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FUNCTIONAL CENTRAL LIMIT THEOREM 
FOR STATIONARY PROCESSES 

YUTAKA KATO 

Dept. of Administration Engineering, Keio University, Yokohama 223, Japan 

(Received, ] an. 2 1, 197 5) 

ABSTRACT 

In this paper we shall deal with a functional central limit theorem for stationary 
processes. 

We shall show by using Gordin's method that the functional central limit theorem 
(the version of Donsker's invariance principle) holds for a class of stationary sequences. 
Furthermore, we give various functional central limit theorem. 

1. Introduction 

In order to prove a central limit theorem for stationary processes, M.l. GoRDIN 
(1969) gave a new method, which differs from the methods of S. N. BERNSTEIN (used 
in Chapters 18 and 19 of IBRAGIMOV and LINNIK (1971) ). GoRDIN's method is at 
first to approximate the stationary process under investigation by a sequence of 
martingale differences, and then to use the central limit theorem for martingale 
differences with finite variances which was proved independently by P. BILLINGSLEY 
(1961) and I. A. IBRAGIMOV (1963). 

P. BILLINGSLEY (1968) proved the functional central limit theorem for a stationary 
ergodic sequence of martingale differences with finite variances. 

In this paper we shall show by GoRDIN's method that the functional central 
limit theorem holds for a class of stationary processes. Furthermore, we give 
various functional central limit theorem. Some theorems of BILLINGSLEY (1968, § 20, 
§ 21) are obtained as corollaries of the results obtained in this paper. 

Suppose that there exists a probability measure P defined on a Borel field ._5}1 

of sets of some space X. Space Lp corresponds to measure P; If I P denotes norm 
of a function f in Lp. If a Borel field JZ is contained in ._5}1, then H('JZ) denotes 
Hilbert space of those function in Lz, which is measurable with respect to 'JZ. Pa 
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denotes orthogonal projection onto closed subspace GcH=L2. 
Let T be a 1-1 measure-preserving point transformation on X and 5Mo be a 

Borel field such that T- 1(5}t0)C5}t0 • Relation Uf(x)=f(Tx) defines a unitary trans
formation U on H. 

Spaces 5Mk. Hk, Sk and g are defined by the following relations ; 

5Mk = T-k(5J1o), 

Hk=H(5Mk), 

Sk=Hk8Hk+t. 

measurable with respect to 5Yik } . · 
for some k, -CXJ<k<CXJ. 

n-1 

Finally, for f E £2, let Cn(f) =I: UK f be the partial sums and Xn(f) be the random 
k=O 

element of Skorohod space Dco. 1J whose value at t is 

1 
Xn(f, t)=--;=CcntJ(f), 

av n 
(1.1) 

where Xn(f, t)=O if [nt]<1, a is a suitable positive constant and 0 ~t~l. 
In Section 2 we shall investigate the problem of finding the conditions which 

the relation 

holds, where W denotes Wiener process and Xn 
in distribution to W. 

(1. 2) 

W means that Xn converges 

In Section 3 we shall extend the results in Section 2 to the case of stationary 
processes with a continuous time parameter. 

In Section 4, by using the preliminary lemma given by Rf:NYI (1958), we shall 
show that the results in Section 2 remain true whenever P is replaced by an 
arbitrary probability measure Po on (X, 5M) dominated by (absolutely continuous 
with respect to) P. 

In Section 5 we shall prove Donsker's invariance principle for randomly selected 
partial sums by the same manner as P. BILLINGSLEY (1968, § 17). 

In Section 6 the results obtained in this paper are applied to renewal theory. 

2. Main Results 

We first show the following theorem which implies Theorems 20. 1 and 21. 1 
of BILLINGSLEY (1968). 

Theorem 1. * Let T be ergodic and f E Lz such that 

I: (/Pnaf/2+/f-Pu-aflz)<CXJ. 
a~o 

* D. J. ScoTT (1973) Proved this theorem by using a Skorohod representation approach. 
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Then 

lim JCn(f)Jz/V n =a; 
n--->oo 

if a>O and Xn is defined by (1. 1), then 

D 
Xn~ W. 

