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KEIO ENGINEERING REPORTS 
VOL. 28, NO. 8, pp. 75-86, 1975 

ANALYTIC WEAKLY STATIONARY PROCESSES 

TATSUO KAWATA 

Dept. of Mathematics, Keio University, Yokohama, 223, Japan 

(Received Apr. 16, 1975) 

ABSTRACT 

Some basic results on weakly stationary processes which are mean analytic at the 
origin, on a half-plane or the entire complex plane, are given. 

1. Introduction 

Let X(t, w), -co<t<co be a stochastic process of the second order, that is, a 
process with E[X(t, w)f 2 <co, -co<t<co. If there is a stochastic process Y(t, w) 
of the second order such that E[[X(t+h,w)-X(t,w)]/h- Y(t, w)[ 2---+0 as h---+0, for a 
t, then X(t, w) is called mean differentiable at t and Y(t, w) the mean derivative. 
We denote it simply by X'(t, w). The mean derivative xcn)(t, w) of the n-th order 
of X(t, w) is defined in an obvious way. 

Suppose that X(t, w) has the mean derivatives of all orders at t=to. If the 
Taylor series 

(1. 1) 

converges in quadratic mean to X(t, w) in it-to[ <o for some o>O, then X(t, w) is 
called mean analytic at t=to. (BALYAEV [4]). This definition is equivalent to the 
following one. X(t, w) is mean analytic at t=t0 , if there is a random function 
X 1(z, w) defined in some neighbourhood D of to in the complex plane, which is mean 
analytic in D, that is [X1Cz+h, w)-X1(z, w)]/h converges in quadratic mean as h---+0 
to a random function X;(z, w) for each zED and is such that X1(t, w)=X(t, w) with 
probability one for each real t contained in D. 

In this definition if the mean analyticity in D of X1(z, w) is replaced by the 
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almost sure analyticity in D, namely if X1(z, w) is analytic in D as a function of 
a complex variable z with probability one, then X (t, w) is called almost surely 
analytic at t =to. 

We are, in this paper, concerned with weakly stationary processes and give 
some rather basic properties of them when they are analytic in the above sense. 

2. Some known results 

LoE.vE [6] studied the mean analyticity of a stochastic process of the second 
order and gave basic results one of which takes the following form in the case of 
a weakly stationary process. 

I. In order that a weakly stationary process is everywhere mean analytic if 
and only if its covariance function is analytic at the origin. 

LoEVE [6] also gave a condition for almost sure analyticity for a second order 
process. Later BAL YAEV [4] improved the result. BAL YAEv's theorem turns out 
to be the following theorem for a weakly stationary process. 

II. If a weakly stationary process has the covariance function analytzc at the 
origin, then the process is almost surely analytic at the origin. 

Hence in view of the above result, this yields to: If a weakly stationary 
process is mean analytic at the origin, then it is almost surely analytic at the 
origin. 

As a matter of fact, this is rather a special case of a more general theorem 
which states : 

III. If a random function f(z, w) with finite second moment for each zED, D 
being a domain in the complex plane, is mean analytic in D, then it is almost 
surely analytic in D, that is there is a random function f1(z, w) which is analytic 
in D as a function of z with probability one and is such that f1(z, w)=f(z, w) with 
probability one for each zED. 

This is included in BAL Y AEV [ 4] in the local form and was shown by ARNOLD [2]. 

3. Strip of mean analyticity 

We assume throughout in this paper that X(t, w), -oo<t<co, is a weakly 
stationary process with EX(t, w)=O, -co<t<co and the convariance function 

p(u)=EX(t+u, w)X(t, w) 

= ~~ooeiu<dF(A). 

X(t, w) admits the representation 
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where o;(S, w), S being a Borel set, is a random measure with 

Eo;(S, w)=O. 

E[o;(S, w)[ 2 =F(S), 

F (S) being a bounded measure generated by F (A). 

(3. 2) 

(3. 4) 

We first of all mention the following theorem which is well known in the 
theory of analytic characteristic functions (LuKACS [7], KA w AT A [5]). 

