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ANALYTIC WEAKLY STATIONARY PROCESSES

TAaTsuo KawaTa

Dept. of Mathematics, Keio University, Yokohama, 223, Japan

(Received Apr. 16, 1975)

ABSTRACT

Some basic results on weakly stationary processes which are mean analytic at the
origin, on a half-plane or the entire complex plane, are given.

1. Introduction

Let X (f, w), —co<t<oo be a stochastic process of the second order, that is, a
process with FA|X (¢, w)|?<oo, —oo<f<co. If there is a stochastic process Y (¢, w)
of the second order such that E|[X ({44, 0)—X (& w)l/h—Y (¢, w)|?>—0 as 2—0, for a
t, then X (¢, w) is called mean differentiable at ¢ and Y (f, w) the mean derivative.
We denote it simply by X’(¢, w). The mean derivative X (¢, w) of the xn-th order
of X(¢,w) is defined in an obvious way.

Suppose that X(#,w) has the mean derivatives of all orders at #=#. If the
Taylor series

ZV_‘;OX(H)UO, a))g;l;—o)n (1 1)

converges in quadratic mean to X (¢, w) in {f—2,|<d for some >0, then X (¢, w) is
called mean analytic at ¢=#. (BarLvarv [4]). This definition is equivalent to the
following one. X(f, ) is mean analytic at ¢=¢,, if there is a random function
Xi(z,w) defined in some neighbourhood D of #, in the complex plane, which is mean
analytic in D, that is [X(z+£4, w)—Xi(z, )]/h converges in quadratic mean as 42—0
to a random function Xj(z, w) for each zeD and is such that X,({, w)=X (¢, ») with
probability one for each real ¢ contained in D.

In this definition if the mean analyticity in D of Xi(z, w) is replaced by the
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almost sure analyticity in D, namely if Xi(z, w) is analytic in D as a function of
a complex variable z with probability one, then X (¢, w) is called almost surely
analytic at ¢=t¢,.

We are, in this paper, concerned with weakly stationary processes and give
some rather basic properties of them when they are analytic in the above sense.

2. Some known results

Lokve [6] studied the mean analyticity of a stochastic process of the second
order and gave basic results one of which takes the following form in the case of
a weakly stationary process.

I. In order that a weakly stationary process is everywhere mean analytic if
and only if its covaviance function is analytic at the origin.

LotvE [6] also gave a condition for almost sure analyticity for a second order
process. Later BALYAEV [4] improved the result. BALYAEV’s theorem turns out
to be the following theorem for a weakly stationary process.

II. If a weakly stationary process has the covariance function analytic at the
ovigin, then the process is almost surely analytic at the ovigin.

Hence in view of the above result, this yields to: If a weakly stationary
process is mean analytic at the origin, then it is almost surely analytic at the
origin.

As a matter of fact, this is rather a special case of a more general theorem
which states:

IIl. If a random function f(z,w) with finite second moment for each zeD, D
being a domain in the complex plane, is mean analytic in D, then it is almost
surely analytic in D, that is there is a random function fi(z, ®) which is analytic
in D as a function of z with probability one and is such that fi(z, w)=f(z, 0) with
probability one for each zeD.

This is included in BALYAEV [4] in the local form and was shown by ARNOLD [2].

3. Strip of mean analyticity

We assume throughout in this paper that X({ w), —oco<t<oo, is a weakly
stationary process with EX (I, »)=0, —oco<¢<co and the convariance function

o(w)=EX (t+u, 0)X (t, @)

" emar@. (3.1)

X (¢, ») admits the representation

o0

X, w>=S (2, o), (3.2)
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where &(S, ), S being a Borel set, is a random measure with
EE(S, w)=0. (3.2)
EIE(S, o)|*=F(S), (3.4)

F(S) being a bounded measure generated by F(2).
We first of all mention the following theorem which is well known in the
theory of analytic characteristic functions (Lukacs [7], KAWATA [5D).

