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A NOTE ON LOCAL LIMIT THEOREMS 
FOR DENSITIES 

MAKOTO MAEJIMA 

Dept. of Mathematics, Keio University, Yokohama 223, Japan 

(Received Mar. 3, 1975) 

ABSTRACT 

The author shows some conditions on local limit theorems for densities of sums of 
independent random variables and gives a generalization of the renewal density theorem. 

1. Introduction 

Let {Xk, k=1, 2, · · ·} be a sequence of independent random variables with EXk=O 

and finite variances EXk2 =ak2
, which satisfies the Lindeberg condition. Set Sn= L:Z=tXk 

and sJ= L:Z=1ai. When the density of Snfsn exists, we write it Pn(x). We shall 
consider the conditions under which the local limit theorem for densities holds : 

lim sup x~IPn(x) -sb(x)l =0 ( 1) 
n-co x 

for 0;£[3;£2, where sb(x) =(2 rr)- 112exp( -x2/2). The local limit theorem of such a 
type was studied by SMITH (1953) for independent identically distributed random 
variables. We consider in this paper the case of independent, but not neces
sarily identically distributed random variables. Such a case has been studied by 
STATULYAVICHUS (1965) for p=O, and by SuRVILA (1964) for 0;£[3;£2 and others. 
In their conditions, however, the existence of the density qk(x) of Xk is proposed 
for all k, and even some boundness conditions on qk(x) are supposed. For example, 
the result due to SuRVILA is as follows: For the sequence {Xk} of independent 
random variables with EXk=O and finite variances EXk2 =ak2 which have the densi
ties qk(x), suppose that ( i) the Lindeberg condition is satisfied, ( ii) there exists a 
C1 such that sJ<C1n, and (iii) there exists a C2 such that for all k, qk(x)<C2• Then 
(1) holds for 0;£[3;£2. 
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In this paper we shall derive the conditions different from theirs, that is, the 
conditions not on the densities but on the characteristic functions. Further we 
shall remark on a generalization of the renewal density theorem in the renewal 
theory. 

We mention here the recent work of BAsu (197 4), who gave the local limit 
theorem (1) for (3?;_2, under the Lindeberg condition of order 1g and the smoothing 
subsequence condition due to SMITH (1953), as will be dicussed in the last section. 

2. A Theorem 

Denote the characteristic function of Xk by fk(t). Our result is 

Theorem 1. Let {Xk, k=1, 2, · · ·} be a sequence of independent random variables with 
EXk=O and finite variances EXk2 =ak2

, and suppose that 

( a ) {Xk} satisfies the Lindeberg condition, 
( b ) /"(t)ELI( -co, oo) for some J..l, 

( c ) for some c>O, there exists a sequence of positive constants {ck} such that 
for ltl ?;_c, lfk(t)l ~ck(c)~1, and 

( c1) sJ<C~~=1(1-ck2) for large n, C being a positive constant, 
( c2) II~= 1ck =o(n- 1 s;;- 1

) as n~oo. 
Then (1) holds for {3=0. If we add the condition 

( b') /~n(t)E£1( -co, oo), r=1, 2, 
we have (l) for 0~{3~2. 

The condition ( c ) may be satisfied under the condition of rather simple form ; 
for some c>O, there exists a c=c(c)<1 independent of k such that 1/k(t)l <c for 
It I ?;_c, and si <Cn for all n. 

Proof. Denoting the characteristic function of Sn/Sn by On(t), we have On(t) = 
II~=Jk(t/sn), and for large n with n?;_J..I, On(t)EL1( -co, oo), because of the condition (b). 

Hence the density Pn(x) of Sn/Sn exists and Pn(x) is given (2 rr)-~~:=e-itxOn(t)dt. 
Put the characteristic function of the standard normal density ¢(x) by O(t). O(t) is 
then integrable over (- oo, oo ). 

We first show the case of {3=0. We have, for a suitably fixed A>O, 

S~PIPn(x) -¢(x)l < ~:=IOn(t) -O(t)jdt 

= ~ lti:.A !On(t) -O(t)jdt+ ~ lti;;;;A jO(t)jdt 

+~A~ It I <•sn IOn(t) jdt+ ~It I ;;;;'sniOn(t) jdt 
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say, where s is the one stated in the condition (c). By the Lindeberg condition, 
II--+0 as n--+oo. Since fJ(t) is integrable, for any 7J>0, there exists an A(7J) such that 
lz<7J for A:::o;A(7])· 

In order to estimate /3, we use the well-known inequality relation due to 
CRAMER (1937, p. 26) which is stated as 

Lemma 1. lf f(t) is a characteristic function such that lf(t)l :c:;r-<1 for all Jtl ~R, 
then for ltl <R, Jf(t)J :c:;1-(1-r2)t2/8 R 2

• 

Note that this relation trivially holds for r=l. Thus the condition (c) implies 
that for ltl <s, 

( 2) 

where ak=(1-ck)/8s2
• Hence 

!3= ~A~itl<'•sn I nlfk(tfsn)[dt 

:c:; ~A~ it I :'e.•n exp{ ( -1/8 s 2s~) k~ (1-ci)t
2 
}dt 

< ( exp{ - t2 /8 s2C}dt, 
~A~Iti 

by the condition (cl). Thus we can make Is as small as we desire by choosing A 
sufficiently large. For !4, 

!4 =~it I ~•Hnlf.(t/sn) J·l J1 fk(t/sn)jdt 
k*" 

Since fit) ELI( -oo, oo) and rr;= 1Ck·Sn--+0 as n-~oo, !4--+0 as n--+oo. Therefore we 
conclude the statement for [3=0. 

