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A DISTRIBUTED-PARAMETER SYSTEM 

WITH MULTI-POINTWISE SOURCES 

AKIRA SANO 

Dept. of Electrical Engineering Keio University, Yokohama, 223 Japan 

(Received, Feb. 27, 1975) 

ABSTRACT 

The optimal state estimation technique is presented for a discrete-time distributed­
parameter system perturbed by unknown inputs from multi-pointwise sources. In the 
proposed algorithm, the estimation procedure for the unknown inputs is seperated from 
the estimation of the state so that the computational inaccuracy and the required memory 
capacity can remarkably be reduced. 

1. Introduction 

This paper describes the method for estimating the state of distribution of 
pollutant concentration in the atmospheric diffusion system perturbed by unknown 
pollutant emission rates at multi-pointwise sources. If we define a new state 
vector by adjoining the unknown emission rates to the state of the concentration, 
we can construct the optimal filter for the defined system by the aid of the 
state estimation theory for distributed-parameter systems. Many studies have been 
done on the optimal estimation filter for systems described by partial-differential 
equations (F ALB 1967 ; TzAFEST AS et al. 1968a, b; THAU 1968 ; KUSHNER 1970 ; 
MATSUMOTO et al. 1970 ; MEDITCH 1971 ; SAKA \Y A 1972 ; KuMAR et al. 1972 ; ATRE 
1972), however, in the conventional approaches, as the dimension of space co­
ordinates and the number of the emission sources becomes large, the size of the 
covariance matrix of the defined state vector estimate increases excessively. 

In this paper, we develope the Friedland's results (Friedland 1969) to distri­
buted-parameter systems and present a new algorithm for avoiding the complexity 
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in computing high-dimensional matrix eqnations and for obtaining the each element 
of the covariance separately. As a result, by computing the emission-free state 
estimate first, and correcting it by the quantity obtained from the emission-rate 
estimates, we can get the state estimate. In the presence of uncertainty in the 
emission term such as unknown source location, their maximum likelihood esti­
mates can be computed by an optimization technique. Also in this case, the 
proposed algorithm effectively reduces the computational time, memory capacity 
and inaccuracy. 

2. System Description 

Consider a linear distributed-parameter system of diffusion type described by 

'I 

oO(.r, t)jut= ,6 {rriu20(x, t)jxz-viHJ(x, t)joxi} +u(.r, t), xESJ ( 1 ) 
i=l 

defined for t?:.fo ( =0) on the domain Q which is an open connected subset of a q­

dimensional Euclidean space with coordinate vector x=(xl, · · ·, xq)'Ef!. Let the 
scalar function U(x, t) be the state of pollutant concentration, and ai and vi be the 
diffusion coefficient and the wind velocity of the i-th direction respectively. The 
pollutant emission rate u(x, t) is assumed to be of the form 

N " 
U(x, f)= _6 Ut n (J(Xp-rtp) =e'(.T)U 

1=1 p=l 
( 2) 

'1 

Where Ct(X) = n ()(Xp-rtp), e(x) =(el(x), · · ·, CN(.r))' and U =(Ub ···,UN)', that is, the 
p=l 

pollutant is emitted from multi-pointwise sources and the respective emission rates 
{ud are assumed to be random constants. 

The initial state O(x, 0) and the emission rate u are Gaussian random variables 
with the mean and the covariance given as 

E[O(x, 0)] =B(x, 0), Cov[O(x, O)O(y, O)]=P 0(x, y, 0), 

E[u]=u(O), Cov[uu'] =Pu(O), 

Cov[O(.r, O)u] =Pou(x, 0) =0. 

The measurement equatiou is given by 

z(x, k)=h(x, k)O(x, k)+w(x, k), k=O, 1, · · ·, xEf}0 

( 3) 

( 4) 

( 5) 

( 6) 

where z(x, k) denotes the measured data sampled at the instant k!l at .1:ED0 which 
is subset of Q, and w(x, k) is the white Gaussian noise independent of O(x, 0) and 
u. The means and the covariance of w(x, k) are given as 

E[w(x, k)]=O, E[w(x, k)w(y, n)]= W(x, y, k)lhn ( 7 ) 
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The solution of ( 1) and ( 2) can be represented for unbounded fJ as 

then, replacing t with k-tT-.J and to with kJ respectively, we get the following 
discrete-time distributed-parameter system 

