慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Consistency of a pair of matrix equations with an application
Sub Title	
Author	篠崎，信雄（Shinozaki，Nobuo） Shibuya，Masaaki
Publisher	慶応義塾大学工学部
Publication year	1974
Jtitle	Keio engineering reports Vol．27，No．10（1974．），p．141－146
JaLC DOI	
Abstract	Some necessary and sufficient conditions for a pair of consistent linear matrix equations to have a common solution are given．A simpler algebraic proof of Mitra＇s theorem on the rank of sum of non－ negative definite matrices is also given．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00270010－ 0141

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたつては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

KEIO ENGINEERING REPORTS
 VOL. 27 NO. 10

CONSISTENCY OF A PAIR OF MATRIX EQUATIONS WITH AN APPLICATION

By
NOBUO SHINOZAKI AND MASAAKI SIBUYA

CONSISTENCY OF A PAIR OF MATRIX EQUATIONS WITH AN APPLICATION

Nobuo Shinozaki and Masaaki Sibuya*

Dept. of Mathematics, Keio University, Yokohama 223, Japan

(Received, Nov. 22, 1974)

Abstract

Some necessary and sufficient conditions for a pair of consistent linear matrix equations to have a common solution are given. A simpler algebraic proof of Mitra's theorem on the rank of sum of non-negative definite matrices is also given.

1. Introduction

The first purpose of this note is to show some necessary and sufficient conditions for a pair of matrix equations

$$
\begin{equation*}
A_{1} X B_{1}=C_{1} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2} X B_{2}=C_{2}, \tag{1.2}
\end{equation*}
$$

each of them is consistent, to have a common solution (Theorem 1). One of the conditions was obtained by Mitra (1973a). Our new ones and the proof are more rudimental. The problem considered here is different from the one treated by Morris and Odell (1968) who have not assumed given matrix equations to be consistent.

Studying the algebraic network theory Mitra (1973b) proved a theorem on the rank of sum of n.n.d. (non-negative definite) matrices based on statistical considerations. The second purpose of this note is to give a simpler algebraic

[^0]proof of Mitra's theorem (Theorem 2). The proof is partly based on Theorem 1 and motivated this note.

Capital letters denote matrices with complex elements throughout the paper. For a complex matrix A, A^{*} denotes its transposed conjugate and A^{-}a generalized inverse of A, that is a matrix such that $A A^{-} A=A . \Omega(A)$ and $\cap(A)$ are the range space and the null space of A respectively. O denotes the zero matrix of suitable size.

2. Main Results

Lemma. Let $A_{1}, A_{2}, A ; B_{1}, B_{2}$, and B be matrices such that

$$
\begin{equation*}
\mathscr{R}\left(A^{*}\right)=\mathscr{R}\left(A_{1}^{*}\right) \cap \mathscr{R}\left(A_{2}^{*}\right) \quad \text { and } \quad \mathscr{R}(B)=\mathscr{R}\left(B_{1}\right) \cap \mathscr{R}\left(B_{2}\right) . \tag{2}
\end{equation*}
$$

A matrix Z satisfies

$$
\begin{equation*}
A Z B=0 \tag{3}
\end{equation*}
$$

if and only if there exist Y_{1} and Y_{2} such that $Z=Y_{1}+Y_{2}$ and

$$
\begin{equation*}
A_{i} Y_{i} B_{i}=0, \quad i=1,2 . \tag{4}
\end{equation*}
$$

Proof. Necessity. Let S and \mathscr{I} be subspaces such that

$$
\mathscr{R}\left(A_{2}{ }^{*}\right)=\mathscr{R}\left(A^{*}\right) \oplus S
$$

and

$$
\mathscr{R}\left(B_{2}\right)=\mathscr{R}(B) \oplus \mathcal{I} .
$$

There exist projectors (idempotent matrices) P and Q such that $\mathscr{R}\left(P^{*}\right)=\mathscr{R}\left(A_{1}{ }^{*}\right)$ and $\mathscr{N}\left(P^{*}\right) \supset \mathcal{S} ; \mathscr{R}(Q)=\mathscr{R}\left(B_{1}\right)$ and $\mathscr{N}(Q) \supset \mathscr{I}$, since $\mathscr{R}\left(A_{1}{ }^{*}\right) \cap \mathcal{S}=\{0\}$ and $\mathscr{R}\left(B_{1}\right) \cap \mathscr{I}$ $=\{0\}$. Put $Y_{1}=Z-P Z Q$ and $Y_{2}=P Z Q$. Clearly these satisfy (4), since $A_{1} P Z Q B_{1}=$ $A_{1} Z B_{1}$ and $A_{2} P Z Q B_{2}=0$.

