), w(z) are chosen as follows:

a(v)

Aw, y)=4z"1y,

and y=w(x) is defined implicitly by

7 (142
=Tt

Differentiation of this relation with respect to y gives

1

dr __y* [0 \_ }
Zxdy_(l—y)u v (N=h(y))+1}.
Hence, we have
dx
%>0
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and from (ii)
(I-yp() -0 as y - 1.
Consequently, y=w(x) is surely a continuous function defined for 0<<x<co and
\ y—>1 as x — oo,
Then, for A>N, 2, 2, w shall be shown to satisfy (10"), (11), (12), (13), where
(109 2@, y)<Q(w,y), Az,y)<4
(In Lemma 1, if y=12, then y(x)=4).
N

«/% w—%(l —w)u

(10/) Q(JU, Z/)—ég(m, w)zz_‘m‘—

1 1
<dwt (1-w)? <4,
ViZavs -

w4 A/1+—
U
>Nz, y),
_1 24 3
1) 0ot 20— f=2y z<1—y>u{1+7—x2y 2(1—y>v}

1
>2y 2 (1—yu

2N _3
L2~ )y H L]

:O’
1
(12) 2.4 2,9-f=122"y+8y2 +42'y__;_(1 —)
~12 %wm%ﬂ —w)
w? 14—
u
4o T (1—a) (——%7\]—~+2) >0,
1=
(13) Qz, o(x) )>o(x)
L 1
&2 2oy 2 (l—y)u> T (y=w(x))
ax
dy
J Bl
ar . y?
& 22 " > T—pu
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).
v

& (N—=h(y))+1>1

&= N>h(y), giy)>0 and »=1 (by (ii), (iii) and (iv)).

If we can construct such #, we have by the proof quitely similar to that of
Theorem 1/ that for 2>>N (1) has a continuous solution satisfying (2), (3).
For example, if

1
w(y)=1+0.181—)7 ,

then we have N=—0.1962. Furthermore, we have N=—0.19880 if «(y) is defined
as follows:

w(y)=uy) for tel; (i=1,2,.-,10),

where
#,(y)=1.192803 —0.043576y —0.018938y* —0.010436y° —0.011921¢*,
ux(y)=10(y)+0.000128(y —0.2)* —0.012599(y —0.2)*,
us(y) =us(y)+0.0010388(y —0.32)* —0.0222989%(y —0.32)%,
us(y) =us(y) —0.0000747(y —0.44)*—0.0409591(y —0.44)*,
us(y) =u.y)+0.0019263(y —0.52)*—0.080957(y —0.52)*,
ue(y) =us(y)+0.0064752(y —0.6)* —0.193242(y —0.6)",
ur(y)=ue(y)+0.0054272(y —0.68)* —0.431317(y —0.68)%,
us(y)=ury)+0.0015922(y —0.74)*—0.825141(y —0.74)*,
us(y) =u10(y) +a(y—0.78)*+b(y—0.78) +c,
#10(y) =1+40.192(1 —y?*-087)0-2885-0.008y
c=us(0.78)—u1,(0.78), b=us'(0.78)—2,'(0.78), a=0b*/4c,
a=—2¢/b=0.866--

and

1,=[0,0.2), [,=[0.2,0.32), 1,=[0.32,0.44), I,=[0.44,0.52),
1;=[0.52,0.6), [,=[0.6,0.68), [;=[0.68,0.74), 1;=[0.74,0.78),
[9:[0.78, a), 1102[0',1].
Remark. Professor M. Iwano (1975) pointed out that the solution thus con-
structed in our paper is not of algebraic type (which means that z’(f)—1 tends to

zero with the order of a certain negative power of ¢ as t—co). Hence, from a
result of P. HARTMAN (1964) the solution is of exponential type (which means
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that 2’(#)—1 tends to zero exponentialy as #—oo). Consequently, from results of
P. HartMAN (1964) and R. IcrLiscu and F. Kemnitz (1955) we seem to have all
solutions of (1) satisfying (2), (3) for 2> —0.19880.

Our consideration to this problem is still unsatisfactory. Further precise
analysis is our forthcoming problem.
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