O(x, k+ 1) =L xtJ(x, k) +c'(x)u(k) ( 9) 

u(k + 1) = u(k), k=O, 1, · · ·. (10) 

where c(x)=(ci(x), · · ·, cs(x))' and the operator Lx( ·) are given from ( 8) by 

[ 

q _!_] ~ -1 ~ oo [ If {X - V j - ~ } 2 J Lx(·)= [I ap(47LJ) 2 ••• exp - ~ · P 
4 

P j c;p - (·)d~1···d~q 
_q-1 -oo p--1 ap 

(11) 

[ 
q I_J-I~k-'-JJ ___ ___ _f!_ [ " {xp-Vp(k+1 J-r)-rt F] 

Ct(X) = IT ap(4 rr) 2 (k + 1 .1-r) 2 exp - L: ---------- c=~ _____ ]J_ -- dr. (12) 
p=I .kJ p=I 4ap(k+1.1-r) 

Now, the problem is to estimate the state of concentration O(x, k) and the 
emission rate u on the basis of the measured data z(x, n), xEf}0 , n=O, · · ·, k. 

3. Recursive Form of Optimal Filter 

By adjoining u(k) to O(.r, k), we define the new state vector ~'J(x, k) by 

~'J(x, k)=[O(.r, k), u'(k)]'. (13) 

Then, equations ( 9 ), (10) and ( 6) can be rewritten as 

~)(x, k+1)=9'x¢(x,k), :c€!2 (14) 

z(x, k) =H'(x, k)~1(x, k) +w(x, k), xEDo (15) 

where 

We first show the optimal filter which gives an estimate ¢(x, klk) of ¢(x, k) 
based on the set of measured data z(x, n); n =0, 1, · · ·, k, xE!J0 • The estimate 
¢(x, klk) is sought through a linear combination of the past set of measured data 
as follows 

¢(x, klk) = ± (' K(x,;; k, n)z(;, n)d~ 
n=cO J !)o 

(16) 
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where Kex, ~; k, n) is a vector kernel function. The estimate ¢ex, klk) is defined 
to be optimal when it minimizes the variance E11¢ex, k) -¢ex, klk)W where II· W 
denotes the Euclidean norm. A necessary and sufficient condition for the estimate 
to be optimal can be derived by use of calculus of variations. 

Proposition 3. 1. 

A necessary and sufficient condition for the estimate ¢ex, klk) to be optimal is 
that 

£[{¢ex, k)-;fiex, klk)}ze~. n)]=O, Osnsk, xED; ~Ef2o • e17) 

It is significant to derive the recursive form of the optical filter in order 
to get the estimate ¢ex, klk) sequentially utilizing a digital computer. The recur­
sive form is given in the following proposition. 

Proposition 3. 2. 

The recursive form of the optimal filter is given as 

(}ex, klk) =;fi(x, klk-1) + \ Kex, ~. k)[ze~. k)- H'(~, k);}e~. klk-1)]d~ e1Sa) 
Jl.lo 

¢ex, k+ 11k) = 9! x¢ex, klk) (18b) 

where Kex, ~. k) is the optimal kernel and satisfies the Fredholm integral equation 
of the second type 

\ Kex, ~. k)[H'e~. k)Pe~. y, k)Hey, k)+ W(~, y, k)]d~=Pex, y, k)Hey, k) e19) 
Jl.lo 

where x, yEQ0 , and Pex, y, k) denotes the covariance matrix of the estimate ;ftex,klk-1) 
and recursively can be computed by 

Qex, y, k) =Pex, y, k)- \ Kex, ~. k)H(~, k)P(~, y, k)d~ 
Jl.lo 

P(.x, y, k + 1) = 9! xQex, y, k)9!~. 

(20a) 

(20b) 

The proofs of Propositions 3 .1 and 3. 2 have been shown in reference eSANO 
1975b). 

4. Evaluation of Covariance Matrix 

The covariance matrix of the combined state estimate ¢ex, klk-1) is 

Pe k)=[Po(x, y, k) 
X, y, PoueY, k) 

P'ouex, k)J 
Pu(k) 
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where Po(x, y, k), Pou(x, k) and Pu(k) are the covariance of the respective elements. 
Then it will be noted that the elements of P(x, y, k) of (20) are mutually coupled 
and must be simultaneously computed, therefore the rquired amount of memory 
and the round-off error are increased as the dimension of space coordinates and 
the number of emission sources become large. This section shows that the elements 
of the covariance matrix (21) can separately be computed. First we develope the 
Friedland's results (FRIEDLAND 1969) to distributed-parameter system and present 
useful propositions for the computation of the elements of the covariance. 

