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ABSTRACT 

An analytical solution which neglects the viscous effects is obtained for the pressure 
rise occuring in a tapered pipe when the flow is stopped by the quick closure of a v=ilve. 
It is shown that the pressure rise is given by a function of the radius ratio; (the radius 
at the valve endjthe radius at the opposite end). 

Moreover the effect of viscosity on the peak pressure value is investigated numerically 
by the method of characteristics. 

A(x) 
A*(x*) 
Dn 
L 
R(x) 
R*(x*) 
a 
m 

Nomenclature 

cross sectional area of a tapered pipe [ =rrR2(x)] 
dimensionless cross sectional area of a tapered pipe [ =A(x)/{rrR2(0)}] 
dissipation number [ =4l.IL/{aR2(0)}] 
pipe length 
pipe radius 
dimensionless pipe radius [ =R(x)/R(O)] 
wave velocity 
radius ratio [ =R(L)/R(O)] 

p pressure 
p* dimensionless pressure [ =P/{poaqo/A(O)}] 
q volume flow rate 
q* dimensionless volume flow rate [ =qfqo] 
qo initial volume flow rate 
t time 
t* dimensionless time [ =tf(Lfa)] 
x axial coordinate 
x* dimensionless axial coordinate [ =x/L] 
].i kinematic viscosity of fluid 
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po initial density 
r valve closing time [0;'£r<2L/a] 
r* dimensionless valve closing time [ =r/(L/a)] 

1. Introduction 

Recently, TARANTINE and RouLEAU (1969) numerically investigated the effective
ness of a tapered section in attenuating the pressure surges (water hammer) which 
are caused by the quick valve closure of a tapered pipe line. 

The step-line impedance method employed by them has the practical advantage; 
i.e. it can be easily applied to a complex tapered pipe line. However, this method 
requires a tremendous amount of computational time to predict the following. 

( 1) The dependence of the magnitude of the initial pressure rise at the valve 
before the appearance of the reflected wave from the opposite end of a tapered pipe 
line upon the radius ratio. 

( 2) The dependence of the average pressure value as later defined in Section 
4-[b] upon the radius ratio. 

Moreover the numerical results which neglect the effect of viscosity indicate 
that the peak pressure occurs after a long time, which brings out the following 
third point : 

( 3) Can the effect of viscosity on the peak pressure value be neglected or not? 
The initial pressure rise and the average pressure value are analytically derived 

in this paper. The effect of viscosity on the peak pressure value is numerically 
examined by the method of characteristics. 

Furthermore the numerical results derived by the method of characteristics are 
compared with the analytical one for the nonviscous case. 

2. Basic Equations 

A physical model considered here for the water-hammer problem is obtained by 
placing a valve at the location x=L (Fig. 1). The following assumptions are 
made for this model ; 

Tank Tapered pipe Valve 

X 

L 

Fig. 1. Tapered pipe line 
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( 1) The pipe radius is small compared with its length (R<{..L). 
( 2) The pipe radius varies slowly along its length (dRjdx<(1). 
( 3) The elasticity of the pipe walls can be neglected when compared with the 

compressibility of the fluid. 
( 4) The initial velocity is sufficiently small when compared with the wave 

velocity. (q0 / A(O) <(a). 
( 5) The effect of viscosity is included in the form of pressure loss due to 

friction (see ZIELKE, 1968). 
Then the following two· differential equations describe completely the volume 

flow rate and the pressure 

(2.1) 

(2.2) 

1 ap po oq -O 
a2 Tt+A--ax- ' 

___!__ ~ +_!_ ap_ =- ~--- {2q+ ft !!_q(u) W(t-u)du}, 
A at Po ax AR2 )o at 

By Zielke (1968), the weighting function W can be expressed as follows ; 

l
e-z6. 3744~ + e-7o. 8493~ + e-135 .o198~ + e-218. 9126~ + e-322 .5544~, (~ > 0. 02), 

w(~) = o. 282095~- 112 -1.25+ 1. o57855e12 +0. 9375~ +O. 396696e12 

-o.351563e. (~<o.o2) 