Theorem 3.1. If the covariance function (3. 1) of a weakly stationaly process 
is analytic at u= 0, then there is a strip 

-a<Im z<f3, a, (3>0 (3. 5) 

such that there exists a function p(z) which is analytic in the strip (3. 5), is identical 
with p(u) on the real axis and has the representation 

(3. 6) 

there, where 

for -a<y<f3. (3. 7) 

-ia and if3 are singularities of p(z). 
Either a or (3, or the both may he infinite. The strip (3. 5) is called the strip 

of analyticity of p(u). Corresponding to this theorem, we have 

Theorem 3. 2. lf a weakly stationary process X(t, w) with representation (3. 2) 
is mean analytic at t=O, then there are a strip 

(3. 8) 

and a random function X1(z, w) which is mean analytic in (3. 8), has the representa
tion 

(3. 9) 

and is identical with X(t, w) with probability one for each real z=t, and X1(z, w) is 
not mean analytic at z= -ia1, z=if31. 

The proof is carried out in a way similar to that of Theorem 3. 1 in the 
following manner. 

Consider 

(3. 10) 

and suppose that the integral on the right hand side exists at z=z1=t1 +iy1, or 
e-v1;.EL2(dF). Then obviously e-YJ.EL2(dF) for Y>Yl and hence (3. 10) exists for 
all z with Im z>Yl· Therefore there should exist -a1 such that the integral in 
(3.10) exists for all z with Im z> -a1, and does not exist for any z with Im z< -a1. 

a1 should be nonnegative since F (A) is of bounded variation over (-co, co). 
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It is easy to show that Y1(z, w) is differentiable in mean arbitrary number of 
times and 

(3. 11) 

for Im z> -al. Moreover Y1(z, w) is mean analytic in Im z> -a 11 because as we 
easily verify, 

forany z, z1 such that Y1=Imz1>-rx 11 lz-z1I<Y1+a 11 andtherighthandside 
converges to zero as N--+oo. 

It is obvious that Y1(z, w) is not mean analytic at z= -ia1. 
In a similar way, we see that, for 

Y2(z, w) =~~co eizl~(d)., w), (3. 12) 

there exists a j31 ;::o; 0 such that Y2(z, w) is mean analytic in Im z < 1S1 and is not at 
z=i,sl. 

Now X (t, w) is supposed to be mean analytic at t= 0 and then it is easy to see 
that the both Y1(z, w) and Y2(z, w) are mean analytic at z=O. Hence a1>0, p1>0 
and X1(z, w)= Y1(z, w)+ Y2(z, w) is mean analytic in -a1>Im z> 131. Obviously 
X1(t, w) =X(t, w) holds with probability one for each real t. This concludes the 
proof. 

The strip (3. 8) is called the strip of mean anality city of X (t, w ). 

In view of the equivalence of existence of the integrals ~:coe-zv•dF(J.) and 

~·"" ei•z;(dJ., w) where Im z=y, we may conclude 

(3. 13) 

where a, 13 are those in Theorem 3. 1. 
Because of III in 1 we have 

Corollary 3. 1. If a weakly stationary process X (t, w) is mean analytic at the 
origin, then there is a random function X2(z, w) which is analytic (as a function of z) 
with probability one in the strip of mean analyticity and is identical with X(t, w) on 
-oo<t<oo with probability one for each t. 

The domain of almost sure analyticity of a weakly stationary process is not 
smaller and actually may be larger than the strip of mean analyticity, as the 
following example shows. 

Let the probability space be [0, 1] in which Lebesgue measurable sets are con
sidered and the probability is taken to be the Lebesgue measure. Define for wE[O, 1], 
n=l,2 .... 
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for 2-n-2-Cn+l) <w<2-n, 

=0, elsewhere, 

Yo being any fixed positive number. Let 

00 

X (z, (!)) = .2: ~n((o)einz (3. 14) 
n=l 

which is weakly startionary for z=t. {~n(w)} is a sequence of orthogonal random 
variables. Since 

00 

p(U) = .2: e-nYoeinu 
n=l 

p(z) has the strip of analyticity, Im z> -y0 and X(t, w) has the strip of mean 
analyticity Im z> -y0/2. On the other hand for each 0<w<1, ~n(w)=O for suffici
ently large n and hence X(z, w) is a trigonometric polynominal for each w. Hence 
it is analytic for each wE(O, 1), in the whole complex plane. 