Proposition 4.1. 

Assume that P(x, y, k) is a solution of (20) with an initial condition P(x, y, 0). 
Then any other solution P(x, y, k) of (20) with any initial conditions P(x, y, 0):;:: 
P(x, y, 0) can be described by 

P(x, y, k) =P(x, y, k) + R(x, k)M(k)R'(y, k) (22) 

where R(x,k) and M(k) denote (N+1)xN and NxN matrices respectively, and 
satisfy the equations 

V(x, k)=R(x, k)- ( K(x, ~. k)H'(~, k)R(~, k)d~ 
Jgo 

SR. (X' k + 1) = g X V( X' k) 

M(k+1)=M(k)-M(k)(' ](~. k)H'(~, k)R(~, k)d~M(k) 
JDo 

(23a) 

(23b) 

(24) 

where K(x, ~. k) and ](~, k) are the solutions of the Fredholm integral equations 

(' K(x, ~. k)[H'(~, k)P(~, y, k)H(y, k)+ vV(~, y, k)]d~=P(x, y, k)H(y, k) (25) J Do 

(' ](~, k)[H'(~, k)P(~, y, k)H(y, k)+ W(~, y, k)]d~=R'(y, k)H(y, k). (26) 
Jilo 

This proposition will be proved in Appendix. 
Let P(x, y, k) in Proposition 4.1 be a solution of (20) with the initial condition 

P( O)=[Po(X, y, 0) x,y, 0 (27) 

then, it can be obtained from (20) by 

P( k)=[Po(x, y, k) x,y, 0 ~ J. (28) 

It can easily be seen that P 0(x, y, k) is the solution of (20) in the emission-free 
case u(k) = 0 (k = 0, 1, · · ·) and then satisfies 

Q0(x, y, k)=Po(x, y, k)- (' Ko(x, ~. k)h(~, k)Po(~, y, k)d~ 
JDo 
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Po(x, ?J, k+1)=.£xQo(x, y, k).£y (29b) 

where Ko(x, ~, k) is obtained from the integral equation 

r Ko(x, ~' k)[h(~, k)Po(~, y, k)h(y, k)+ W(~. y, k)]d~=Po(x, y, k)h(y, k). (30) 
)Qo 

which is the emission-free case of equation (19). 

On the other hand, for any initial conditions which are different from (27) 

P( O) =[Pn(x,y,O) 
x, y, p ( 0) 

Ou y, 
P'ou(x, orl 

Pu(O) ~ ' 
(31) 

the solution of (20) in the presence of the emission term can be obtained by the 
use of Proposition 4 .1. Let the elements of R(.r, k), V(.r:, k) and K(x, ~' k) be denoted 
by 

R( k) =lR'ou(x,k)J Vi(. k)=[V'ou(x,k)J K-( e: k)=[Ko(x,~,k)J* 
X, _ Ru(k) _ ' .X, Vu(k) _ ' .T, '"' 0 ' 

then the elements of the matrix P(.r, y, k) of (21) are expressed by use of Proposi­
tion 4.1 as 

Pn(x, y, k)=Pn(x, y, k)+R'ou(X, k)M(k)Rou(?J, k) 

P' ou(x, k) = R' ou(.T, k)M(k)Ru(k) 

Pu(k) =Ru(k)M(k)Ru(k). 

Furthermore, it follows from (23) that 

Vou(X, k)=Roa(X, k)- r Ko(.T, ~' k)h(;, !?)Ron(~, k)d~ )Qo 

Rou(x, k+1)=.£.x Vou(x, k)+c'(x) Vn(k) 

Vu(k)=Ru(k) 

Ru(k+1)= Vu(k). 