Moreover, under steady flow conditions, it is assumed that the volume flow rate 
in the line is qo (constant) and that the pressure along the line is uniform. The 
latter assumption means that the Bernoulli pressure variations in the tapered pipe 
line, po{q0/A(O)F/2, and the pressure loss due to friction, po!.iL{qo/A(O)}/R2(0), are both 
negligible in comparison with the pressure rise poaqo/A(O). These initial conditions 
are written as follows; 

(2.3) 

(2.4) 

p(x, 0) =0, (O;;;_x;;;_L), 

q(x, 0)=q0 , (O;;;_x;;;_L). 

It is assumed that the tapered pipe is terminated by an infinite tank at x=O 
and the valve located at x = L is closed quickly; these boundary conditions can be 
expressed as follows ; 

(2.5) p(O, t) =0, (t~O), 

(2.6) q(L, t) =qof(t), 

where f(t) is any function of t and equals 1 at t=O, 0 at t>r(O;;;_r<2L/a). 
Now we introduce the dimensionless variables: 

P* P *- q *- x *- t R*( *)- R(x) 
poaqo/A(O) ,q -q;, x -y,t - Lja' x -R(O) · 

Then the following dimensionless equations are obtained from Eqs. (2.1) through 
(2.6): 

(2.7) 
ap* 1 aq* 
at* + R* 2 ox* =O. 
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(2.8) 

(2.9), (2.10) 

(2.11) 

(2.12) 

MASA Tsucu YosHIZA w A AND TsuNEYo ANoo 

aq* ap* - Dn { (t* aq*(u) } 
at* +R*

2 
ot* =~ 2q*+ Jo -at* W(t*-u)du ' 

P*(x*, 0)=0, q*(x*, 0)=0, (O~x*~1), 

P*(O, t*)=1, (t*;;=:-;0), 

q*(1, t*)=f(t*), (t*;;=:-;0). 

The dimensionless number Dn is called Dissipation Number [ =4l.iL/{aR2(0)}]. 
The value of this number is indicative of the attenuation and the distorsion along 
the line. 

3. Methods of Solutions 

(a) Analytical Method for the case of Dn=O. 
From Eqs. (2.7) through (2.12), we obtain the equations for p*(x*, t*) and define 

(/J(x*, t*) as follows ; 

(3.1) p*(x*, t*)=(/J(x*, t*)/R*(x*). 

Then the equations for (/J(x*, t*) are obtained : 

(3.2) 
02(/J 02(/J 1 J2 R* 
at* 2 = ox*2 - R* dx*2 (/), 

(3.3) 
a(/J 

(/J(x* 0) = 0 -(x* 0) = 0 (0:::; x*:::; 1) 
' ' at* ' ' - - ' 

(3.4) (/)(0, t*) = 0, (t*::::; 0), 

(3.5) _ o(/J (1 *)--1- dR*(L) (/)(1 *)- ______ 1_ df ( *>O) 
ax* 't R*(1) dx* 't - R*(1) dt* ' t = . 

Now we consider the case of the linear tapered pipe, of which the dimension
less radius is defined as 

(3.6) R*(x*) =1+(m-1)x*, m=R(L)/R(O). 

Then the solution for the Laplace transform of the pressure is obtained; 

(3.7) p*(x*) __ 1 _ __ (fJQ)_~sj) sinh SE~---, (O::;x*::; 1), 
mR*(x*) scosh s-((m-1)/m) smh s - -

by using Eqs. (3.1) through (3.6). 
For the instantaneous valve closure, f(t*) in Eq. (3.7) is expressed as follows; 

(3.8) f(t*) = {1(t* = 0), O(t* > 0)}, 

and taking the Laplace transform off gives 

(3.9) 1=0. 
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Then expanding Eq. (3.9) with the power series of e-2s and taking the inverse 
Laplace transform lead to the expression for the pressure p*(x*, t*) in the following 
form, 

(3.10) 

1 eccm-1)/m)Ct*+x*-1) (-x*+1<t*<x*+1) 
mR*(x*) ' ' 

mR!(x*) [pccm-1)1m)ct*+x*-1) -eccm-)1/m)ct•-x•-1) 

P*(x*, t*)= 

+ { _ 2(r:-___!_2__(t* +x*) _ 6(m: 1) }eccm-Oim)ct•+x*-s) J 
(- x* + 3 < t* < x* + 3). 

