EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title Functional central limit theorem for stationary processes
Sub Title
Author Kato, Yutaka
Publisher BRRBAXFIFH
Publication year |1975
Jtitle Keio engineering reports Vol.28, No.4 (1975.) ,p.23- 39
JaLC DOI
Abstract In this paper we shall deal with a functional central limit theorem for stationary processes.
We shall show by using Gordin's method that the functional central limit theorem (the version of
Donsker's invariance principle) holds for a class of stationary sequences. Furthermore, we give
various functional central limit theorem.
Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00280004-

0023

BREFBAZZMERVARD NU(KOARA)IZEBEEATVWAR OV TV OEEER., ThThOEESE, ZLFTLFHRLWRETECREL. TOEINEEEEEICELST
RETNTVET, 5lAICHLE> TR, EFEELZEFLTIRASEZTL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

KEIO ENGINEERING REPORTS
VOL. 28, NO. 4, pp. 23-39, 1975

FUNCTIONAL CENTRAL LIMIT THEOREM
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ABSTRACT

In this paper we shall deal with a functional central limit theorem for stationary
processes.

We shall show by using Gordin’s method that the functional central limit theorem
(the version of Donsker’s invariance principle) holds for a class of stationary sequences.
Furthermore, we give various functional central limit theorem.

1. Introduction

In order to prove a central limit theorem for stationary processes, M. 1. GORDIN
(1969) gave a new method, which differs from the methods of S. N. BERNSTEIN (used
in Chapters 18 and 19 of IBraciMov and LinNIk (1971)). GoORDIN’s method is at
first to approximate the stationary process under investigation by a sequence of
martingale differences, and then to use the central limit theorem for martingale
differences with finite variances which was proved independently by P. BILLINGSLEY
(1961) and 1. A. IBrRAGIMOV (1963).

P. BiLLINGSLEY (1968) proved the functional central limit theorem for a stationary
ergodic sequence of martingale differences with finite variances.

In this paper we shall show by GorbpIN’s method that the functional central
limit theorem holds for a class of stationary processes. Furthermore, we give
various functional central limit theorem. Some theorems of BiLLiNGsLEY (1968, § 20,
§ 21) are obtained as corollaries of the results obtained in this paper.

Suppose that there exists a probability measure P defined on a Borel field ¥
of sets of some space X. Space L, corresponds to measure P; |f|, denotes norm
of a function f in L,. If a Borel field 7 is contained in %, then H(J) denotes
Hilbert space of those function in L., which is measurable with respect to J7. Pe¢
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denotes orthogonal projection onto closed subspace GC H=L,.

Let T be a 1-1 measure-preserving point transformation on X and ., be a
Borel field such that T-'( He)C M. Relation Uf(x)=f(Tx) defines a unitary trans-
formation U on H.

Spaces My, Hi, Sy and & are defined by the following relations;

Mie=T"*( M),
ch:H(g%k)y
Sk=Hx @ Hii,

G= f; measurable with respect to .M } '
- for some &, —oo<k< o0,

n—1

Finally, for fe L, let C,(f)=>] UXf be the partial sums and X,(f) be the random
k=0

element of Skorohod space Dp,;; whose value at # is

Xulf, 0=, 5 Conrl ), .y

where X,(f,t)=0 if [#t]<1, ¢ is a suitable positive constant and 0 <z<1.

In Section 2 we shall investigate the problem of finding the conditions which

the relation

X, —— W (1.2)
holds, where W denotes Wiener process and X, 2, W means that X, converges
in distribution to W.

In Section 3 we shall extend the results in Section 2 to the case of stationary
processes with a continuous time parameter.

In Section 4, by using the preliminary lemma given by Rényr (1958), we shall
show that the results in Section 2 remain true whenever P is replaced by an
arbitrary probability measure P, on (X, ) dominated by (absolutely continuous
with respect to) P.

In Section 5 we shall prove Donsker’s invariance principle for randomly selected
partial sums by the same manner as P. BiLLINGSLEY (1968, § 17).

In Section 6 the results obtained in this paper are applied to renewal theory.