At the initial time k=O, from (32) we get 

Po(x, y, 0)-Po(x, y, O)=R'on(x, O)M(O)Ro·~~(y, 0)=0 

P' ou(x, 0) =R' ou(x, O)M(O)Ru(O) =0 

Pu(O) = Ru(O)M(O)Ru(O) 

(32a) 

(32b) 

(32c) 

(33a) 

(33b) 

(34a) 

(34b) 

(35a) 

(35b) 

(35c) 

where the assumptions ( 3) and ( 5) have been used in (35a) and (35b) respectively. 
It follows from (35a) and (35b) that Ru(O) =l (unity matrix) and Rou(x, 0) =0, then 
from (34) we get Ru(k)= Vu(k)=l. 

* It can be clarified in deriving (30) from (19) that the second elements of K(x. ~. k) are 
all zero. 
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The above results may be summarized in the following propositions. 

Proposition 4. 2. 

The covariance matrix P(x, y, k) is given as 

Po(.r, y, k) = P o(x, y, k) + R' ou(.T, k)M(k)Rou(Y, k) 

P'on(X, k)=R'nu(X, k)M(k) 

Pu(k)=M(k) 

(36a) 

(36b) 

(36c) 

where P o(x, y, k) is the solution of (29), and the equations for Rou(x, k) and M(k) 
are simplified from (33) and (34) to 

S(~, k) =lz(~, k)Ron(~, k) (37) 

Vou(x, k)=Rou(x, k)- r Kn(x, ~. k)S(~. k)d~ (38a) JQo 

Rou(.T, k+1)=L.x Von(X, k)+c(.r,) (38b) 

M(k+ 1) =M(k)- M(k) l ](~, k)S'(~, k)d~M(k) (39) 
JQo 

l ](~. k)[h(~, k)Po(~, y, k)h(y, k)+ W(~. y, k)+S'(~. k)M(k)S(y, k)]d~=S(y, k) (40) 
JQO 

where Rou(x, 0) =0 and M(O) =Pu(O). 

Proposition 4. 3. 

The elements of the matrix Q(x, y, k) of (20) can also be expressed as 

Qo(x, y, k)=Qo(x, y, k)+ V'ou(x, k)M(k+1) Vnu(Y, k) 

Q' on( X, k) = V' ou(X, k)M(k + 1) 

Qu(k)=M(k+1). 

This proposition can easily be proved by the use of Proposition 4. 2. 

5. Computation of Estimates 

(41a) 

(41b) 

(41b) 

The estimates of the state B(x, klk) and the emission rate u(klk) have been 
given in Proposition 3. 2 by 

e(x, klk)=B(x, klk-1)+ l Ko(x, ~. k)[z(~, k)-h(~. k)e(~. klk-1)]d~ (42a) 
JfJo 
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e(x, klk-1)=LxB(x, k-11k-1)+c'(x)u(k-11k-1) 

u(klk) =u(klk -1) +~Do Ku(~, k)[z(~, k) -h(~, k)e(~, klk -1)]d~ 

u(klk-1) =u(k-11k-1) 

(42b) 

(43a) 

(43b) 

where K 0(x, ~' k) and Ku(~, k) are the elements of K(x, ~' k) in (19), and are related 
to Ko(x, ~' k) of (30) as shown in the following. 

Lemma 5.1. 

Ko(x, ~' k)=Ko(x, ~' k)+ V'ou(x, k)Ku(~, k) (44) 

Proof: From (19) and (20), we have 

Q(x, y, k)H(y, k)= ( K(x, ~, k) vV(~, y, k)d~. Jao 
(45) 

By use of (41), we can express the respective elements of (45) as 

Qo(x, y, k)h(y, k) + V' ou(x, k)M(k+ 1) Vou(Y, k)h(y, k) = ( Ko(x, ~' k) W(~, y, k)d~ (46a) Jao 

M(k+ 1) V' ou(Y, k)h(y, k) = ~.Qo Ku(~, k) W(~. y, k)d~. (46b) 

Furthermore, utilizing 

Qo(x, y, k)h(y, k) =~Do Ko(x, ~' k) TV(~, y, k)d~, 

it follows from (46) that 

( [Ko(x, ~' k) + V'ou(x, k)Ku(~, k) -Ko(x, ~' k)] W(~, y, k)d~=O. J Do 

(47) 

(48) 

Since the cavariance vV(~, y, k) is assumed not to be identically zero, equation (44) 
has been proved. 

In equations (42) and (43), the estimates B(x, klk) and u(klk) are mutually 
coupled. In the following we show that the emission estimate u(klk) can be com­
puted independently of the estimate e(x, klk). We get the estimate e(x, klk) by 
computing first the emission-free estimate O(x, klk) separately and then correcting 
the latter by the quantity obtained from the emission estimate. 