Also taking the inverse Laplace transform Eq. (3.9) directly, the pressure p*(x*, t*) 
is expressed by 

p*(x*, t*) 2 ~ sin -kn { k ( * *) k ( * *)} -=----:- LJ 2k - . 2k cos n t -x -cos n t +x ' 
mR*(x*) n=t n sm n 

(3.11) 
tan kn=mkn/(m-1). 

Defining lJf(x*, t*)=P*(x*, t*)/m/R*(x*) where P*(x*, t*) is e-xpressed as Eq. (3.10), 
p*(x*. t*) of Eq. (3.11) is written by 

(3.12) p*(x*, t*) 
1 oo ~: lJf(~, t*) sin kn~d~ 

---- L: sin knx*, tan kn=mkn/(m-1). 
mR*(x*) n=t ~~ sin2 kn~d~ 

p*(x*, t*) expressed by Eq. (3.10) is convenient to explain the initial profile of the 
pressure wave, and p*(:r:*, t*) expressed by Eq. (3.11) is convenient to calculate the 
wave profile past a long time. 

For the case of finite-time valve closure, the pressure P*(x*, t*) is expressed by 

(3.13) P*(x* t*)= ___ 1 __ (i* of(u) -eccm-1)1m)ct•-u+X*-1)du (0<-t*<x*+1) 
' mR*(x*) Jo at* ' ' 

where f is any function of t*, i.e. f = f(t*). 

(b) Numerical Method for the case of Dn -=1= 0. 
From Eqs. (2.7) and (2.8), we obtain the following characteristic differential equa

tions along the characteristic curves dx* = ± dt* in the x*- t* plane (see TAN AHASHI ; 
1974); 

for dx* = dt*, 

(3.14) d * 1 
d *- D H d * 'P + R*2 q - - n R*4 x ' 

for dx*= -dt*, 

(3.15) 
1 H 

dp*- R*2 dq= -Dn R*4 dx*, 

where 
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Fig. 2. Characteristic curves in a physical plane 

(3.16) H(x*,t*)=2q*(x*,t*)+ ~:* aq*~~:,u) W(t*-u)du. 

When Eq. (3.14) is integrated to CD and ® with reference to Fig. 2 and when 
Eq. (3.15) is integrated to @ and ® approximately, the following equations are 
obtained, 

(3.17) 

(3.18) 

Therefore, determining the division number (1/ilx* in O~x*~1), we can obtain 
the pressure p*(x*, t*) numerically from the initial conditions, Eqs. (2.4) and (2.5), the 
boundary conditions, Eqs. (2.6) and (2.7), and simultaneous equations, Eqs. (3.17) and 
(3.18). 

4. Results 

(a) The initial pressure rise 
We can explain analytically the initial pressure rise, i.e. the pressure p*(x*, t*) 

before being affected by the reflected wave from the tank, especially the pressure 
at the valve P*(1, t*). 

In the case of m=1+o(lol~1), the pressure at the valve is given by 

(4.1) p*(l. t*)=1+(t*-2)o, (O<t*<2). 

From Eq. (4.1), we see that for o>O, p*(1, t*) increases with the time, and for 
o<O, decreases with the time. The maximum and the minimum pressures at 
the valve, during 0<t*<2, are 1 and 1-2o regardless of the sign of a. Here t*=O 
means the time of valve closure and t* =2 means the time when the reflected pres
sure wave arrives at the valve. 