2. Main Results

We first show the following theorem which implies Theorems 20.1 and 21.1
of BILLINGSLEY (1968).

Theorem 1.* Let T be ergodic and f e L, such that
2 UPa S o+ | f—Pu_of |2)<oco.
az0

* D.J. ScorT (1973) Proved this theorem by using a Skorohod representation approach.
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Functional Central Limit Theorem for Stationary Processes

Then
lim ICal )]/ 1 =0 2.1)
if ¢>0 and X, is defined by (1.1), then
X, — W. 2.2)

Proof. For non-negative integer ¢ and f € L,, define

f®=Puf,  f=f~Pu.f,
fo=f=fO=fi®  ha= T U"Ps.fa
-n—1

Ja= Z Z U PSnfa;

n=—o m=0
then we have
fzha+ga_ Uga+f_fa~ (2° 3)

From Theorems 1 and 2 of GorbIN (1969), we have relation (2.1), and from
the proof of Theorem 1 of GorpIN (1969), it follows that

6o, —> 0, as a —>» ©o, (2.4)

where o,=]%,l.. Since ¢>0, there is no loss of generality in assuming o,>0 for
each a.

Since 44 € S,, it follows that sequence {U"%,} is ergodic sequence of martingale
differences. Therefore, from Theorem 23.1 of BiLLINGSLEY (1968), we have

Xalha) s EW, as n — oo (2.5)
for each @, and from (2.4), we have also

%W_ﬁ., W, as a —> co. (2.6)
Then, because of (2.5) and (2.6), the relation (2.2) will follow by Theorem 4.2 of

BiLLiNGsLEY (1968) if we show that

lim llmsupP{do(Xn(f) Xa(hy))>et=0 2.7
for each positive ¢, where d, denotes the Skorohod topology on D, Since
Skorohod topology is dominated by uniform topology, (2.7) will follow if we show
that for each positive ¢

lim limsup P{ max

a—co  n—oo 1<i<n

Ja B

}:0. 2.8)
From (2.3), we have
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P{max‘«/rnr ZU"f fa)| >

1<i<n k=0

<P{}1<1?<xn v1h~- E)U’“(f—fa) >4el
+P[¥r<1?<xnh/ ZU (ge— Uga) >4e}
=J1+/s 2.9

First of all, we shall prove that lim limsup /,=0. From the definition of f,, we

a—c0  p—oo

have

L P {max

j=1 (1<i<n

«/ n z: L]kj?a)

k=0

2
}:Z‘],,,-. (2.10)
]:
Define
G=UE{ f+ - +fT | Ma)
—UE{fT 4+« + T | M}, i=1,2, e ,

then

Ju 1<P{max

1<i<n

+P{max —4,::Ui j EUFT) Mo >
1<i<n V'n k=1

Since &€ H, ;-1 © H, ., it follows by martingale-inequality (Doos, 1953, p317) that

e

Next, we shall estimate the second term of (2.11).

}, @.11)

2 n—1 2
E|Y U™,

k=0

< 4
ey

n
2 &k

k=1

P[ max

1<i<n

«/n Zflc

k=1

(2.12)

U kgilE{fTﬂema}i>>e}

>

P{ max

1<ign

<§"1PH Z (T4 Ma)

T

L ols B

2

<

i

1

Furthermore, from Minkowski’s inequality

i
(T-4Hal| < 3[BT |
=3 |V | < T |PnS
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Functional Central Limit Theorem for Stationary Processes

Then we have

1 2
S TT k . .
p{{gg U EEUT A s b < (T [Pus) ) 2.13)
From (2.11), (2.12) and (2.13), it follows that
1 2
JinSa 7»( % | Pt ) . (2.14)
[ - 2
Now, we shall estimate J;,; by the same manner as J;,,.
Define
i—-1
n=U"1" l;o(fT"—E{fT"HﬂLa})
—US R UT BT Hal), =120,
=1
then
J <P{maxl ! i’ \=}
BEST ) cidn v nﬁ:lm -

>e}. (2.15)

1<ign

{max | \/1 U-i é( FT —E{fT¥|.H-a))

Since p€H o i O H 4 ., it follows by martingale-inequality (Doob, 1953, p317)
that