4. Boundary of an analytic random function 

Let X(t, w) be a weakly stationary process as in 3. If there is a random 
function <p(z, w) which is mean analytic in the half-plane Im z>O such that 

Eicp(z,w)-X(t,w)i 2 ---+ 0 as y --+ 0+ 

for every -oo<t<oo, where z=t+iy, then X(t, w) is called the boundary of 
cp(z, w), or the boundary process of a mean analytic random function. 

Suppose that the spectral distribution function F (J.) of X (t, w) is constant for 
J.<O. Then as we saw in the proof of Theorem 3.1, X(t, w) is the boundary of 

X 1(z, w)= ~: eiz'~(dJ., w). In fact E IX1(z, w)-X(t, w)l 2 = ~:!e-Y'-1!dF(A) converges to 

zero as y---+ 0+. We write X1(z, w) for cp(z, w) without confusion. 
Since for every x and every y > 0 

by a theorem analogous to the FuBINI-ToNELLI Theorem (See RozANOV [8] p. 12), 
we have 

_I_ roo[ roo ( - ~2 2 eiulduJ~(dJ., w) 
7r }o } -oo f U +Y 

=_!__roo du-( _ _]!__)2 2 looeiUl~(dA,W) 
Tr )_oo t-u +y }o 
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for y>O, -co<t<co, namely 

1 ~= y ~= -
2 2 

X(u, w)du= eitJ.-yl~(dJ.., w) 
rr -= (t-u) +y o 

z=t+iy. (4. 2) 

Hence we have shown 

Theorem 4. 1. If the spectral distribution function F ().) of a weakly stationary 
process X(t, w) is constant for J..<O, then X(t, w) is the boundary of the random 
function 

X(z,w)=~~ eizl~(dJ..,w) (4. 3) 

which is mean analytic in Im z>O and is represented by the Poisson integral 

1 ~= y X(z, w)=- (t )2 2 X(u, w)du. 
rr -= -u +y 

(4. 4) 

The converse of this theorem is true in the following sense. 

Theorem 4. 2. If a weakly stationary process X (t, w) is the boundary of a 
random function X(z, w) which is mean analytic in the upper half-plane and is 
represented by the Poisson integral (4. 4) of X(t, w), then F(J..) is constant for J..<O. 

We also have the following seemingly more general theorem. 

Theorem 4. 3. If a weakly stationary process X(t, w) is the boundary of a 
random function X(z, w) which is mean analytic in the upper half-plane with 
E 1 X (z, w) 1

2 bounded in Im z>O, then F(J..) is constant for J..<O. 
We note that if (4. 4) is true, then E IX(z, w)l 2 is bounded in Im z>O, because 

the variance of the Poisson integral in (4. 4) is easily seen to be ~~ e-2
Y

1dF(J..). 

We shall prove Theorem 4. 3. Consider 

EX(z, w)X(O, w)=p(z) 

which is seen to be analytic in Im z>O from the analyticity of X(z, w). Since 
X(z, w) converges to _X(t, w) in quadratic mean as y ~ 0+ (z=t+iy), p(z) converges 

to p(t) as y ~ 0+. Hence g(z)=p(z)- ~~ eiz'dF(J..) is analytic in Im z>O and con-

verges to ~~= eit'dF (J..) as y~O. On the other hand, g1(z) = ~~= eiz'dF (J..) is analytic 

in Im z<O and converges to ~~= eit'dF(J..) as y ~ 0-. Therefore g1(z) is analyti

cally continued to the upper half-plane and consequently analytic in the whole 
plane. 

Now from the assumption that E I X(z, w)l 2 is bounded in Im z>O, p(z) is 
bounded in Im z>O and then g(z) is bounded in Im z>O. Hence g1(z) is, in the 
upper half-plane, bounded. Note that g1(z) is bounded in Im z;;;;;.y from the form 
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of the integral. Therefore g1(z) should be a constant for all z, which implies that 

~~ 00 eit).dF(J.) is constant and this in turn implies that F(J.) is constant for J.<O. 