Next we shall prove limn-.coSUPxxt9JPn(x) -¢(x)J =0 for 0<{3:c:;2. Clearly, it is 
sufficient to show the case of [3=2. 

Noticing that ff( ·) and ff'( ·) exist, we have 

fJ~'(t)=s;f t1 fj'(tfsn) kQ1 fk(tfsn) 
k*i 

+ i~ f/(tfsn) t
1 

fj(tfsn) }J
1 

fk(tfsn)] . 
i*i k*i*i 

Under the condition (b) and (b'), O~'(t)EL1( -oo, oo) for large n. Since 

(J~'(t)=- ~:ooeuxx2Pn(x)dx and fJ"(t)=- ~:""eitxx2¢(x)dx, we have 
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say. Hence, it suffices to prove that 1~0 as n~oo. We have 

where 

l1=( . IO~(t)-O"(t)jdt, 
Jiti</A 

l2= ( IO"(t)jdt, 
Jiti<?:A 

14= ( IO~'(t)ldt. 
Jitl<?:•.•n 

For 111 we use the following lemma due to SMITH (1953). 

Lemma 2. Let {gn(x)} be a sequence of densities with zero mean and unit variance 
and suppose that the sequence tends uniformly to a density function g(x) which has 
also zero mean and unit variance. If {¢n(t)} is the sequence of characteristic func
tions corresponding to {gn(x)} and ¢(t) is the characteristic function of g(x), then 
¢~'(t) tends to ¢"(t) as n~oo uniformly for t. 

By this lemma, under the Lindeberg condition, O~'(t)~O"(t) as n~oo uniformly 
in any finite interval of t, and 11~0, as n~oo. Since IO"(t)l = lt2 -11exp{ -t2/2} is 
integrable, for any 7J>0 there exists an A(1J) such that lz<1J for A~A(1J). 

Noticing that lff'(·)l~af and lff(t/sn)l~ltls; 1aL we have 

n 

IO~'(t)l ~(1+t2) max D fk(t/sn). 

Using (2), we have, for ltl <ssn, 

1;;;;j, i;;;;n k=l 
ki=ji=i 

I(}~' (t) I~ (1 + f2) exp{ ( -1/8 s2 s~) 
1 
:!J.ii~n ktl (1- c~)t2 } 

ki=ji=i 

Hence, the integrand of 13 is integrable so that 13 can be made as small as we 
desire for large n and for sufficiently large A. Further we consider 

O~'(t) =s;tf/'(t/sn) }J
1 

fk(tfsn) + fv(t/sn) 1~ fJ'(t/sn) }1 fk(t/sn) 
ki=v ji=v ki=ji=v 

n n 

+2f: (t/sn) L: fJ(t/sn) n fk(t/sn) 
j=l k=l 
ji=v ki=ji=v 

+fv(t/sn) itl f[(t/sn) 
1
t

1 
fJ(t/sn) kDl fk(t/sn)] 

ii=v ji=ii=v ki=ji=ii=v 

and note that If{(· )I ~ak. By the condition (c), for ltl ~ssn, 

n 

IO~'(t)l ~S;2 If:'(t/sn)l +s;2 lfv(t/sn)l L: a}· 
j=l 
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n 

+2 s;;2 lf/ (t/sn)l E ar 
j=l 

n 

max f1 ck 
l;'ii;j;'ii;n k=l 

k*i*" 

Since ('L/}= 1aj) 2 ;£ns~, and the Lindeberg condition implies s;l---+oo, we have 

~ ltl ~'sniO~' (t)jdt;£s;; 1 ~ lf/'(t)jdt+sn · l~j~~ JJ
1 

Ck · ~ lf"(t)jdt 
k*i*" 

+2n112
• 1~i~~ JJ

1 
ck· ~lf/(t)ldt 

k*i*" 

+nsn· l!!;.~;n kQl ck· ~ 1 f"(t)ldt, 
k*i*i*" 

and I4---+0 as n---+oo, because of the condition (b), (b') and (c2). The theorem thus 
is proved. 

3. A Renewal Density Theorem 

Cox and SMITH (1953) showed the renewal density theorem from the local limit 
theorems. We state their result as a lemma. 