Proposition 5. 2. 

Let O(x, klk) be the estimate of fJ(x, k) in the emission-free case (u(k)=.O), then 
the estimate e(x, klk) in the presence of u(k) is given by 
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o(x, k/k) =B(x, k/k) + V' ou(x, k)u(k/k) 

e(x, k/k-1)=B(x, k/k-1)+R'ou(x, k)u(k/k-1) 

where O(x, k/k), &(x, k/k-1), u(k/k) and u(k/k-1) are computed by 

(49a) 

(49b) 

&(x, k/k) =B(x, k/k-1) + ( Ko(x, ~. k)[z(~, k) -h(~, k)&(~, k/k-1)]d~ (50a) 
J.Qo 

O(x, k/k-1)=LxB(x, k-1/k-1) 

u(k/k)=u(k/k-1)+ ( Ku(~, k)[z(~, k)-h(~, k)&(~, k/k-1) 
J.Qo 

-S'(~, k)u(k/k-1)]d~ (51a) 

u(k/k-1)=u(k-1/k-1) (51b) 

( Ku(~. k)[h(~, k)Po(~, y, k)h(y, k) + vV(~, y, k) 
J.Qo 

+S'(~, k)M(k)S(y, k)]d~=M(k)S(y, k) (52) 

where O(x, OJ-1)=0(x, 0) and u(Oj-1)=u(O), and Ko(x, ~. k), Vou(x, k) and Rou(x, k) 
have been obtained in (30), (38a) and (38b) respectively. 

Proof: The proposition is proved by means of mathematical induction. At the 
instant k -1, assume that 

&(x, k-1/k-1)=0(x, k-1/k-1)+ V'ou(x, k-1)u(k-1/k-1). (53) 

Let the innovation process be denoted by o(x, k). Utilizing (42b), (53) and (38b), 
o(x, k) can be rewritten as 

a(~. k)=z(~, k)-h(~. k)o(~, k/k-1) 

=z(~, k) -h(~, k)[L~&(~, k-1/k-1) +c'(~)u(k-1/k -1)] 

=z(~, k)-h(~, k)L~B(~, k-1/k-1)-h(~, k)[L~ V'ou(~, k-1)+c'(~)]u(k-1jk-1) 

=z(~, k) -h(~, k)&(~, k/k-1) -S'(~, k)u(k-1/k-1). 

By use of (53), (38b) and (44), we can rewrite (42) into 

e(x, k/k)=LxB(x, k-1/k-1)+[Lx V'ou(x, k-1)+c'(x)]u(k-1jk-1) 

+ \ [Ko(x, ~. k) + Vou(x, k)Ku(~, k)]a(~, k)d~ 
J.Qo 

=LxB(x, k-1/k-1)+R'ou(x, k)u(k-1/k-1) 

+ ( Ko(x, ~. k)[z(~, k)-h(~, k)L~O(~, k-1/k-1)]d~ 
J.Qo 

- ( Ko(X ~. k)S'(~,k)u(k-1jk-1)d~ + ( V' ou(x, k)Ku(~. k)o(~. k)d~ 
J~ J~ 
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=iJ(x, klk) + V' eu(x, k)l u(k-llk-1) +~Do Ku(~, k)a(~, k)d~ l 
=iJ(x, klk) + V' ou(.r, k)u(klk). 

At the initial time k=O, it is satisfied that B(x, 01-l)=iJ(x, 01-l)=iJ(x, 0) and 
Rou(:r, 0) =0, then the proposition has been proved. 

6. Discussion 

The block diagram of the new estimation algorithm is shown in Fig. 1. In 
the block (A), the emission-free state estimate is given by use of (50), (30) and (29), 
and the computational procedure is independent of the emission-rate estimation. 
The estimate of the emission rate is obtained from (51), (52) and (37)~(40) as 
summarized in the block (B). The seperation of the estimation procedure becomes 
more effective when the location of the emission sources is unknown and to be 
identified in real time. 