Sufficiency. Because of (2) A and B can be written as $A=W_{1} A_{1}=W_{2} A_{2}$ and $B=B_{1} V_{1}=B_{2} V_{2}$. (4) implies $W_{i} A_{i} Y_{i} B_{i} V_{i}=A Y_{i} B=0, i=1,2$, and thus (3).

Theorem 1. The following conditions are equivalent. We assume A and B to to satisfy (2).
(i) Matrix equations (1.1) and (1.2) have a common solution.
(ii) There exist Y_{1} and Y_{2} which satisfy (4) and

$$
Y_{1}+Y_{2}=X_{1}-X_{2}
$$

for some (any) solution X_{i} of (1.i), $i=1,2$.

$$
\begin{equation*}
A\left(X_{1}-X_{2}\right) B=0 \tag{iii}
\end{equation*}
$$

for some (any) solution X_{i} of ($1, i$), $i=1,2$.
(iv)

$$
A A_{1}^{-} C_{1} B_{1}^{-} B=A A_{2}^{-} C_{2} B_{2}^{-} B,
$$

where g-inverses are some fixed ones or any ones.
(v) (Mitra 1973a)

$$
\begin{aligned}
& A_{1}^{*} A_{1}\left(A_{1}^{*} A_{1}+A_{2}^{*} A_{2}\right)-A_{2}^{*} C_{2} B_{2}^{*}\left(B_{1} B_{1}^{*}+B_{2} B_{2}^{*}\right)-B_{1} B_{1}^{*} \\
& \quad=A_{2}^{*} A_{2}\left(A_{1}^{*} A_{1}+A_{2}^{*} A_{2}\right)-A_{1}^{*} C_{1} B_{1}^{*}\left(B_{1} B_{1}^{*}+B_{2} B_{2}^{*}\right)-B_{2} B_{2}^{*} .
\end{aligned}
$$

Proof. (i) \rightarrow (iv). If X is a common solution of (1.1) and (1.2), then

$$
\begin{aligned}
A A_{1}^{-} C_{1} B_{1}^{-} B & =A A_{1}^{-} A_{1} X B_{1} B_{1}^{-} B=A X B \\
& =A A_{2}^{-} A_{2} X B_{2} B_{2}^{-} B=A A_{2}^{-} C_{2} B_{2}^{-} B .
\end{aligned}
$$

(iv) \rightarrow (iii). Put $X_{i}=A_{i}^{-} C_{i} B_{i}^{-}, i=1,2$, and let Z_{i} be a solution of (1.i), $i=1,2$. X_{1} and X_{2} satisfy (iii) and

$$
\begin{aligned}
A_{i} X_{i} B_{i}=A_{i} A_{i}^{-} C_{i} B_{i}^{-} B_{i} & =A_{i} A_{i}^{-} A_{i} Z_{i} B_{i} B_{i}^{-} B_{i} \\
& =A_{i} Z_{i} B_{i}=C_{i} .
\end{aligned}
$$

Thus X_{i} is a solution of (1. i), $i=1,2$.
(iii) \leftrightarrow (ii). Just apply Lemma.
(ii) \leftrightarrow (i). Let X be a common solution of (1.1) and (1.2). For any solution X_{i} of ($1 . i$), $i=1,2$, put $Y_{1}=X_{1}-X$ and $Y_{2}=X-X_{2}$.
(iv) $\leftrightarrow(\mathrm{v})$. The equation of (v) can be written as

$$
\begin{aligned}
& A_{1}^{*} A_{1}\left(A_{1}^{*} A_{1}+A_{2}^{*} A_{2}\right)-A_{2}^{*} A_{2} A_{2}^{-} C_{2} B_{2}^{-} B_{2} B_{2}^{*}\left(B_{1} B_{1}^{*}+B_{2} B_{2}^{*}\right) B_{1} B_{1}^{*} \\
& \quad=A_{2}^{*} A_{2}\left(A_{1}^{*} A_{1}+A_{2}^{*} A_{2}\right)-A_{1}^{*} A_{1} A_{1}^{-} C_{1} B_{1}^{-} B_{1} B_{1}^{*}\left(B_{1} B_{1}^{*}+B_{2} B_{2}^{*}\right) B_{2} B_{2}^{*},
\end{aligned}
$$