P {fi‘?zi‘m Z ‘>5} ‘"z’ka““‘ (2.16)

and we have by the same manner as (2.13)

Pluss U BUTEUT D]

y

Therefore, from (2.15), (2.16) and (2.17), we have

Im—1

s B R U+ (8 F—Pu m) (2.18)

From Theorem 2 of Gordin (1969), it follows that

n—1

T U /v —o0,

lim limsup

a—o  n—oo

so that, from (2.10), (2.14) and (2.18), we have
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lim limsup J, =

a—-00 N0

We turn now to the proof of lim limsup J.=0

a-—-o  poco

/- P!fi‘?é, Vn ,CZOU (6a— Uga) >45}
<Pl Lo s }+P{max U >e}
= '\/ Ja g max '\/ " . Ja
::]2, 1+]2‘ 2 (2. 19)
Since g4 € Ly, we have
lim /,,,=0 2.20

n—oo

for each @, and from absolutely continuity of Lebesgue integral, there exists a
positive number o(z) for each positive p2 such that

S \gal*dP< 2.21)
A

for every measurable set A for which P(A)<p. Furthermore, there exists a posi-
tive number #,(c, p) such that n>mnq(e, p) implies

o)

<o >e}<p, (2.22)

By Chebyshev’s inequality

Jon< 3, P{~ L i

i=1

s

Ga

)
1 en T‘i{:/lz—lga B

lgal*dP,

N
M-

3

it follows from (2.21) and (2.22) that [, .<p/e* holds for n>mn, (s, p). Since p is
arbitrary small, we have for each «

K

\f

lim J, .=0,

N—00

so that, from (2.19) and (2. 20), we have

lim limsup /,=0.
This completes the proof of Theorem 1.
If T is a Kolmogorov automorphism and f € &, then the condition of Theorem
1 is weakened as one in Theorem 2. In the next theorem, S, is a Borel field
determined by the definition of Kolmogorov automorphism.

Theorem 2. Let 7 be a Kolmogorov automorphism and fe€ L,,; for some 0<<d<<oo
such that fe & and
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2

az20

Pu,f

243 <L 00,
1+46

Then
1ni£n ICal )l v/ 0 =0
if 6>0 and X, is defined by (1.1), then

X, —2 W.

Proof. Since we can estimate all the terms except the second term of (2.11) by
the same manner as the proof of Theorem 1, Theorem 2 is proved if we show that

>e}=0 (2.23)

lim limsup P{ max Zl: E{fT*| Ma}

1<i<n \/V 7

a— |--co

for each positive e.
Since T is a Kolmogorov auto., it follows that for any Be ¥

lim a(k B) =0, (2. 24)
where «(k|B)= sup |P(AB)~P(A)P(B)
= sup |[XANTB) - P(A)P(B).

To prove (2.23), consider the sets

Aan {max >e}

1<ign

«/";’U’ ;Z E{fT*|| Md}

,,147 : k
S U B BT 1501 <

/4a.n,j:: ’
1 o J - |
and | - U? 33 BT\ >

.l

First of all, we shall estimate P(A,,.) for ¢ such that P(B,)=0. By Chebyshev’s
inequality,

=)

B.,=‘Z

E{fT¥|| Ma}

P(Aa.n)zi P(A(Ln.j)

<E || U! £ BUTAa [ ap
- S (Z|Burrim ) ar
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so that, from the definition of B, and MiNkowskl's inequality, we have

{

Pinn<t | 52| Btrr ) ap

1
<
2

k a

P, f ’m (2. 25)

1448

Next, we shall estimate P(A,,,) for @ such that P(B,)>0. By Fubini’'s theorem

P(AanNT"B)=3 P(Ag.n.; N T"Ba)
Jj=1

<5y S U | E(FT-41.91) | dP.
=1k=1 € Jag g

From well-known properties of conditional expectation, it follows that for any
square integrable functions f and ¢, and for any integer #,

S E{f1|Ha)- U "E gl Ha) dP

=S E{f1.Ha} U-"E {q]| . HMarn) dP,

so that, we have

SAa,,n,jU_n E{fokHﬂa}.dP

=S U ap.
Aa m j

E{fT*| Man}

Therefore, we have

P(As .NT"By)