Proof. For non-negative integer a and f E Lz, define 

00 

ha= l:: u-n Psnfa, 
n=-oo 

oo -n-1 

ga= l:: l:: UmPsnfa, 
n=-oo m=O 

then we have 

(2.1) 

(2. 2) 

(2. 3) 

From Theorems 1 and 2 of GoRDIN (1969), we have relation (2. 1), and from 
the proof of Theorem 1 of GoRDIN (1969), it follows that 

aa --+ a, as a --+ oo, (2. 4) 

where aa= lhalz. Since a>O, there is no loss of generality in assuming aa>O for 
each a. 

Since ha E So, it follows that sequence { u-nha} is ergodic sequence of martingale 
differences. Therefore, from Theorem 23. 1 of BILLINGSLEY (1968), we have 

D aa 
Xn(ha) ~ -- W, as n --+ oo 

a 

for each a, and from (2. 4), we have also 

!!!!.. W ~ W, as a --+ oo. 
a 

(2. 5) 

(2. 6) 

Then, because of (2. 5) and (2. 6), the relation (2. 2) will follow by Theorem 4. 2 of 
BILLINGSLEY (1968) if we show that 

lim limsup P{do(Xn(f), Xn(ha) )>c} =0 (2. 7) 
a--+oo 'ft-+OO 

for each positive c, where do denotes the Skorohod topology on Dco,IJ· Since 
Skorohod topology is dominated by uniform topology, (2. 7) will follow if we show 
that for each positive c 

{ 
I 

1 i-1 I } lim limsupP max ------;--I: Uk(f-ha) >8c =0. 
a--->oo n--->oo 1.;;t.;;n 'Y n k=O 

(2. 8) 

From (2. 3), we have 
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=f1+f2· (2. 9) 

First of all, we shall prove that lim limsup !1 =0. From the definition of fa, we 
a-+co n--+oo 

have 

(2.10) 

Define 

~i= Ui- 1E{f+ · · · +JT-i! 1 II.5Ua} 

- UiE{jT- 1 + · · · + jT-iii.5Yta}, i=1, 2, ······, 

then 

(2. 11) 

Since ~i E Ha+i-1 8 Ha+i, it follows by martingale-inequality (DooB, 1953, p 317) that 

{ I 
1 i I } 4 I n 12 4 l'n-1 12 P max -;:- ~ ~k >c ~-2-E ~ ;k ~ -

2
-E ~ Ukfia) . 

1.;;;t.;;;n v n k=l c n k=l c n k=o 

Next, we shall estimate the second term of (2. 11). 

{ I 
1 i I } P max - . -cUi ~ E {jT-kflc.'JYta}l >c l.;;;t.;;;n v n k=l 

Furthermore, from Minkowski's inequality 

ltl E {jT-kjfJYta} 12 ~ktl IE {jT-kffJYta} 12 

= ktl IE {/fiJYta! d 1
2 
~ t:JPihf [

2
• 
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Then we have 

(2. 13) 

From (2. 11), (2. 12) and (2. 13), it follows that 

(2.14) 

Now, we shall estimate !1. 2 by the same manner as ]1, I· 

Define 

i-1 

r;i= U-i -I 2::: (fTk-E{jTkll.51-a}) 
k=O 

i 

- U-i 2::: (fTk- E {fTkll.5f-a}), i=1, 2, .. ·, 
k=l 

then 

{ 

I 1 i I } ]1,2~P max J 1 ~ 2::: Y)k >c 
1<t<n 'V n k=1 

(2. 15) 

Since Y)i E H-a-i 8 H-a-i ~> it follows by martingale-inequality (Doob, 1953, p 317) 
that 

(2.16) 

and we have by the same manner as (2. 13) 

(2. 17) 

Therefore, from (2. 15), (2. 16) and (2. 17), we have 

4 1 n-1 j2 1 ( j : )2 
!1.2~ ~E'I 2::: Ukf~a)i +--;2 2:::_ Jf-Pu.-k/j 

c n k=O ' ~ k Ul 2 

(2. 18) 

From Theorem 2 of Gordin (1969), it follows that 

so that, from (2. 10), (2. 14) and (2. 18), we have 
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lim limsu p !1 = 0. 
lt---oo n~oo 

We turn now to the proof of lim limsup fz =0. 
a-oo n-H:o 

(2. 19) 

Since 9a E Lz, we have 

lim!z.t=O (2. 20) 
n-->oo 

for each a, and from absolutely continuity of Lebesgue integral, there exists a 
positive number p(p) for each positive f1 such that 