where $A_{1}^{*} A_{1}\left(A_{1}^{*} A_{1}+A_{2}^{*} A_{2}\right)^{-} A_{2}^{*} A_{2}=A_{2}^{*} A_{2}\left(A_{1}^{*} A_{1}+A_{2}^{*} A_{2}\right)^{-} A_{1}^{*} A_{1} \quad$ is a matrix with the property of the matrix A of (iv) and $B_{2} B_{2}^{*}\left(B_{1} B_{1}^{*}+B_{2} B_{2}^{*}\right)-B_{1} B_{1}^{*}=B_{1} B_{1}^{*}\left(B_{1} B_{1}^{*}+\right.$ $\left.B_{2} B_{2}^{*}\right)-B_{2} B_{2}^{*}$ of B of (iv). (See Anderson and Duffin (1969) or Rao and Mitra (1971)).

Remark 1. The theorem is easily generalized as follows. Let

$$
\begin{equation*}
A_{1 i} X B_{1 i}=C_{1 i}, \quad i=1,2, \cdots, m \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2 j} X B_{2 j}=C_{2 j}, \quad j=1,2, \cdots, n . \tag{5.2}
\end{equation*}
$$

be sets of matrix equations, and each set be consistent. Corresponding to these consider sets of homogeneous equations

$$
\begin{equation*}
A_{1 i} Y B_{1 j}=\mathrm{O}, \quad i=1,2, \cdots, m \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2 j} Y B_{2 j}=\mathrm{O}, \quad j=1,2, \cdots, n \tag{6.2}
\end{equation*}
$$

Let A and B be matrices such that

$$
\begin{align*}
\mathscr{R}\left(A^{*}\right)= & \left\{\mathscr{R}\left(A_{11}^{*}\right)+\mathscr{R}\left(A_{12}^{*}\right)+\cdots+\mathscr{R}\left(A_{1 m}^{*}\right)\right\} \cap \tag{7.1}\\
& \left\{\mathscr{R}\left(A_{21}^{*}\right)+\mathscr{R}\left(A_{22}^{*}\right)+\cdots+\mathscr{R}\left(A_{2 n}^{*}\right)\right\}
\end{align*}
$$

and

$$
\begin{align*}
\mathscr{R}(B)= & \left\{\mathscr{R}\left(B_{11}\right)+\mathscr{R}\left(B_{12}\right)+\cdots+\mathscr{R}\left(B_{1 m}\right)\right\} \cap \tag{7.2}\\
& \left\{\mathscr{R}\left(B_{21}\right)+\mathscr{R}\left(B_{22}\right)+\cdots+\mathscr{R}\left(B_{2 n}\right)\right\} .
\end{align*}
$$

Now the following conditions are equivalent.
(i) (5.1) and (5.2) have a common solution.
(ii) There exist solutions Y_{i} of ($6 . i$), $i=1,2$, such that $Y_{1}+Y_{2}=X_{1}-X_{2}$ for some (any) solutions X_{i} of ($5 . i$), $i=1,2$.
(iii) $A\left(X_{1}-X_{2}\right) B=0$ for some solutions X_{i} of (5.i), $i=1,2$. (This statement is not always valid for arbitrary solutions.)

Remark 2. As a special case of the theorem consider a pair of matrix equations $A_{i} X=C_{i}, i=1,2$, each consistent. The following conditions are equivalent.

$$
\left[\begin{array}{l}
A_{1} \tag{i}\\
A_{2}
\end{array}\right] X=\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] \text { is consistent. }
$$

(ii) $\mathscr{R}\left(X_{1}-X_{2}\right) \subset \mathscr{N}\left(A_{1}\right)+\mathscr{H}\left(A_{2}\right)$ for some (any) X_{1} and X_{2} such that $A_{1} X_{1}=C_{1}$ and $A_{2} X_{2}=C_{2}$.
(ii*) $\mathscr{R}\left(A_{1}^{-} C_{1}-A_{2}^{-} C_{2}\right) \subset \mathscr{N}\left(A_{1}\right)+\mathscr{N}\left(A_{2}\right)$ for some (any) generalized inverses A_{1}^{-}and A_{2}.
(iii) $\quad A_{1}^{*} A_{1}\left(A_{1}^{*} A_{1}+A_{2}^{*} A_{2}\right)^{-} A_{2}^{*} C_{2}=A_{2}^{*} A_{2}\left(A_{1}^{*} A_{1}+A_{2}^{*} A_{2}\right)^{-} A_{1}^{*} C_{1}$.