(
[ U BUT ) P

>

n 1 S i
— o U; n
-1 € JAg

k=1

E{fT¥*| Marn} | dP

213 (2.26)

Since A,.. lies in M, for any non-negative @, we have
P(Au 0 T"BY) < P(Au. o) P(BS) +a(n BS). (2.27)
Since P(B,)>0, it follows by (2.26) and (2.27) that

P(Aa,n)g—“l“_{—]‘-‘ Z lPka

P(Ba,) € Lk a+tn Aij:; +a(n]Ba>}y
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so that, from (2.24) and assumption, we have

lim P(Aq. ) =0 (2.28)

N—0

for @ such that P(B,)>0.
Therefore, from (2.25) and (2.28), it follows that for any «

limsup P(Aq. ») <% P

n—»oco k. a

P.ka

244,
1+

so that we have (2.23). This completes the proof of Theorem 2.

3. Functional Central Limit Theorem in Continuous Time

Theorem 1 has a natural formulation with measure-preserving transformation
T replaced by a flow {T}; teR"}. Let {T}; tcR'} be a flow defined on (X, M, P)
and M, be a Borel field such that 7. HM,C T, Mo for every s<¢. Relation U, f(x)=
AT, z) defines a group of unitary transformation {U,; teR'} on H.

Spaces M, H, and & are defined by the same manner as §1, i.e.

ﬂ’izZT—LWO,
H’tzH(z_ﬂ/tl);

f; measurable with respect to ., }

‘C'F:[ for some teR.
As a corollary of Theorem 1 we have the following:

Corollary 1. Let {7T;; teR'} be a weakly mixing flow and feL. such that

S:quflmf—PH_tf12>dt<oo. 3.1)

Then
Vl} S: U f(x)ds ‘ =0;

2

lim

t—c0

if 6>0 and Y, is defined by

vih =\ s, 0st<t,

then

Yu(f) —— W. (3.2)
Proof. 1If

31



Yuraka Karo

Fol) = S U, f(z)ds,

then, by Fubini’s theorem

2
Eifk<| (|| asap=r1 £ <o, (3.3)
XJo
Since E{S Usfds”j{ }=S {Usf || Ma} ds with probability 1, we have

E| Py folz—E‘S (U f || Ha} ds |

S SE(E Usf || M) E (U F || Ha)dsdt

<S:EJE{UstIﬂ4a} I2ds

SE|E{f|| Mo} P=E| Pn, S|
Similarly,
E|fo—Pu_ fo’<SE|f—Pu_,fI*

Since E|Py f|* and E|f—Pu_ f|* are non-increasing functions of #, condition
(3.1) shows that

25 (Pu, fole+1 fo—Pu_, fol2)<oo. (3.4)
az=0
Because of (3.3) and (3.4), it follows by Theorem 1 that

lim

n—o0

Z[]lf() /'\/n =00,

but it is easily proved that ¢y=¢. Furthermore, we have

Xolfo) —— W,

where X,(f,) is defined by (1.1). Therefore, relation (3.2) will follow by Theorem
4.1 of Billingsley (1968) if we show that

P
on — 0,

where dn=sup | Xu(fo, )= Yu(f, 1) |.
12

Now

1 i
OnK—F— max Usf | ds,
\/ n 1gign Sz 1 | f ]
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so that
1

o’ S(lfo(x)l*us Vi)

Plon>e}< | fol)|*dP.

Since E| fy|?<oo, we have 4, SN 0. This completes the proof of Corollary 1.

Remark. (1) The relation (3.2) persists if # goes to infinity in a continuous
manner.
(2) Gordin's Theorem will be extended by the same manner as Corollary 1.

4. Dominated Measures, Nonstationarity

We shall return to the case of discrete time. In this section, we shall show
that Theorem 2 remain true if P is replaced by an arbitrary probability measure
P, on (X, M) dominated by P. Under P, transformation T need not be measure-
preserving, i.e. process {U"f; n=0, +1, ---} need not be stationary.