(2. 21) 

for every measurable set A for which P(A)<p. Furthermore, there exists a posi
tive number no(s, p) such that n'?_no(s, p) implies 

(2. 22) 

By Chebyshev's inequality 

it follows from (2. 21) and (2. 22) that ]2 , 2 ~p/s2 holds for n'?_no (s, p). Since p is 
arbitrary small, we have for each a 

lim!2.z=O, 
n-+oo 

so that, from (2. 19) and (2. 20), we have 

lim limsupfz=O. 
n·-oo n-oo 

This completes the proof of Theorem 1. 
If T is a Kolmogorov automorphism and f E g, then the condition of Theorem 

1 is weakened as one in Theorem 2. In the next theorem, cS}io is a Borel field 
determined by the definition of Kolmogorov automorphism. 

Theorem 2. Let T be a Kolmogorov automorphism and f E Lz:a for some O~o~oo 
such that f E g and 
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2: I PHaf /z+a_ < oo. 
a20 l+o 

Then 

n--->oo 

if a>O and Xn is defined by (1.1), then 

D 
Xn~ W. 

Proof. Since we can estimate all the terms except the second term of (2.11) by 
the same manner as the proof of Theorem 1, Theorem 2 is proved if we show that 

(2. 23) 

for each positive c. 

Since T is a Kolmogorov auto., it follows that for any BE .5}t 

lim a(klB)=O, (2. 24) 
k-oo 

where a(kiB)= sup iP(AB)-P(A)P(B)i 
AE..sffk 

=sup IP(An TkB)-P(A)P(B)i. 
AE..sffo 

To prove (2. 23), consider the sets 

{ 
r 

1 . i } 
Aa, n = max ~-·=-~ Ut 2: E { JT-k II.5Ua} I > c , 

l.;;;t.;;;n 'Y n k=l 

First of all, we shall estimate P(Aa.n) for a such that P(Ba)=O. By Chebyshev's 
inequality, 

n 

P(Aa, n) = 2: P(Aa, n, j) 
j=l 
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so that, from the definition of Ba and MrNKOWSKI's inequality, we have 

(2. 25) 

Next, we shall estimate P(Aa.,n) for a such that P(Bn)>O. By Fubini's theorem 

n 

P(Aa. n n yn Ba) = L; P(Aa. n. in yn En) 
j=l 

From well-known properties of conditional expectation, it follows that for any 
square integrable functions f and g, and for any integer n, 

~ E {f ll~a} · u-n E {gii.5Mn} dP 

= ~ E {f ll~a} · u-n E {gll~a+n} dP, 

so that, we have 

~A . u-n IE {jT-kll.511a} I dP 
a,n .. 1 

= ( .u-n IE {jT--kllcSMn' n} I dP. 
JAa.,n.J 

Therefore, we have 

P(Aa. n n yn Ba) 

~ 1~1 ~1 ! ~An,n .. iu-n[E{jT-kll~n 1 n}\dP 

= tl ! ~Aa,n,j u-n k~l IE {jT-kii._5Yta+n} I dP 

~ ~ L; I Pukf 1-:1_::1~~ · 
c k a+n H-fl 

Since Aa. n lies in .511o for any non-negative a, we have 

P(An.n n TnB~)~P(Aa.n)P(B~)+a(niB~). 

Since P(Ba) > 0, it follows by (2. 26) and (2. 27) that 

1 { 1 I 

1 

} P(Aa.n)~ P(B) - _L: [PHk!\-~~_+a(niB~) , 
a c k a+n Ho 
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so that, from (2. 24) and assumption, we have 

lim P(Aa. n) =0 (2. 28) 
n-+oo 

for a such that P(Ba)>O. 
Therefore, from (2. 25) and (2. 28), it follows that for any a 

limsup P(Aa.n)::::;;_!__ I: I PHkf I~· 
n-+oo c k a t+o 

so that we have (2. 23). This completes the proof of Theorem 2. 

3. Functional Central Limit Theorem in Continuous Time 

Theorem 1 has a natural formulation with measure-preserving transformation 
T replaced by a flow {Tt; tER1

}. Let {Tt; tER1
} be a flow defined on (X, .5t{, P) 

and .5tlo be a Borel field such that Ts.5tfoC Tt.5tto for every s<t. Relation Utf(x)= 
f(Ttx) defines a group of unitary transformation {Ut; tER1

} on H. 
Spaces .5tft, flt and g are defined by the same manner as § 1, i. e. 