Theorem 3.1. If the covariance function (3.1) of a weakly stationaly process
is analytic at u=0, then theve is a strip

—a<Imz<p, a, 8>0 (3.5)

such that there exists a function p(z) which is analytic in the strip (3.5), is identical
with p(u) on the real axis and has the representation

o(z)= Sw e dF (7) (3.6)
there, where -

Sw eVdF()<oo, for  —a<y<p. 3.7

—ia and i are singularities of p(2).
Either « or 3, or the both may be infinite. The strip (3.5) is called the strip
of analyticity of o(x). Corresponding to this theorem, we have

Theorem 3.2. If a weakly stationary process X(t, w) with representation (3.2)
is mean analytic at +=0, then there ave a stvip

—a;<Im z2<f, alyﬁ]/\o 3.8)

and a random function Xi(z, w) which is mean analytic in (3.8), has the vepresenta-
tion

Xz, w)=S eiE(d, o) (3.9)
and is identical with X (¢, w) with probability one for each real z=t, and Xi(z, w) is
not mean analytic at z= —ia;, 2=1if:.

The proof is carried out in a way similar to that of Theorem 3.1 in the
following manner.

Consider

Yz, 0)= Swemadz, ) (3.10)

and suppose that the integral on the right hand side exists at z=z,=¢,+iy;, or
e Ve L*(dF). Then obviously e ¥*eL*dF) for y>y, and hence (3.10) exists for
all z with Im z>y,. Therefore there should exist —a; such that the integral in
(3.10) exists for all z with Im z> —a,, and does not exist for any z with Im z<—a,.
a; should be nonnegative since F(1) is of bounded variation over (—oo, o).
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It is easy to show that Y,(z, ) is differentiable in mean arbitrary number of
times and

Y (2, w)=i" S e RE(dA, ) (3.11)

for Im z> —«;. Moreover Yi(z,0) is mean analytic in Im z>>—a;, because as we
easily verify,

Z; (z "> Y M(z, 0)— Yi(z, o)

12

N PR
% ,ﬁl) 2y —eten| e miaF @)

0 ln=0
for any z, z such that y,=Imz, > —a,, |2—2z|<y:+«;, and the right hand side
converges to zero as N—oco.

It is obvious that Y,(z, w) is not mean analytic at z= —ia,.
In a similar way, we see that, for

Yoz, 0)= SO eHE(dR, w), (3.12)

there exists a 5,=0 such that Yau(z,®) is mean analytic in Im z<(35, and is not at
z=1j.

Now X (¢, w) is supposed to be mean analytic at /=0 and then it is easy to see
that the both Yi(z,0) and Y,(z, ) are mean analytic at z=0. Hence «,>0, 3,>0
and Xi(z,w)=Y.(z2, )+ Y:(2,w) is mean analytic in —a;>Imz>pg. Obviously
Xi(t,w)=X (¢, ) holds with probability one for each real £ This concludes the
proof.

The strip (3.8) is called the strip of mean analitycity of X (¢, ).

oo

In view of the equivalence of existence of the integrals S e} dF(2) and
S ¢*?2(d1, ) where Im z=y, we may conclude

1 1

—=a, 51 :f?ﬁ, (3.13)
where a, 8 are those in Theorem 3. 1.
Because of III in 1 we have

Corollary 3.1. If a weakly stationary process X (t, w) is mean analytic at the
ovigin, then there is a vandom function X,(z, w) which is analytic (as a function of z)
with probability one in the strip of mean analyticity and is identical with X (t, w) on
—oco<t< oo with probability one for each .

The domain of almost sure analyticity of a weakly stationary process is not
smaller and actually may be larger than the strip of mean analyticity, as the
following example shows.

Let the probability space be [0,1] in which Lebesgue measurable sets are con-
sidered and the probability is taken to be the Lebesgue measure. Define for we{0, 1],
n=1,2....
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En(w)= —2"20""¥02, for 2-7"—2-D <27,
:2nlzeﬂwo/’ fOI' 2—n<w<2—n+2—(n+1)’
=0, elsewhere,

yo being any fixed positive number. Let
Xz o)=Y Eulwpeins (3.14)
n=1

which is weakly startionary for z=¢. {&.(w)} is a sequence of orthogonal random
variables. Since

p(u): Z e-"?/oei"u
n=1
o(2) has the strip of analyticity, Imz>—y, and X(¢, @) has the strip of mean
analyticity Im z>>—y,/2. On the other hand for each 0<w<1, &,(w)=0 for suffici-
ently large » and hence X (z, w) is a trigonometric polynominal for each . Hence
it is analytic for each we(0,1), in the whole complex plane.