5. Order of an entire weakly stationary process 

Suppose that a weakly stationary process X(t, w) is mean analytic in the whole 
plane, that is, there is a random function X 1(z, w) which is mean analytic in the 
whole plane such that X(t, w), X1(t, w) with probability one for each real t. We 
write X1(z, w) as before X(z, w). Then we should have 

for 

F (J.) being the spectral distribution function of X (t, w ). Let us call 

p(z)= ~:00 eiz).dF(J.), z=t+iy, the entire covariance function of X(t, w). 

Let us put, for r> 0 

which is equal to 

Mm(r)=max E jX(z, w)j 2 

lzl~r 

=max [p(2ir), p( -2ir)] 

=max jp(z)j. 
lzl =2r 

We define the mean order Pm of X(z, w) by 

1
. log log Mm(r) 

Pm= lffiSUp l . 
r-oo og r 

Pm is no more than the order of p(z). 

(5. 1) 

(5. 2) 

(5. 3) 

From the known theorem on analytic characteristic functions we have that if 
the spectral distribution F (J.) is nondegenerate, 

Pm~l. (5. 4) 

From III in 1, X(z, w) is almost surely entire. We may then define 

Ma(r, w)= max jX(z, w)j (5. 5) 
lzl =r 

and 

( ) 1
. log log Ma(r, w) 

PaW = lmSUp l 
r-oo og r 

(5. 6) 

with probability one. We call Pa(w) the almost sure order of X(z, w). 
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ARNOLD [3] has extensively studied on the order p(w) of an entire random 
CXJ 

power series f (z, w) = I: an(w )zn (that is, an entire power series with probability 
n=O 

one). The order p(w) is given by (5. 6) with Ma(r, w) in which X(z, w) is replaced 
by f(z, w) and is also given in the form 

. nlogn 
p(o1)=hmsup 1 (1/l ( )I)' 

n·-C0 og an (I) 

(5. 7) 

One of ARNOLD's results [3] (Satz 1) is that, for every .r~O 

P(p(w)~x)=1 (5. 8) 

is equivalent to 

(5. 9) 

for all c>O. 
From this , Borel-Cantelli lemma gives us that if 

I: P([an(w)J~n-n,cx"'))<oo (5. 10) 
n=l 

for all c>O, then (5. 8) is true. 
Applying this result to a weakly stationary process, we have the following 

theorem. 

Theorem 5.1. If the spectral distribution function F(J.) of a mean entire weakly 
stationary process satisfies that, for x~O 

£ n2nlcxt') +,r= ).2ndF(J.)<oo 
n=l (n .) } -co 

for all c>O, then 

P(pa(w)~x)=l. 

In fact, if I: an(w)zn is the power series expansion of X(z, (u), then 

an(w) =XCn)(O, w)/n! =(injn !)~~oo ;.n~(dJ., w) and by Chebyshev ineqality, 

1 (co 
P(lan(w)l ~n-niCXt'))~n2nlcx" ') E Jan(w)J2 =n2nlcx "') (n1)2} -oo ).2ndF (J.): 

Hence from (5. 11), (5. 10) follows. 
From Theorem 5.1 we have, taking 1 for x, the following theorem. 

(5. 11) 

(5. 12) 

Theorem 5. 2. If the spectral distribution F (J.) of a mean entire weakly statio
nary process satisfies that 

(5.13) 

for some sequence {An} with An =O(n) and some constant C, then 

P(pa(w)~1) =1. (5.14) 
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Actually if (5. 13) holds, then the series in (5. 11) is, because of STIRLING formula, 
not larger than 

C
1 
I: n2n!(lt ')-(2nH)e2nn'nn 
n=l 

for some en-~ 0, cl being a constant and this is 

which is convergent for every s > 0 and this proves the theorem. 
We remark in connection with (5. 13), that for every entire weakly stationary 

process, 

(5.15) 

as n -----+ oo. In fact, we have, choosing any sn -----+ 0, the left hand side of (5. 15) is 

l oo i(2n 

~ (2n)! J 1 ~ 1 ~'nn ,t:o (2n)! dF(il.) + (nsn)
271

[F( oo)- F(- oo)] 

=(2n) !( e~dF(il.)+n2no(1) 
J Pl6;nsn 

because of (5. 1) and the STIRLING formula. 
As a particular case of Theorem 5. 2 a band limited weakly stationary process 

has an almost sure order not greater than one. 