As a corollary of Theorem 1 we have the following: 

Corollary 1. Let {Tt; tER1
} be a weakly mixing flow and /EL2 such that 

(3.1) 

Then 

I 
1 ~t ' lim --c:c= Usf(x)ds I =a; 

t-+OO ,.; t 0 2 

if a>O and Yn is defined by 

1 ~n/, 
Yn(f, t) =---;--= Usf(x)ds, 

av n o 
O::::;;t::::;;1, 

then 

D 
Yn(f) ~ W. (3. 2) 

Proof. If 
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/o(x) = ~: Usf(x)ds, 

then, by Fubini's theorem 

Since E{ ~:Us! ds II JYla} = ~:E {Us! IIJYia} ds with probability 1, we have 

Similarly, 

E I Pnafo 12 =E I ~:E { Usf IIJYta} ds 1

2 

= ~: ~:E(E {Us! IIJYta} · E { Utf ll3Ma})dsdt 

~ ~:E IE {Us! IIJYta} l2ds 

~El E{/IIJYta} I2 =EI Pnafl 2· 

(3. 3) 

Since E1Pn1/l 2 and Elf-Pn_ 1/l
2 are non-increasing functions oft, condition 

(3. 1) shows that 

~ (1Pnafol2+ lfo-PILafo l2)< oo. (3. 4) 
a~o 

Because of (3. 3) and (3. 4), it follows by Theorem 1 that 

lim ~·~
1

U1kfo \ hrn =ao, 
n-->oo k=O 2 

but it is easily proved that ao=a. Furthermore, we have 

D 
Xn(fo) ~ W, 

where Xn(/0) is defined by (1. 1). Therefore, relation (3. 2) will follow by Theorem 
4. 1 of Billingsley (1968) if we show that 

where rJn=SUP I Xn(fo, l)- Yn(f, l) 1. 
t 

Now 

1 ~i On~ . r- max I Us! Ids, 
(J'\f n Io;;;;i.;,;;n i-1 
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so that 

p 

Since E I !o 1

2 < oo, we have on ----+ 0. This completes the proof of Corollary 1. 

Remark. (1) The relation (3. 2) persists if n goes to infinity in a continuous 
manner. 
(2) Gordin's Theorem will be extended by the same manner as Corollary 1. 

4. Dominated Measures, Nonstationarity 

We shall return to the case of discrete time. In this section, we shall show 
that Theorem 2 remain true if P is replaced by an arbitrary probability measure 
Po on (X, 511) dominated by P. Under Po transformation T need not be measure
preserving, i. e. process { unt; n = 0, ± 1, ... } need not be stationary. 

We shall need the following preliminary result given by Renyi (1958) (in 
which a(511*) denotes the Borel field generated by 511*). 

Lemma (Renyi). Let Eb E2, · · · be measurable sets in a probability space (X, 511, 
P). Suppose there exist a constant a and a subfield 511* of 511 such that 

P(EnnE) ~ aP(E) 

for every E in 511*. Suppose further that all the En lie in a(31*). If P dominates 
Po, a second probability measure on 511, then 

Po(En) ~ a. 

In this section, symbol 1/IP.q denotes norm of a function f in Lq(P). 

Theorem 3. Let T be a Kolmogorov automorphism, Po be a probabity measure 
on 511 dominated by P and jEL2+0(P) for some O:::;;;a:::;;;oo such that /E9' and 

~ IPnafl~o__ <oo. 
a~o l+o 

If a>O and Xn is defined by (1.1), then 

Po{XnEA} ~ W(A) 

for every W-continuity set A in Dco.tJ• where 

a=l~~ I~: Ukf ,P,21 ~n. 
Remark. (1) In (4. 1), symbol W denotes Wiener measure. 
(2) Of cause, (4.1) implies 

33 

(4. 1) 



YuTAKA KATO 

Now, we shall prove Theorem 3 by the same manner as the proof of Theorem 
16. 3 of BILLINGSLEY (1968). 