For any finite m,p*(1, t*) expressed by Eq. (3.10) is shown for O<t*<2 in Fig. 3 
and Fig. 4,. The maximum and the minimum pressures of p*(1, t*) during 
0 < t* < 2, which occur at t* = 0 and t* = 2, are shown in Fig. 5. We notice that 
p*(1, 1+)=1/m2 shown in Fig. 5 coincides with the result of TARANTINE and Rou
LEAU (1969). 
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0 L-----'-------1 
0 0 r 2 

Fig. 3. Initial pressure rise at the valve 
with a linear tapered pipe; m<l. 0 

Fig. 4. Initial pressure rise at the valve 
with a linear tapered pipe; m> 1. 0 

UJ 6 
<l) 
1-< 
::l 
UJ 
UJ 
<l) 
1-< 
0. 

'-!-< 5 0 

<l) 
""d .a ·a 
bJJ 
('() 4 s 
<l) 

..c: 
t-< 

3 

2 

Fig. 5. Maximum and minimum pressures at the valve 
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As the basic example which accounts for the finite valve-closure timer*, (0< r* <2), 
we consider the case that f(t*) is written by 

1 '(t* = 0) 

(4.2) f(t*)= 1-t*/r*, (O<t*<r*) 

0 , (r* ~t*). 

Then the pressure is expressed· as follows ; 

(4.3) ____ _l ______ {e<<m-l)lm)(t* x*-l) -1} (1-x*<t<1-x*+r*), 
r*R(x*)(m-1) ' 

P*(x*, t*) = 
1 

----------e«rn-l)nn)(t* .x*-1)(1-e«m-l)lm)<) (1-x*+-*<t*<1+x*) 
r* R(x*)(m-1) ' · ' · 

In the case of m= 1 +a(ial <(1), the pressure at the valve is given by 

t* ( 2t* t*
2 

) --- --- o, (t*<r*) 
r* r* 2-r* 

(4.4) P*(1, t*) = 

+(t*-2- ";)a, (r*~t*<2). 

After the valve is completely closed (t*~r*), p*(1, t*) is differed by -r*a/2 from 
the one in the case of the instantaneous valve closure. 

For a finite m, the effect of r* on the pressure p*(1, t*) is shown in Fig. 6. 

(b) The average pressure value 
Figure 8 shows the pressure p*(1, t*), calculated from Eq. (3.14). p*(1, t*) changes 

periodically with the time, deforming its wave profile. 
As the parameter indicating the intensity of the water hammer, we define the 

average pressure value during a<t*<b; 

d 
~ 0.4 1-----+---

t* 2 

Fig. 6. Initial pressure rises at the valve for various linear closure 
rates with a linear tapered pipe; m=2.5 
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(4.5) 

The average pressure value, during 0<t*<2, becomes 

(4.6) P~=~-_!-~-~{e2 cm-I), m-1} 
2m(m-1) 

by using Eqs. (3.10) and ( 4.5). 
And the average pressure value, during 0<t*<4 which is the one period of 

pressure wave, becomes 

(4.7) ·~---1--{ -e4cm-1)/m+ 2(3m- 2) -1}, (0.722<m<l.53), 
4m(m-1) m 

P~= ---~-{ -e4cm-l)11n+ 4(m-1) ezcm-l)/m+4eccm-I)/rlt)(/.~-z) -1}' (m<O. 722), 
4m(m-1) m 

__ 1_ {e4(7n-l)/m- 2(m-2) e2(m-1)1m_4e((m-1)1m)(l~-2) -1}' (1.53<m), 
4m(m-1) m 

by using Eqs. (3.10) and (4.5), where rt is defined as 

(4.8) m {ezcm-});m+ 2(m-2) }· 
2(m-1) m 

In the case of m=1 +a (Ia I ~1), Eqs. (4.6) and (4.7) give 

(4.9) p~, P~=1~o. 