Lemma 3. Let {Xk, k=1, 2, · · ·} be a sequence of random variables with bounded 
means EXk=flk and finite variances. Suppose that s~'"'""'Cn for n---+oo, and that the 
distribution of (Sn- '£~=tf1k)/sn has the density hn(x) such as limx_.oohn(x) =0. If 

lim sup x~lhn(x)-~(x)l =0 
n-+oo x 

for p=O, 2, then we have the renewal density theorem 

00 

lim E hn(x)=p.-I, ( 3) 
x~oo n=l 

This is a slight modification of Cox and SMITH's result. We, by the local 
limit theorems in the previous section, have the renewal density theorem for in
dependent random variables. That is: 

Theorem 2. Suppose that a sequence {Xk} of inependent random variable, with 
bounded means EXk=flk and with variances such as s~'"'""'Cn, satisfies the conditions 
in Theorem 1 except the condition EXk =0. If p. = limn_.oon- 1 '£~=tflk exists and is 
positive, then we have the renewal density theorem (3). 

61 



MAKOTO MAEJIMA 

It follows from the integrability of On(t), by the Fourier inversion formula and 
the Riemann-Lebesgue lemma, that the density hn(x) tends to zero as x~oo. 

4. Concluding Remarks 

We give some remarks on the condition (c), which played an essential role in 
the non-identically distributed case. 

First, we consider the relationship between our condition and SMITH's smoothing 
subsequence condition which is stated as follows (SMITH (1953), BAsu (1974)). The 
sequence of random variables {Xk} is said to contain a " smoothing subsequence" 
if there exists a subsequence of characteristic functions {fk;(t)} which satisfy 
lfk/t)l ;£A/Ill" for It I ?;R, for some positive number R, A, a. This definition is due 
to SMITH. Denote by n* the number of members of the smoothing subsequence 
in XI, x2, ... 'Xn. Then, SMITH and BASU have assumed in their paper that {Xk} 

contains a smoothing subsequence and liminfn--.oon*/s~>O. 
On the other hand, our condition (c) can be replaced by the following strength

ened form: Suppose that the sequence of characteristic functions {fk(t)} contains 
a subsequence {fk/t)} with the property that for some positive constants s 
and c<l, lfk/t)l;£c for lti?;s, and that liminfn_.oon/s~>O and, for some a>1, 
liminfn_.oonajnsn>O, n being the number of kj with lfk/t)l ;£c<1 among first n 
characteristic functions. We call this the condition (c'). Furthermore, we agree 
to call the conditions only for n in here the condition (A). 

The above two kinds of conditions have similar forms. As to the condition 
on the number of element kh the condition liminfn-.oon"/nsn>O is added in ours. How
ever, since a may be taken large, it holds automatically if n is order nr> (f3, how
ever small). On the other hand, as to the condition on the subsequence of 
characteristic functions, lfk;(t)l ;£A/Ill" are required in SMITH's condition, while 
lfki(t)l ;£c<1 is sufficient in ours. 

In the next place we consider the case where Xk has the density function 
qk(x). 

In connection with the condition that qk(x) <C2 for all k in SuRVILA (1964), 
we remark the following. We now let J( be a subclass of all positive integers, 
and suppose that n satisfies the condition (A), where n is the number of integers 
in J( n {i; 1;£i;£n}. If we assume the existence and the boundness of qk(x) only 
for kE J( while we make a further assumption that qk(x), kE J(, is of bounded 
variations in every finite interval, then the condition (c') holds. Because, by the 
mean value theorem, for any A<B, there exists a ~k such that 

r ~:cos tx qk(x)dxl = ]qk(A) ~:k cos tx dxj + lqk(B) ~:kcos tx dx[ 

;£4 C2Jt~o 

as t~oo uniformly with respect to kE J(. As is known in this simple calculation, 
the subsequence of the characteristic function satisfies SMITH's condition as well. 
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Hence, the single condition liminfn-.cxJi/ s~ > 0 is sufficient as the requirement for ii. 
Finally, when the density functions are not necessarily bounded, the following 

uniformness condition is applied. If 

( 4) 

as h-----+0 uniformly with respect to kE J{, then the condition (c') is satisfied. The 
reason is as follows: For kE J{, 

from which 

as t-----+oo uniformly with respect to kE J(. We note here that the condition (4) 
holds always for each k, because of the mean continuity of the integrable function. 

Acknowledgements 

The author wishes to express his sincere appreciation to Professor T ATsuo 
KA w ATA of Keio University for his continuing guidances and encouragements. 

REFERENCES 

BAsL, S. K. (1974): Density versions of the univariate central limit theorem, Ann. Prob., 
2, 270-276. 

Cox, D. R. and SMITH, W. L. (1953): A direct proof of a fundamental theorem of renewal 
theory, Skand. Akt., 1953, 139-150. 

CRAMER, H. (1937): Random Variables and Probability Distributions, Cambridge Univ. Press, 
Cambridge. 

SMITH, W. L. (1953): A frequency-function form of the central limit theorem, Proc. Camb. 
Phil. Soc., 49. 462-472. 

STATLTLYAVICIIus, V. A. (1965): Limit theorems for densities and the asymptotic expansions 
for distributions of sums of independent random variables, Theory Prob. Applications, 
10, 582-595. 

SLRVILA, P. (1964): A local limit theorem for density functions (in Russian), Litovsk. Mat. 
Sb., 4, 535-540. 

63 