Proof. Define X~ by 

1 [nt]-1 

X~(f, t) =--- -- I; U1cf, 
av' n lc=pn 

where { Pn} is a sequence of integers going to infinity slowly enough that Pnl ,.;-n,
-o (X~(f, t) =0 if [nt] <Pn + 1). If 

Vn=SUP I X~(t)-Xn(t) I, 
l 

then 

By Minkowski's inequality and the fact that Pnl ,.;-n,- - 0, 

=-En__! f II - 0, 
av' n . P,z 

so that, we have 

where (4. 2) is interpreted in the sense of P. 

By Theorem 2, we have 

D 
Xn~ W, 

(4. 2) 

(4. 3) 

where again the relation is interpreted in the sense of P. Since Skorohod topology 
is dominated by uniform topology, it follows by (4. 2), (4. 3) and Theorem 4.1 of 
BILLINGSLEY (1968) that 

D 
x~~ w (4. 4) 

in the sense of P. 
Let A be a W-continuity set in Dco. 1J, temporarily fixed; (4. 4) implies 

P{X~EA} - W(A). (4. 5) 

If EE LJrf., then, since f E g, Pn - oo and T is a Kolmogorov auto., we have 

1 P({X~EA} nE)-P{X~EA}P(E) 1 - o, 
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so that, it follows by (4. 5) that 

P({X~EA} n E) ---+ W(A)P(E). 

Therefore, it follows by Renyi's lemma that 

Po{X~EA} ---+ W(A). (4. 6) 

Since (4. 6) holds for every W-continuity set A, (4. 4) holds when interpreted 
in the sense of Po. Since Po is absolutely continuous with respect to P, it follows 
by ( 4. 2) that for any positive s 

Therefore, applying Theorem 4. 1 of BILLINGSLEY (1968) once more, we see that 
(4. 3) holds in the sense of Po, which completes the proof. 

5. Randomly Selected Partial Sums 

Sometimes one require an approximate distribution for a partial sum C"(f) = 
f + Uf+ · · · + U"- 1

/, where the index ll is itself a random variable. Here we shall 
prove several functional central limit theorems for such randomly selected partial 
sums. 

To formulate a limit theorem, consider a sequence {lin} of positive-integer-valued 
random variables defined on (X, c5}t, P). We seek conditions under which 

/) 

Y n ------+ W, as n ---+ oo, (5. 1) 

where 

1 
Yn(f, f)=---~ ---:-C[vntJ(J), 

(]'\f lin 
O:::;t:::;l. (5. 2) 

Now BILLINGSLEY (1968) proved the interesting result as follows. 

Lemma (BILLINGSLEY, 1968, Theorem 17.1). If 

where 0 is a positive constant and the an are constants going to infinity, then 

D 
Xn(f) ------+ W 

implies (5. 1), where Xn(f) is defined by (1. 1). 

As a corollary of Theorems 1 and 2, we have the following results by using 
this BILLINGSLEY'S lemma. 

Corollary 2. Let T be ergodic and f EL2 such that 
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L: (IPna/12+ I/ -Pn_a/12)<co. 
a:2:0 

If 

!.in p 
~o, 

where 0 is a positive constant and the an are constants going to infinity, then (if 
a>O) 

D 
Yn~ W, 

where Yn is defined by (5. 2) and 

a= lim ~~
1

Ukfi1 /v-ii. 
n-->oo k=O 2 

When T is a Kolmogorov automorphism, we have the following result. In the 
remainder of this section, c511o is a Borel field determined by the definition of 
Kolmogorov auto. 

Corollary 3. Let T be a Kolmogorov auto. and /EL21a for some O~o~co such that 
/Ec:f and 

L: I Pilaf l_l_±_il_ <co. 
a:2:0 I+o 

If 

p 
{}, 

where 0 is a positive constant and the an are constants going to infinity, then 
(if a>O) 

D 

Yn W, 

where Yn, a are the same as those in Cora. 2. 
Next, we shall show that Corollary 3 remains valid even if (} is not constant. 

Theorem 4. Let T be a Kolmogorov auto. and /EL21 o for some O~o~co such 
that /Ec:f and 

L: I Pu,J \ .z+:~ <co. 
a :2:0, , 1 ! t1 

If 

!.in p 
~ (}, 

where 0 is a positive random variable and the an are constants going to infinity, 
then (if a>O) 
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D 
Yn~ W, 

where Yn. a are the same as those in Coro. 2. 