Remark 3. We generalize the theorem to another direction. Let matrix equations $A_{i} X=C_{i}, i=1,2, \cdots, k$, each be consistent. Then the following conditions are equivalent.
(i) $\left[\begin{array}{c}A_{1} \\ \vdots \\ A_{k}\end{array}\right] X=\left[\begin{array}{c}C_{1} \\ \vdots \\ C_{k}\end{array}\right] \quad$ is consistent.
(ii) $\quad A_{i}^{*} A_{i}\left(\sum_{j=1}^{k} A_{j}^{*} A_{j}\right)^{-}\left(\sum_{j \neq i} A_{j}^{*} C_{j}\right)=\left(\sum_{j \neq i} A_{j}^{*} A_{j}\right)\left(\sum_{j=1}^{k} A_{j}^{*} A_{j}\right)^{-} A_{i}^{*} C_{i}, \quad i=1,2, \cdots, k$.
(iii) $\quad A_{i}^{*} A_{i}\left(\sum_{j=1}^{i} A_{j}^{*} A_{j}\right)-\left(\sum_{j=1}^{i-1} A_{j}^{*} C_{j}\right)=\left(\sum_{j=1}^{i-1} A_{j}^{*} A_{j}\right)\left(\sum_{j=1}^{i} A_{j}^{*} A_{j}\right)-A_{i}^{*} C_{i}, \quad i=2,3, \cdots, k$.
(iv) $\mathscr{R}\left(X^{(i)}-X_{i+1}\right) \subset \bigcap_{j=1}^{i} \mathscr{n}\left(A_{j}\right)+\mathscr{N}\left(A_{i+1}\right)$, for some $X^{(i)}$ and X_{i+1} such that $\left(\sum_{j=1}^{i} A_{j}^{*} A_{j}\right) X^{(i)}=\sum_{j=1}^{i} A_{j}^{*} C_{j}$ and $A_{i+1} X_{i+1}=C_{i+1}$, for $i=1,2, \cdots, k-1$.

Consistency of a Pair of Matrix Equations with an Application

3. Rank of Sum of N.N.D. Matrices

In this section we give a simpler algebraic proof of Mitra's theorem on the rank of sum of two n.n.d. matrices.

Theorem 2. (Mitra 1973 b) Let A and B be n.n.d. matrices of the same order and conformably partitioned as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \text {, }
$$

where A_{11} and B_{11} are square matrices of the same order. If

$$
\begin{equation*}
\operatorname{rank}(A+B)=\operatorname{rank}\left(A_{11}+B_{11}\right) \tag{8}
\end{equation*}
$$

then
(9) $\quad \operatorname{rank} A=\operatorname{rank} A_{11} \quad$ and $\quad \operatorname{rank} B=\operatorname{rank} B_{11}$.

Conversely (9) implies (8) if and only if $A_{11}\left(A_{11}+B_{11}\right)^{-} B_{12}=B_{11}\left(A_{11}+B_{11}\right)^{-} A_{12}$, or equivalently $\mathscr{N}\left(X_{1}-X_{2}\right) \supset \mathscr{R}\left(A_{11}\right) \cap \mathscr{R}\left(B_{11}\right)$ for some X_{1} and X_{2} such that $A_{21}=X_{1} A_{11}$ and $B_{21}=X_{2} B_{11}$.