:+ -
I 

I 
I 
I 
I 
I 

cS(x,k) 

·------- ------------------ ~~:>~k_(~~ 
I I 

: G (klk-1l 

e (x,klk-1) 

I I 

~----------------------------J 
block (A) 

Fig. 1 

We have presented a method for estimating the source location (SANO 197 4a) 
by which the source location estimate f1(k) is corrected so that the time-averaged 
innovation squares 

(55) 

may be minimized by use of an approximated gradient method where K denotes 
the moving averaging number. In order to obtain the gradient of Ik with respect 
tothesource location estimates flik),l=l,···.N;p=l,···,q, we must perturb 
the estimate f1ik) to f1(k) ±clp where c1p is a positive constant. Since the estimates 
f 1p(k) is included only in (38b) through c(x) of (12), the 2 Nq blocks (B) associated 
with f1p(k) ±ctp are required to get the gradient of (55), however, the necessary 
block (A) is only one because it is independent of the emission term. 
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In the practice, by spatial discretization we have the discretized model which 
consists of an Lq X Lq matrix equation for P o(x, y, k) in (29), an Lq X N matrix 
equation for Rou(x, k) in (38) and an Lq vector equation for O(x, kjk) in (50), where 
L denotes the number of the spatial discretization of each coordinate. Therefore, 
in the proposed algorithm we may compute the Lq x Lq matrix for P o(x, y, k), the 
Lq X N matrix for Rou(x, k) and an Nx N matrix for M(k) in place of a higher­
dimensional (Lq + N) x (Lq + N) matrix for P(x, y, k) in (20), and then reduce the 
round-off error and the inaccuracy caused in the high-dimensional matrix manipula­
tion of (19) and (20). Furthermore, in the identification of the source location, 
conventional techniques require the 2 Nq(Lq + N) 2 memory area while the presented 
algorithm uses the 2Nq(LqN+N2)+L2q, then saves ND1+(2Nq-l)L2q memory area. 

The detail descriptions for the identification technique of the emission sources 
have been shown in other references as for a one-dimensional diffusion system 
(SANO 1974a, b) and a two-dimensional air pollution diffusion model (SANO 1975a). 

7. Conclusion 

The optimal estimation algorithm has been proposed for a discrete-time dis­
tributed-parameter system subjected to unknown emission inputs from multi-point­
wise sources. We get the state estimate by first computing the emission-free 
state estimate independently then correcting the latter by the quantity obtained 
from the emission input estimates, so that the computational complexity and inac­
curacy and the required memory area can remarkably be reduced especially in 
identifying the uncertain source location. 
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APPENDIX 

Proof of Proposition 4. 1. 

As P(x, y, k) is a solution of equation (20), it satisfies 

P(x, y, k+ 1) = g x[P(x, y, k)- ~K(x, ~. k)H'(~. k)P(~. y, k)d~ ]g' v (A1) 

where for simplicity the symbol f2o is dropped. In the following, for the simplicity 
of notations we shall designate all quantities with the time index k+ 1 by a sub­
script + and all quantities with the index k with an unsubscripted symbol, i. e. 
P+(x, y)=P(x, y, k+l) and P(x, y)=P(x, y, k). 

The proposition is proved by means of the mathematical induction. Assume 
that at the instant k 

P(x, y)=P(x, y)+R(x)MR'(y). (A2) 

then it is to be proved that at the (k+ 1) instant under the conditions (23),-...,(26) 

F(x, y)=P+(x, y)-P +(x, y)-R+(x)M+R'.
1
.(y)=O. (A3) 

First of all, from (20), (Al) and (A2) we have 
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P+(x, y)- P_i(x, y) 

= 9' x[ P(x, y)- ~K(x, ~)H'(~)P(~, y)d~-P(x, y) + ~K(x, ~)H'(~)P(~, y)d~ ]g' y 

= g x[R(x)MR'(y)- ~K(x, ~)H'(~)P(~, y)d~ + ~K(x, ~)H'(~)P(~, y)d~ ]g' y (A4) 

Then, from (23) and (24) it follows that 

R+(x)M+R~(y) 

= g x[ R(x)MR'(y)- R(x)M~](~)H'(~)R(~)d~MR'(y)- R(x)M~R'(~)H(~)K'(y, ~)d~ 

+R(x)M~J(~)H'(~)R(~)d~M~R'(r;)H(r;)K'(y, r;)dr;- ~K(x, ~)H'(~)R(~)d~MR'(y) 

+ ~K(x, ~)lf'(~)R(~)d~M~](r;)H'(r;)R(r;)dr;MR'(y) 