4. Boundary of an analytic random function

Let X(#,w) be a weakly stationary process as in 3. If there is a random
function ¢(z,w) which is mean analytic in the half-plane Im z>0 such that

Elo(z, )— X (¢, w)|? — 0 as y — 0+

for every —oco<t<oco, where z=t+iy, then X (¢, w) is called the boundary of
¢(z, w), or the boundary process of a mean analytic random function.

Suppose that the spectral distribution function F'(1) of X (¢, w) is constant for
A<0. Then as we saw in the proof of Theorem 3.1, X (f,w) is the boundary of

Xi(z, w)=Smei“E(dl, w). In fact F|X(z, w)— X, w)lZ:Sj e v*—1|dF (2) converges to
0

zero as y — 0+. We write Xi(z,w) for ¢(z, w) without confusion.
Since for every x and every y>0

L%

by a theorem analogous to the FuBiNI-ToNELLI Theorem (See Rozanov [8] p. 12),
we have

Y it
(t—xz)?+y?

12
2a’F(IZ)] dt< oo,

[ m—
TSO[S—W (t—u)?+y? e du |E(d2, o)

= igm 7 — Smemé(dl, )
T Jooo - Y 0
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for y >0, —co<¢<C oo, namely

1 Yy N
T S_w(t—_WX(M,w)du—So pitr yls(dl, w)

:S eE(dR, o), 2=t+iy. 4.2

0

Hence we have shown

Theorem 4.1. If the spectral distribution function F(X) of a weakly stationary

process X (¢, w) is constant for i<0, then X(t, ) is the boundary of the random
Sunction

X(z,0)= Swei“é(dl, ) 4.3)

which is mean analytic in Im 2>0 and is represented by the Poisson integral

[

Y

. m X(%, w)d% (4 4)

X(z,0)= %S

The converse of this theorem is true in the following sense.

Theorem 4.2. If a weakly stationary process X(t,w) is the boundary of a
random function X (z,w) which is mean analytic in the upper half-plane and is
represenied by the Poisson integral (4.4) of X (¢, w), then F(2) is constant for 2<0.

We also have the following seemingly more general theorem.

Theorem 4.3. I/ a weakly stationary process X(t,w) is the boundary of a
vandom function X (z,w) which is mean analytic in the upper half-plane with
E| X (z,0)P bounded in Im 2>0, then F(2) is constant for 2<0.

We note that if (4.4) is true, then E|X(z, w)|? is bounded in Im z>0, because

the variance of the Poisson integral in (4.4) is easily seen to be S e dF (7).
0
We shall prove Theorem 4. 3. Consider

EX (2, 0)X (0, 0)=p(2)

which is seen to be analytic in Imz>0 from the analyticity of X(z, w). Since
X(z, w) converges to X({, w) in quadratic mean as y — 0+ (z=¢+1y), p(z) converges

to p(t) as y—0+. Hence g(z)zp(z)—Smei“dF (4) is analytic in Im 2>0 and con-
0

0 0
verges to S e*dF(2) as y—0. On the other hand, gl(z)zg e dF (2) is analytic

0
in Imz<0 and converges to S ¢ dF (1) as y— 0—. Therefore ¢,(z) is analyti-

cally continued to the upper half-plane and consequently analytic in the whole
plane.

Now from the assumption that F|X(z o)|? is bounded in Imz>0, p(z) is
bounded in Imz>0 and then g¢(z) is bounded in Im z>0. Hence g¢.(2) is, in the
upper half-plane, bounded. Note that ¢i(z) is bounded in Imz=y from the form
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of the integral. Therefore g,(z) should be a constant for all z, which implies that

[}
S e dF (%) is constant and this in turn implies that F (1) is constant for i<0.

5. Order of an entire weakly stationary process

Suppose that a weakly stationary process X (f, w) is mean analytic in the whole
plane, that is, there is a random function X,(z,w) which is mean analytic in the
whole plane such that X (4, ), Xi(f,w) with probability one for each real f. We
write Xi(z, w) as before X (z, w). Then we should have

Sw eV dF (1) <oo for —oco<y< 0o, 5.1

F(2) being the spectral distribution function of X (¢, w). Let us call
p(z):S e#dF(2), z=t+1iy, the entire covariance function of X (¢, w).

