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ABSTRACT 

Some necessary and sufficient conditions for a pair of consistent linear matrix equations 
to have a common solution are given. A simpler algebraic proof o£ Mitra's theorem on 
the rank of sum of non-negative definite matrices is also given. 

1. Introduction 

The first purpose of this note is to show some necessary and sufficient condi
tions for a pair of matrix equations 

(1. 1) 

and 

(1. 2) 

each of them is consistent, to have a common solution (Theorem 1). One of the 
conditions was obtained by Mitra (1973 a). Our new ones and the proof are more 
rudimental. The problem considered here is different from the one treated by 
Morris and Odell (1968) who have not assumed given matrix equations to be 
consistent. 

Studying the algebraic network theory Mitra (1973 b) proved a theorem on 
the rank of sum of n.n.d. (non-negative definite) matrices based on statistical 
considerations. The second purpose of this note is to give a simpler algebraic 
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proof of Mitra's theorem (Theorem 2). The proof is partly based on Theorem 1 
and motivated this note. 

Capital letters denote matrices with complex elements throughout the paper. 
For a complex matrix A, A* denotes its transposed conjugate and A- a generalized 
inverse of A, that is a matrix such that AA-A=A. Et(A) and JZ(A) are the 
range space and the null space of A respectively. 0 denotes the zero matrix of 
suitable size. 

2. Main Results 

Lemma. Let A1, Az, A; B1, Bz, and B be matrices such that 

A matrix Z satisfies 

( 3) AZB=O 

if and only if there exist Y 1 and Yz such that Z = Y1 + Yz and 

( 4) i=1, 2. 

Proof. Necessity. Let S and q be subspaces such that 

and 

There exist projectors (idempotent matrices) P and Q such that !:R(P*) = g{(AI *) and 
~n(P*)~S; !R(Q)=!R(BI) and JZ(Q)~':J. since Et(AI*)n s ={0} and .Yt(B~)n q 
={0}. Put Y1=Z-PZQ and Yz=PZQ. Clearly these satisfy (4), since A1PZQB1= 
A1ZB1 and AzPZQB2=0. 

Sufficiency. Because of (2) A and B can be written as A= W1A1 = W2A2 and 
B=B1V1=BzVz. (4) implies WiAiYiBiVi=AYiB=O, i=1,2, and thus (3). 

Theorem 1. The following conditions are equivalent. We assume A and B to 
to satisfy (2). 
( i ) Matrix equations (1. 1) and (1. 2) have a common solution. 
( ii) There exist Y1 and Yz which satisfy (4) and 

Y1+ Yz=X1-X2 

for some (any) solution xi of (1. i), i = 1, 2. 

(iii) 

for some (any) solution xi of (1, i), i=1, 2. 
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(iv) 

where g-inverses are some fixed ones or any ones. 
( v) (Mitra 1973 a) 

Proof. ( i) ~ (iv). If X is a common solution of (1. 1) and (1. 2), then 

(iv)->-(iii). Put Xi=AiCiBi, i=1,2, and let Zi be a solution of (l.i), i=1,2. 
xl and x2 satisfy (iii) and 

Thus Xi is a solution of (1. i), i = 1, 2. 
(iii)~ ( ii ). Just apply Lemma. 
( ii) ~ ( i ). Let X be a common solution of (1.1) and (1. 2). For any solution Xi 
of (l.i), i=1,2, put Y 1=X1-X and Y~=X-Xz. 

(iv) ~ ( v ). The equation of (v) can be written as 

where AtAl(AtAl+AtA2)-AtAz=AtJL(AtA~+AtAz)-AtA1 is a matrix with the 
property of the matrix A of (iv) and BzBt(B1Bt+BzBt)--BlB1=BlB1(BlB1+ 
B2Bt)-BzBt of B of (iv). (See Anderson and Duffin (1969) or Rao and Mitra (1971)). 

Remark 1. The theorem is easily generalized as follows. Let 

(5.1) i=1, 2, ... , m, 

and 

(5. 2) j=1,2,· .. ,n. 

be s~ts of matrix equations, and each set be consistent. Corresponding to these 
consider sets of homogeneous equations 

(6.1) i=l,2, ···,m, 

and 

(6. 2) j=1,2, .. ·,n. 