+ ~K(x, ~)H'(~)R(~)d~ M~R'(r;)H(r;)K'(y. r;)dr; 

- ~K(x, ~)H'(~)R(~)d~ M~](()H'(,)R(()d( M~R'(r;)H(r;)K'(y, r;)dr; Jg~ (A5) 

The third and fourth terms in the right side of (A5) can be rewritten by use 
of (26) and (A2) as follows ; 

= -R(x)M~R'(~)H(~)K'(y, ~)d~ 

+ R(x) lvf~ ~J(~)H'(~)[P(~, r;)- P(~, r;)]H(r;)K'(y, r;)d~dr; 

= -R(x)M\R'(~)H(~)K'(y, ~)d~ 
.; 

+ R(x)M~[ R'(r;)H(r;)- ~J(~){H'(~)P(~, r;)H(r;) + W(~, r;)}d~]K'(y, r;)dr; 

=-R(x)M~ ~J(~)[H'(~)P)~, r;)H(r;) + W(~, r;)]K'(y, r;)d~dr; 

=- R(x)M~](~)H'(~)P'(y, ~)d~ (by use of (25)). (A6) 

In the same manner, the seventh and eighth terms of (A5) can also be rewrit­
ten as follows ; 

=K(x, r;)H'(r;)R(r;)dr;M~J(~)H'(~)P'(y, ~)d~. (A7) 

Substituting (A6) and (A7) into (A5) and utilizing (A2), we can rewrite (A5) 
as 
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R; (x)MR', ('y) = g x[R(x)MR'(y) -R(x) M~](~)H'(~)P(~. y)d~ 

- ~R(x, ~)II'(~)R(~)d~A1R'(y) 

+ ~R(x, ~)H'(~)R(~)d~M~J(~)H'(~)P(y, ~)d~Jg~. 

Substituting (A4) and (AS) into (A3) yields 

F(x, y) = g x[~K(x, ~)H'(~)P(~. y)d~- ~R(x, ~)H'(~)P(~. y)d~ 

- R( a~) 111~]( f;)ll' (~)P(;, u )d; 

+ ~R(:x:, r1)H'(r;)R(r;)dr;1Vf~](f;)H'(f;)P(~. y)d~]g ;. 

(AS) 

(A9) 

The third term of the right hand side of (A9) can be rewritten by use of (19) as 
follows; 

=- R(x)"H~](~) ~[H'(~)P(f;, r;)lf(~~) + W(~. ~)]K'(y, r;)d;dr; 

= -R(x)M~R'(r;)H(r;)K'(y, r;~)dr; (by use of (26)) 

=- ~P(:x:, f;)Il(;)K'(y, ~)d~ + ~ P(.r, ;)Il(;)K'(y, ;)d;. 

The fourth term of (A9) can similarly be rewritten as follows; 

= ~R(:r:, f;)ll'(~)R(~)d~~M~R'(r;)H(r;)K'(y ~~)dr1 

= ~ ~R(.r, f;)Il'(;)[P(~, r;')- P(~, ~)]Il(r;)K'(y, r;)d;d,, 

= ~ ~K(x, ;)H'(;)P(;, r;)H(r;)K'(y, r;)d;dr; 

- ~ P(x, f;)H(~)K'(y, ~) d; + ~ ~R(x, f;) W(;, r;)K'(y, r;)d;clt; 

= ~R(x, f;)ll'(~)P(y, f;) d;- ~ P(.x, ~)H(f;)K'(y, f;)df;. 

Then, substituting (AlO) and (All) into (A9), we have 

F(x, y) = s:.{~K(.1:, ;)H '(f;)P(~. y)d;- ~R(.x, ;)H'(f;)P(~. y)df; 

- ~P(x, f;)H(~)K'(y, f;)df;+ ~P(x, f;)H(~)K'(y, f;)df; 
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+ ~K(x, ;)H'(~)P(y, ~)d;- ~P(x, ;)H(;)K'(y, ;)d~J g; 

=0. 

So, equation (A3) has been proved. At the initial time k=O, we may choose R(x, 
0) and M(O) so that the equation 

P(.x, y. 0)-P(.x, y, O)=R(.x, O)l\1(0)R'(y, 0) 

may be satisfied. Therefore the Proposition has been proved. 
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