Let us put, for >0
Mou(r)= max E|X(z,0)* (5.2
which is equal to

maxgw e IGR ()

lzlsr
=max [o(2ir), o —2ir)]

=max |p(z)].

{z|=2r

We define the mean order p, of X(z, 0) by

log My,
pm=limsup 28108 Mn().

oo log r ®.3)

Or i no more than the order of p(z2).
From the known theorem on analytic characteristic functions we have that if
the spectral distribution F(4) is nondegenerate,

om=1. 5.9
From III in 1, X (2, ) is almost surely entire. We may then define

M7, w)= max | X (2, w)| (5.5)

|z
and
P log log M, (7, )

g 7 (5.6)

oo{w)=limsu
with probability one. We call p.(w) the almost sure order of X (z,w).
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ARNOLD [3] has extensively studied on the order p(w) of an entire random
power series f(z, w)= }Of; a,(@)2" (that is, an entire power series with probability
n=0

one). The order p(w) is given by (5.6) with M,(r,») in which X(z, @) is replaced
by f(z,w) and is also given in the form

L nlogn
olw)= lu;ﬁ;lp Tog/la. ()]} (5.7

One of ArNoLD’s results [3] (Satz 1) is that, for every =0

Po(w)=x)=1 (5.8)
1S equivalent to
P (limsup|ap(@)|=n""“)=0 (5.9)

Sfor all ¢>0.
From this , Borel-Cantelli lemma gives us that if

f P([an(w)|=n™@9) oo (5.10)
n=1

for all ¢>0, then (5.8) is true.
Applying this result to a weakly stationary process, we have the following
theorem.

Theorem 5.1. If the spectral distrvibution function F(2) of a mean entire weakly
stationary process satisfies that, for x=0

o 1 o
2N/ (T4 ) 2n . 1
gy i S_wz dF ()< oo (5.11)
for all ¢>0, then
Ppyw)=2)=1. (5.12)
In fact, if 3] @.(w)z" is the power series expansion of X(z,w), then

an(0)=X® 0, w)[n!=0"In !)S A"¢(dA, ») and by Chebyshev ineqality,

P(‘an(w)l;n—n/(a&;,enénzn/(ms)E1an(w)|2:n2n/(xr5)‘(";'!)TSf ZanF(X)

Hence from (5.11), (5.10) follows.
From Theorem 5.1 we have, taking 1 for z, the following theorem.

Theorem 5.2. If the spectral distribution F (1) of a mean entire weakly statio-
nary process satisfies that

Sm PndF (1) =Crn (5.13)

for some sequence {A4,} with A,=0) and some constant C, then

P(pu(w)=<1)=1. (5.14)
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Actually if (5.13) holds, then the series in (5.11) is, because of STIRLING formula,
not larger than

C, T n2/ 1o -@nib g2ngyenn
n=1

for some ¢, — 0, C, being a constant and this is

e -_2:"7”“
éCZ n-le?ny <t n

n=1

which is convergent for every ¢>0 and this proves the theorem.
We remark in connection with (5.13), that for every entire weakly stationary
process,

Sm 2dF () = o(n*™) (5.15)

as # —»oo. In fact, we have, choosing any ¢, — 0, the left hand side of (5.15) is

S 2dF () + S 2#dF ()
|Z]gsnn 12| <ney
1) 2n

Z 2n o0) — —00
sel | T gy PO e (o)~ F(—eo)

=(2n) IS e*dF () +n*"o(1)

12| Zney
=(2n) ! O1)+o(n*")=0(n>")

because of (5.1) and the STIRLING formula.
As a particular case of Theorem 5.2 a band limited weakly stationary process
has an almost sure order not greater than one.

6. Relationship between p, and o.(w)
For a mean entire weakly stationary process, we shall give the following result.
Theorem 6. 1.
P(pa(0)=pm)=1, )6. 1)

where pn and pow) ave the mean ovder and the almost sure order respectively of
a given mean entive weakly stationary process.