We shall need the following preliminary result given by Rényi (1958) (in
which ¢(M*) denotes the Borel field generated by .H*).

Lemma (Rényi). Let £\, E,,--- be measurable sets in a probability space (X, %,
P). Suppose there exist a constant « and a subfield H* of .4 such that

PE.NE) — aP(E)

for every Ein *. Suppose further that all the £, lie in ¢(%*). If P dominates
P,, a second probability measure on ¥, then

PyE,) — «a.
In this section, symbol |f|p,, denotes norm of a function f in Ly (P).

Theorem 3. Let 7 be a Kolmogorov automorphism, P, be a probabity measure
on M dominated by P and feL.,;(P) for some 0<d<co such that fe&F and

2

az0

If 4>0 and X, is defined by (1.1), then

Py, f

2ts <00,
1+6

P X,eA} — W(A) “4.1)

for every W-continuity set A in Dy,,;, where

g=lim

n—oo

z vt / ey

Remark. (1) In (4.1), symbol W denotes Wiener measure.
(2) Of cause, (4.1) implies
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1 x 1 _ u?
k < [ 202 .
0U f x} — S—-oo Von Ue du

1 nz

Plvn &

Now, we shall prove Theorem 3 by the same manner as the proof of Theorem
16.3 of BILLINGSLEY (1968).
Proof. Define X, by
1 [nt]—1

XUn=_,, L U’

k=py

where {p.} is a sequence of integers going to infinity slowly enough that p./+/ %
—0 (X, (f,6)=01if [nt]<p,+1). If

then

~ <*1 Dgl kai
On\(f'\/ ;l i=0 ’

By Minkowski’s inequality and the fact that p./v/ n — 0,
P

m 1| (
5 |
=0 P2

1

. 1
[ On |p,z<(;"«/>hf

_bn |
Tavm ,

f’ —'—>0;

P2
so that, we have

P
~

3 —— 0, (4.2)

where (4.2) is interpreted in the sense of P.
By Theorem 2, we have

X, —— W, 4.3)

where again the relation is interpreted in the sense of P. Since Skorohod topology
is dominated by uniform topology, it follows by (4.2), (4.3) and Theorem 4.1 of
BiLLINGSLEY (1968) that

X, —— W (4.4)

in the sense of P.
Let A be a W-continuity set in Dy, ,;, temporarily fixed; (4.4) implies

P{X,eA} — W(A). (4.5)
If Ee M, then, since feF, pn — oo and T is a Kolmogorov auto., we have

| P{X,e A}NE)—P{X,e AAP(E)| —> 0,
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so that, it follows by (4.5) that
P({X, e AANE) — W(APE).
Therefore, it follows by Rényi’s lemma that
PyX,e A} — W(A). (4.6)

Since (4.6) holds for every W-continuity set A, (4.4) holds when interpreted
in the sense of P,. Since P, is absolutely continuous with respect to P, it follows
by (4.2) that for any positive ¢

Po{(;nZE} —_— 0-

Therefore, applying Theorem 4.1 of BiLLINGSLEY (1968) once more, we see that
(4.3) holds in the sense of P,, which completes the proof.

5. Randomly Selected Partial Sums

Sometimes one require an approximate distribution for a partial sum C,(f)=
f+Uf+---+U"'f, where the index v is itself a random variable. Here we shall
prove several functional central limit theorems for such randomly selected partial
sums.

To formulate a limit theorem, consider a sequence {v,} of positive-integer-valued
random variables defined on (X, 4, P). We seek conditions under which

D

Y, — W, as n —> oo, (5.1)
where
1
Yn(fy t)ziig/i'i"c[v"t](f)’ 0<t<1- (5. 2)
g Vn

Now BiLLINGSLEY (1968) proved the interesting result as follows.
Lemma (BILLINGSLEY, 1968, Theorem 17.1). If

Yn P
. ———— 0,
an

where ¢ is a positive constant and the @, are constants going to infinity, then
D
Xlf) — W
implies (5.1), where X,(f) is defined by (1.1).

As a corollary of Theorems 1 and 2, we have the following results by using
this BILLINGSLEY’S lemma.