Let A and B be matrices such that 
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E{(A *) = {E{(A~) + E{(A~) + · · · + .5R(A~)} n 

{E{(A~) + E{(A~) + · ·· + E{(A~)} 

E{(B) = {E{(Bll) + E{(Blz) + · ·· + E{(Blrn)} n 

{E{(Bzl) + E{(Bzz) + ·· · + .5R(Bzn)}. 

Now the following conditions are equivalent. 
( i ) (5.1) and (5. 2) have a common solution. 
(ii) There exist solutions Yi of (6.i), i=1,2, such that Y1+ Yz=X1-Xz for 

some (any) solutions Xi of (5. i), i = 1, 2. 
(iii) A(X~- Xz)B=O for some solutions Xi of (5. i), i =1, 2. (This statement is not 

always valid for arbitrary solutions.) 

Remark 2. As a special case of the theorem consider a pair of matrix equations 
AiX=Ci, i=1, 2, each consistent. The following conditions are equivalent. 

( i ) [::J X= [~:] is consistent. 

( ii) E{(X~- Xz) c Jl(AI) + Yl(Az) for some (any) X1 and Xz such that A1X1 =C1 
and A2X2 =Cz. 

(ii*) <~R(A;-C~-A;-Cz)CJ2(A~)+Jl(A2) for some (any) generalized inverses A;- and 
A;. 

(iii) At A1(AtA1 +AfAz)-AfCz=Af Az(AtAI +AfAz)--AtCJ. 

Remark 3. We generalize the theorem to another direction. Let matrix equations 
AiX=Ci, i=1, 2, ···, k, each be consistent. Then the following conditions are equi
valent. 

[ A:.~] X= [C:. 1lJ ( i ) is consistent. 
Ak ck 

k k 

(ii) AtAi( I; AjA1)-( I; AjC1)=( I; AjA1)( I; AjA1)-AtCi, i=1,2, ···,k. 
j=l j"'c-i j"'c-i j=1 

i i-1 i-1 i 

(iii) AtAi( I; AjA1)-( I; AjC1)=( I; AjA1)( I; AjA1)-AtCi, i=2,3, ···,k. 
j=l 1=1 }=1 i=l 

( iv) E{(X(i)- xi< I) c n JZ(Aj) + Jl(Ain), for some X(i) and Xi-rl such that 
j=1 

( ± AjA1)X(i)= t AjC1 and Ai+lXi+l=Cilb for i=1,2, ···,k-1. 
}=1 j=l 
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3. Rank of Sum of N.N.D. Matrices 

In this section we give a simpler algebraic proof of Mitra's theorem on the 
rank of sum of two n.n.d. matrices. 

Theorem 2. (Mitra 1973 b) Let A and B be n.n.d. matrices of the same order and 
conformably partitioned as 

and 

where Au and Ell are square matrices of the same order. If 

( 8) rank (A+B)=rank (All +Ell), 

then 

( 9) rank A=rank All and rank B=rank Ell. 

Conversely (9) implies (8) if and only if All(All + Bu)-B12 =Bll(All + Bll)--AJ2, or 
equivalently JZ(Xl- X2) :::> .ffi(Ail) n SR(Bll) for some X1 and X2 such that A21 =X1All 
and B21 =X2Bu. 

Proof. The n.n.d. matrices A and B can be expressed as 

Put 

and 

A+B=CC* and 

Hence 

rank (A+ B) =rank (A11 + B11) 
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Therefore 

rank A=rank [At At]=rank At=rank A11, 

and 

rank B=rank [B~ Bt]=rank B~=rank B11. 

The second half of the theorem is shown easily from the above discussion and 
Remark 2 to Theorem 1. 

Remark 1. We may have another indirect proof of the first half of the theorem 
by using Theorems 2 and 3 of Anderson (1971), or equivalently by using the 
corollary to Theorem 1 and Theorem 6 of Carlson and others (197 4). 

Remark 2. The theorem can be written as follows: Let A and B be n.n.d. 
matrices of the same order, and P any orthogonal projector. Then 

rank (A+ B)= rank P(A + B)P 

-+ rank A=rank PAP and rank B=rank PEP. 

The reverse statement is true if and only if PAP{P(A+B)P}-PB=PBP{P(A+ 
B)P}-P A. PAP restricted in SR(P) is the compression of A into !R(P) (Halmos 1967). 
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