The above equation implies that the dimensionless average pressure values are 1-o. 
For the case of any finite m, ptz and p~ are shown in Fig. 7. 
The magnitude of the pressure is estimated from the momentum equation and 

the initial conditions; 

qo A !lp 
L/a ~-Po-L-. 

(4.10) llp~poa U, ( U=qo/A). 

From Eq. (4.10), the magnitude of the onset pressure p*(1, 0+) at the valve is 
estimated as follows ; 

llp 1 
poaqo/A(O)- m 2 

(4.11) 

by using U~qo/A(L). This result coincides with Eq. (3.10). The average pressure 
values, p~ and p~, are estimated similarly; 

(4.12) 
llp 1 

poaqo/ A(O) m 

by using 
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(f) 

~ 
:::s 
ff) 
ff) 
~ .... 

2 0. 

\ 1;. 
' m 

4-1 
0 
~ 

'"0 
B ·a 
biJ 
ro 
8 
~ 
f-; 

() 

0 m 

Fig. 7. Average pressure values at the valve with a linear tapered pipe and a tank 

In the case of m=1+o (Jol ~1), these estimated values of jj~, jj~ coincide with 
Eq. (4.9). On the other hand, in the case of any finite m, they are larger than the 
results of Eqs. (4.6) and (4.7) as shown in Fig. 7. 

Consequently the pressure rise which occurs by the quick valve closure, 
increases or decreases depending on the initial velocity as seen in Eq. (4.11). How
ever, the average pressure values jj~, and jj~ are also influenced by the reflected 
pressure wave from the valve and the tank. 

(c) The peak pressure value 
The peak pressure shown in Fig. 10, occurs after a long time in the case of 

Dn=O, but the effect of viscosity on the peak pressure value can not be neglected. 
Its effect is investigated numerically by the method of characteristics, since it can 
not be solved analytically. 

( 1 ) Considerations on the method of characteristics 
Before we investigate the effect of viscosity numerically, we compare the solu

tions calculated by the method of characteristics with the analytical solutions for 
the two examples; (i) a linear tapered pipe and (ii) an exponential tapered pipe, 
for which the radius is written as 

(4.13) R*(x*) =ex* log m 

in the case of Dn=O. 
For the case of the exponential tapered pipe, the pressure p*(x*, t*) is expressed 

analytically; 

(4.14) *( * *)- 2 ~ kn sin kn { ( *- kn *) P X , f - R*( * LJ .2k _ . 2k ) COS Wn f X m X ) n=l lDn\ n Sln n Wn 

by using Eqs. (3.1)'"'--(3.5) and ( 4.13). 
Figures 8 and 9 show the numerical results for the pressure p*(1, t*), which 

are calculated by the analytical method and the method of characteristics. As 
shown in Fig. 8, the numerical solution derived by the method of characteristics 
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--- The analytical solution 

-----The numerical solution (.Jx*=0.05) 
(They are coincided in the figure) 

Fig. 8. Pressure rise at the valve with a linear tapered pipe and a tank; m=2.5 

--- The analytical solution 

----- 'The numerical solution (.Jx*=0.05) 

Fig. 9. Pressure rise at the valve with an exponential tapered pipe and a tank; m=2.5 

coincides with the analytical one in the case of the linear tapered pipe. But Fig. 9 
shows that the both solutions are different in the case of the exponential tapered pipe. 

These results can be explained as follows. The pressure wave p*(x*-t*) at 
(xt'+h, t"t+h) which propagates to the valve is expressed as follows; 

(4.15) *{( * h) ( * h)}- { 1 R*
2
(xt')-R*

2
(xt'+h) } *( *- *) 

p Xo + ' fo + - + R*2(xt')+R*2(xt'+h) p fo Xo 

by the method of characteristics. 
On the other hand, this pressure wave in the case of the linear tapered pipe 

is expressed analytically as follows; 

(4.16) P*{(xt'+h), (tt'+h)}= R*(x~+h) n~l f/Jn(tt'-xt') 

- { 1 R*'(xt') h O(h2)} *( * *) - - R*(xt) + P fo -Xo • 
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Therefore the difference between Eqs. (4.15) and (4.16) is of the order h2
• 