Corollary 2. Let T be ergodic and feL, such that
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ZZIO(IPHafIﬁlf—PH-aflzKOO-
If

Yn P

—

Ay

where ¢ is a positive constant and the a, are constants going to infinity, then (if
o >0)

Yn —_— W’
where Y, is defined by (5.2) and
n—1 [ o
o=lim |5 U7 /«/n :
n—ooo | k=0 2

When T is a Kolmogorov automorphism, we have the following resuit. In the
remainder of this section, 9, is a Borel field determined by the definition of
Kolmogorov auto.

Corollary 3. Let T be a Kolmogorov auto. and feL,,; for some 0<d<co such that
fesF and

z

=0

Py, f

228 <00,
1+0

If
Yn P

an

0,

where ( is a positive constant and the @, are constants going to infinity, then
(if ¢>0)

D
Y, — W,

where Y,, ¢ are the same as those in Coro. 2.
Next, we shall show that Corollary 3 remains valid even if ¢ is not constant.

Theorem 4. Let T be a Kolmogorov auto. and feL,,; for some 0<d<oo such
that fe<% and

)3

az0

PHuf

zts <L OO
]

If

» P
RN 0,

an

where ¢ is a positive random variable and the @, are constants going to infinity,
then (if ¢>0)
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Yo —— W,
where Y,, ¢ are the same as those in Coro. 2.
Proof. Define X,(f) by (1.1) and X,(f) by
Xin0= ) 5 U,

oV n w5,
where {p.} is a sequence of positive integers going to infinity slowly enough that
Dol — 0 (XL(f, )=0 if [nt]<pn+1). Then, as in §4, we have

sup | X/, )= X4/, )| —— 0

and

P{X,e AANE) —> W(APE)

for every W-continuity set A and for every E in 9. The proof now goes
through precisely as the proof of Theorem 17.2 of BILLINGSLEY (1968).

6. Application to Renewal Theory

BiLLINGSLEY (1968) proved a interesting result for functional central limit

theorem connected with renewal theory. Here we shall state several properties
which are immediate consequences from BILLINGSLEY’s result.

Let f(x), lies in L,, be a positive function and define
k—1
v,(x):max{k; > Uif(m)<ct, <=0,
10
where v.(x)=0 if f(x)>7. Furthermore, we shall define two random elements in
Dy,\y by
1 [ntl—1

Xf0=, s, 5 W=,

Zu(f, )= (v —nt )0y~ 0 ).
where 0<¢<1 and p, ¢ are suitable positive numbers.

BiLLiNGsLEY (1968) proves that X, SN W implies Z, 2, W. Therefore,
we have the following properties from the results in Section 2 and 4.

Corollary 4. Let T be ergodic and feL, such that f>0 and for some p>0,

z( )<

'

+if—P11,af

Py f—p

2
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Then (if ¢>0)

D
Zy— W,
n—1 i .
where o=lim Z(ka—ﬂ)’ /«/ n -
n—oo | k=0 ‘2
When 7 is a Kolmogorov auto.,, we have the following corollary. In the

remainder of this section, .4, is a Borel field determined by the definition of
Kolmogorov auto. .

Corollary 5. Let T be a Kolmogorov auto. and feLs,; for some 0<d<oo such that
f>0, jeF and

%

azo0

Pu f—p 205 <oo

1+6

for some p>0. Then (if ¢>0)

Zn —_— Wv
Im—1

where ¢=lim ikgo(mf—m ;2/«/ n.

N—00

The following corollary shows that Corollary 5 remains true if P is replaced
by an arbitrary probability measure P, on 4 dominated by P. Symbols in the
following corollary are the same as those in Section 4.

Corollary 6. Let 7 be a Kolmogorov auto., P, be a probability measure on M
dominated by P and feL,,;(P) for some 0<d<oo such that />0, fe<F and

| i
2 \Pﬂuf—ﬂ(ﬂ_’b;vt,'\/oo
a=0 1:4
for some p>0. Then (if ¢>0)
PiZ,e A} — W(A) (6.1)

for every W-continuity set A in Dy, ,;, where

s=lim :g:(ka—me,z/v " .

n—oa
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