Proof. Define Xn(f) by (1. 1) and X~(/) by 

1 [nt]-1 

X~(/, t) = I - L: Ukf, 
(J'\f n k=pn 

where {Pn} is a sequence of positive integers going to infinity slowly enough that 
Pni-V_n_---+ 0 (X~(f,t)=O if [nt]<Pn+1). Then, as in §4, we have 

p 

sup I Xn(f, t)-X~(f, t) I ~ 0 
t 

and 

P({X~EA} nE) ---+ W(A)P(E) 

for every W-continuity set A and for every E in 3}l. The proof now goes 
through precisely as the proof of Theorem 17.2 of BILLINGSLEY (1968). 

6. Application to Renewal Theory 

BILLINGSLEY (1968) proved a interesting result for functional central limit 

theorem connected with renewal theory. Here we shall state several properties 
which are immediate consequences from BILLINGSLEY's result. 

Let /(x), lies in Lz, be a positive function and define 

where J..lr(x) =0 if /(x) > -r. Furthermore, we shall define two random elements in 
D[O,!] by 

1 [111.]-1 

Xn(f, t) = ·· ;--- ,l: ( Uij- p), 
av n i=o 

where O~t~ 1 and p, a are suitable positive numbers. 
D D 

BILLINGSLEY (1968) proves that Xn ~ W implies Zn ~ W. Therefore, 
we have the following properties from the results in Section 2 and 4. 

Corollary 4. Let T be ergodic and /ELz such that f>O and for some 11>0, 
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Then (if a>O) 

When T is a Kolmogorov auto., we have the following corollary. In the 
remainder of this section, c5Uo is a Borel field determined by the definition of 
Kolmogorov auto .. 

Corollary 5. Let T be a Kolmogorov auto. and /EL2 a for some O~o~c:>o such that 
f>O, /E9' and 

for some p>O. Then (if a>O) 

D 
Zn~ W, 

where a=lim 1

1

7

I;
1 

( Uk f- 11) 1/v n . 
n->oo , k=O 12 

The following corollary shows that Corollary 5 remains true if P is replaced 
by an arbitrary probability measure Po on c5l1 dominated by P. Symbols in the 
following corollary are the same as those in Section 4. 

Corollary 6. Let T be a Kolmogorov auto., Po be a probability measure on c5}t 

dominated by P and /EL2;a(P) for some O~a~c:>o such that f>O, /E9' and 

for some p>O. Then (if a>O) 

(6. 1) 

for every W-continuity set A in Dco. 1J, where 

Acknowledgments 

The author would like to express his thanks to Prof. T. ONoY AMA of Keio 
University and Prof. M. KowADA of Tokyo University of Education for their 
encouragement and suggestions. 

38 



Functional Central Limit Theorem for Stationary Processes 

REFERENCES 

A. Rf:NYI (1958): On mixing sequences of sets, Acta Math. Acad. Sci, Hung. 9, 215-228. 
I. A. lsRAGIMOV (1962): Some limit theorems for stationary processes, Theor. Probability. 

7, 349-382. 
I. A. lsRAGIMOV (1963): A central limit theorem for a class of dependent random variables, 

Theor. Probabillity Appl. 8, 83-89. 
I. A. lBRAGIMov and Yu. V. LINNIK (1971): Independent and Stationay Sequences of Random 

Variaoles, Wolters-Noordhoff Pubblishing Groningen, The Netherlands. 
]. L. Doos (1953): Stochastic Processes, New York, John Wiley and Sons. 
M. I. GoRDIN (1969): On the central limit theorem for stationary processes (Russian), 

Doklady AN S.S.S.R., 188, 4 (1969). 
P. BILLINGSLEY (1961): The Lindeberg-Levy theorem for martingales, Proc. Amer. Math. 

Soc. 12, 788-792. 
P. BILLINGSLEY (1962): Limit theorems for randomly S;}lected partial sums, Ann. Math. 

Stat., 33, 85-92. 
P. BILLINGSLEY (1968): Convergence of Probability Measures, New York, John Wiley and 

Sons. 
D.]. ScoTT (1973): Central limit theorems for martingales and for processes with sta

tionary increment, using a Skorohod representation approach. Adv. Appl. Probability. 
5, 119-137. 

39 