Proof. The n.n.d. matrices A and B can be expressed as

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} A_{1}^{*} & A_{1} A_{2}^{*} \\
A_{2} A_{1}^{*} & A_{2} A_{2}^{*}
\end{array}\right]=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]\left[\begin{array}{ll}
A_{1}^{*} & A_{2}^{*}
\end{array}\right], \\
& B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
B_{1} B_{1}^{*} & B_{1} B_{2}^{*} \\
B_{2} B_{1}^{*} & B_{2} B_{2}^{*}
\end{array}\right]=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]\left[\begin{array}{ll}
B_{1}^{*} & B_{2}^{*}
\end{array}\right] .
\end{aligned}
$$

Put

$$
C=\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right],
$$

and

$$
A+B=C C^{*} \quad \text { and } \quad A_{11}+B_{11}=C_{1} C_{1}^{*} .
$$

Hence

$$
\begin{aligned}
& \operatorname{rank}(A+B)=\operatorname{rank}\left(A_{11}+B_{11}\right) \\
\leftrightarrow & \operatorname{rank}\left(C_{1}^{*} C_{1}+C_{2}^{*} C_{2}\right)=\operatorname{rank}\left(C_{1}^{*} C_{1}\right) \\
\leftrightarrow & \mathscr{R}\left(C_{1}^{*}\right) \supset \mathscr{R}\left(C_{2}^{*}\right) \\
\leftrightarrow & \mathscr{R}\left[\begin{array}{l}
A_{1}^{*} \\
B_{1}^{*}
\end{array}\right] \supset \mathscr{R}\left[\begin{array}{l}
A_{2}^{*} \\
B_{2}^{*}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Noblo Shinozaki and Masaaki Siblya } \\
\rightarrow & \mathscr{R}\left(A_{1}^{*}\right) \supset \mathscr{R}\left(A_{2}^{*}\right) \text { and } \mathscr{R}\left(B_{1}^{*}\right) \supset \mathscr{R}\left(B_{2}^{*}\right) .
\end{aligned}
$$

Therefore

$$
\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}
A_{1}^{*} & A_{2}^{*}
\end{array}\right]=\operatorname{rank} A_{1}^{*}=\operatorname{rank} A_{11},
$$

and

$$
\operatorname{rank} B=\operatorname{rank}\left[\begin{array}{ll}
B_{1}^{*} & B_{2}^{*}
\end{array}\right]=\operatorname{rank} B_{1}^{*}=\operatorname{rank} B_{11} .
$$

The second half of the theorem is shown easily from the above discussion and Remark 2 to Theorem 1.

Remark 1. We may have another indirect proof of the first half of the theorem by using Theorems 2 and 3 of Anderson (1971), or equivalently by using the corollary to Theorem 1 and Theorem 6 of Carlson and others (1974).

Remark 2. The theorem can be written as follows: Let A and B be n.n.d. matrices of the same order, and P any orthogonal projector. Then

$$
\begin{gathered}
\operatorname{rank}(A+B)=\operatorname{rank} P(A+B) P \\
\rightarrow \operatorname{rank} A=\operatorname{rank} P A P \text { and } \operatorname{rank} B=\operatorname{rank} P B P .
\end{gathered}
$$

The reverse statement is true if and only if $P A P\{P(A+B) P\}-P B=P B P\{P(A+$ $B) P\}^{-} P A$. $\quad P A P$ restricted in $\mathscr{R}(P)$ is the compression of A into $\mathscr{R}(P)$ (Halmos 1967).

References

Anderson, W. N. Jr. (1971): Shorted operators, SIAM J. Appl. Math., 20, 520-525.
A.velsson, W. N. Jr. and Duffin, R. J. (1969): Series and parallel addition of matrices, J. Math. Anal. Appl., 26, 576-594.
Carlson, D., Haynsworti, E. and Markham, T. (1974): A generalization of the Schur complement by means of the Moore-Penrose generalized inverse, SIAM J. Appl. Math., 26, 169-175.
Halmos, P. R. (1967): A Hilbert Space Problem Book, American Book, (§ 18 Unitary dilations).
Mitra, S. K. (1973a): Common solutions to a pair of linear matrix equations $A_{1} X B_{1}=C_{1}$ and $A_{2} X B_{2}=C_{2}$, Proc. Camb. Phil. Soc., 74, 213-216.
Mitra, S.K. (1973b): Statistical proofs of some propositions on non-negative definite matrices, 39th Session of International Statistical Institute, Vienna.
Morris, G. L. and Odell, P.L. (1968): Common solutions for n matrix equations with applications, J. Assoc. Comp. Mach., 15, 272-274.
Rao, C. R. and Mitra, S. K. (1971): Generalized Inverse of Matrices and Its Applications, John Wiley, New York, (Section 10. 1. 6).

[^0]: * IBM JAPAN