Proof. Suppose without loss of generality that e,<co. From Theorem 5.1.
it is sufficient to show that

o 1 ==
20/ (Pt &) 2n -
" ) A< (6.2
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for any ¢>0, where F'(2) is the spectral distribution function as before.
Take up any ¢,>>0 such that 0<e;<le. Since the order of an entire (nonrandom)

power series Y, a,2" is given by limsup zlog »/(log 1/|a,]), pn is given by
0 n—rc0

nlogn 6.3)

on=1imSup log|n /o™ (0)]

Hence there is an #, such that for =,

n! oty
0™ (0) >n v,
that is
nl n e ‘ Sw J"dF(z)l .
Therefore

i 72 Pt 1
(

> e S 2rdF ()

.
= 5 v

n=To (n !2) (2%) I (2%)~2n/(pm+51)

lIA

oo
C Y nentem +6) "1 (Pt =1>'1122n[1—<0m>flrljna/z,
n="ng

for some constant C and the last series obviously convergent. This proves the
theorem.
Finally we give

Theorem 6.2. For a nondegenevate mean entive Gaussian stationary process,

we have
P(palw)=pm)=1. (6.4)

Proof. Suppose first p,<co. From (5.2) and the following lines, and (5. 3), we
we have, for every ¢>0,

limsup max [p(2i7), p(—2ir)] exp (—7"m~*)

=limsup max <Sm e’ d F (%), Sm e*z”dF(Z)>exp (—7m—) (6.5)

T—00

=00, (6.6)

Write the maximum in (6.5) by Sw exp (0(r)2r2)dF (1), where 6(r) assumes the

values 1 or —1 depending on 7. )
It is sufficient to show that for any ¢>0 and a certain sequence {r;} tending
to infinity,
tim |X ()75, @)] exp (=) =co, 6.7)
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with probability one, where X (¢, w) is a given stationary Gaussian process.
Let {rx} be a sequence such that

exp[( —Zrk)”nz—‘]Sw exp (0(r)2r )dF (1) — oo, 6.8)

(ri— o). The existence of such an {r;} follows from (6.6).
In order to show (6.7) it is sufficient to prove

P g Q) {]S exp (0(rx)27x)E(dA, w)| >G exp (ry'm%), 1.0.})=1. 6.9)
The left hand side is equal to

im lim P( U {|S°_° exp (U(r)red)E(dd, )>G exp (rfm=)})

1
G—oon—co

=lim lim P(| Sw exp (0(rn)7nA)E(dA, w)| > G exp (,'m=9)).

G—oon—oo —

Since the integral in this expression depends on Gaussian distribution, the last
one is

L 1
lim lim —=—— e~V @y
G —oon—00 \/271'0'7,, 9| >>G exp (,»an_‘)

where

g, =F

Sw e TRE(dA, o)

ZZS ezﬂ(r")rnidF(z)

which is from (6.8)
=Gy exp (2ry)'m™),

G, being an arbitrarily large number when # is large. Then (6.10) is

e~y
1

lim limS
G—n n—co Jju|>G exp (r 'm0,

L 1
=lim lim—= S e *"du,
G—oc0 n—oo 27T lui>d ,

where J,=G/G,? exp (r,"m°) exp (—(2r,)'=~¢). Since J, —> 0 as # — co, the last limit
is 1. This proves (6.9). Hence the theorem is proved. The case pn=occ is also
shown in a similar way if p,—e¢ is replaced by an arbitrarily large number.

REFERENCES

[1] ArnoLp, L., Uber die Konvergenz einer zufilligen Potenzreihe, Jour. reine u. angew.
Math. 222, 79-112 (1966).

85



[2]
£31

[4]
[5]
(6]
[7]

TaTsuo KawaTa

ArnoLD, L., Eine Bemerkung zur Quadratmittel Funktionentheorie, Arch. Math. 17,
544-547 (1966).

, Wachstumeigenschaften zufilliger ganze Funktionen, Zeit. Wahrsch. 5,
336-347 (1966).
BaLyaev, Yu. K., Analytic random processes, Theory of prob. appl. 4, 402-409 (1959).
Kawara, T., Fourier analysis in probability theory, 1972, Academic Press, New York.
Lukacs, E., Characteristic functions, 2nd ed. Griffin, London, 1970.
Rozanov, Yu. A., Stationary random processes. English translation, Holden-Day,
San Francisco, Cambridge, London, Amsterdam, 1963.

86