6. Relationship between Pn and Pa(w) 

For a mean entire weakly stationary process, we shall give the following result. 

Theorem 6. 1. 

P(pa(w) ~Prn) = 1, )6. 1) 

where Pm and Pa(w) are the mean order and the almost sure order respectively of 
a given mean entire weakly stationary process. 

Proof. Suppose without loss of generality that Pm < oo. From Theorem 5.1. 
it is sufficient to show that 

= 1 ~= :l: n2n/ CPm t 'l __ 
1 2

_ i(2ndF (il.) < 00 
n=l (n .) -= 

(6. 2) 
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for any c.> 0, where F (2) is the spectral distribution function as before. 
Take up any c.1>0 such that O<c.1 <c.. Since the order of an entire (nonrandom) 

00 

power series I: anzn is given by limsup n log n/(log 1/lanl), Pm is given by 
0 n-oo 

. n log n 
Pm=hmsup-1-

1 

-,1 cn)(O)I" 
n-oo og n. p 

(6. 3) 

Hence there is an no such that for n ~no 

that is 

Therefore 

f; n2nlcPrnt') ~ loo J2ndF(2) 
n=no (n .) J -oo 

00 

~ C I: n2n[(Prn t') - 1-CPrn-t '1) - 1l22n[l-CPrn t 'I) - 1Jn-1/2' 

n=no 

for some constant C and the last series obviously convergent. This proves the 
theorem. 

Finally we give 

Theorem 6. 2. For a nondegenerate mean entire Gaussian stationary process, 
we have 

P(pa(w) = pm) =1. (6. 4) 

Proof. Suppose first Prn < oo. From (5. 2) and the following lines, and (5. 3), we 
we have, for every c.> 0, 

limsup max [p(2ir), p( -2ir)] exp (-rPm-') 
r~oo 

(6. 5) 

=oo. (6. 6) 

Write the maximum in (6. 5) by ~~00 exp (O(r)2r2)dF(2), where O(r) assumes the 

values 1 or -1 depending on r. 

It is sufficient to show that for any c.> 0 and a certain sequence {rk} tending 
to infinity, 

lim IX((o(rk)rk, w)l exp ( -r/rn-')=oo, (6. 7) 
k-oo 
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with probability one, where X(t, w) is a given stationary Gaussian process. 
Let {rk} be a sequence such that 

(rk--+ oo ). The existence of such an {rk} follows from (6. 6). 
In order to show (6. 7) it is sufficient to prove 

The left hand side is equal to 

1~~2~~ P(k~n {/ ~:oo exp (O(rk)rkA)~(dA, w)>G exp (r/m-•)}) 

~~~~~ P(J ~:oo exp (O(rn)YnA)~(dA, w)/ >G exp (rn"m-•)). 

(6. 8) 

(6. 9) 

Since the integral in this expression depends on Gaussian distribution, the last 
one is 

where 

an2 =E I ~:oo eo<rnlrn'~(dA, w) 1
2 = ~:oo e20 <rnlrn'dF(A) 

which is from (6. 8) 

G1 being an arbitrarily large number when n is large. Then (6. 10) is 

lim lim r e-U
2
/ 2du 

G-n n-oo J ju!>G exp (rnPm-•)an-l 

where fn=G/G/ 12 exp (rnPm-•) exp ( -(2rnYm-•). Since fn--+ 0 as n--+ oo, the last limit 
is 1. This proves (6. 9). Hence the theorem is proved. The case Pm = oo is also 
shown in a similar way if Pm -c, is replaced by an arbitrarily large number. 
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