The pressure wave in the case of the exponential tapered pipe is written by 

(4.17) P*{(xt+h), (tt+h)}=-R*( :: h) f; (/Jn{(tt+h)-rn(xt+h)} 
Xo + n=l 

= { 1- ~:~~:; h + O(h2
)} P*(tt- xt) 

+ R*h( *) f: (1-rn)ifJ~(tt-rnxt). 
Xo n=l 

Then, in this case, the difference between Eqs. ( 4.15) and ( 4.18) is of the order h 
and does not become smaller even if the number of divisions is increased. 

( 2 ) The effect of viscosity on the peak pressure value 
The pressure at the valve, which occurs by the quick valve closure, is obtained 

numerically in the case of Dn*O as indicated in Fig. 10. 
To consider the effect of viscosity on the peak pressure value, we regard the 

average pressure value during 8<t*<12 as 

(4.18) 

and the peak pressure value as p*(1, 10-). And we define the ratio r as follows; 

(4.19) 

where the suffixes "viscous" and "nonviscous" mean the cases of Dn*O and Dn=O 
respectively. 

-- D11 =1.08x10 2j(.Jx'=0.05), ---- Dn-cO (Jx"=0.05) 

Fig. 10. Pressure rise at the valve with a linear tapered pipe and a tank; m=l.3 
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For the numerical example (m = 1.3, Dn = 1.08 x 10-2
) in the case of the linear 

tapered pipe shown in Fig. 10, r is calculated as 

~~iscoue(1, 10_) ~O .48 
Pnonviscous(1, 10_) 

-* Ps.!Zvlscous ='= 0 5 
Pt'.lznonviscous . • 

And for the numerical example (m=1,Dn=6.7x10-3
) in the case of the straight 

pipe (see ZIELKE, 1968), r is calculated as 

~~iscous(1, 10_) : O • 78 
Pnonviscous(1, 10_) 

Pt'.12viscous 
Pt'.12nonviscous 

: 0.4 r~2. 

After all, the effect of viscosity on the peak pressure value in the case of the 
linear tapered pipe is larger than that in the straight pipe. As the peak pressure 
at the valve is considerably saved by the effect of viscosity, there is little possibility 
that the maximum and minimum pressures occur after a long time. 

5. Conclusions 

The analytical investigation has been made with respect to the pressure rise 
at the valve which is caused by the quick closure of the valve located at the down
stream of the tapered pipe line, and the following results have been mainly obtained. 

( 1 ) The initial pressure rise 
When the valve is closed instantaneously, the maximum and minimum pressures 

at the valve before the appearance of the reflected pressure wave from the tank are 
shown in Fig. 5. Especially in the case of m=1 +o (Ia I ~1), they are expressed as 

[Pmax,Pmin] = [poaqo/ A(O), (1- 2o)poaqo/A(0)]. 

( 2) The average pressure value 
In order to estimate the intensity of the water hammer, the following parameter 

has been defined in the present paper; 

- 1 r2l-/a 
Po2L;a= 2L/a Jo Jp(L, t)Jdt. 

The relation between Po2L;a/{poaqo/A(O)} and m is shown in Fig. 7. Especially 
in the case of m=1+o (Jal ~1), the parameter as defined above becomes 

Po2L;a = (1- o)poaqo/ A(O). 

For any finite m, the calculated average pressure value is small compared with 
poaqo/{A(O)jm}, which is the estimated average pressure value based upon the initial 
fluid velocity. 

( 3 ) The peak pressure value 
According to the numerical example which includes the effect of viscosity, it 

is highly unlikely that the pressure reaches the peak value after a long time. Under 
the assumption of nonviscosity (Dn=O), an excellent agreement between the numeri· 
cal solution by the method of characteristics and the present analytical solution has 
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been found for the linear tapered pipe. In the case with the exponential tapered 
pipe, the agreement is not so good as that in the case with the linear tapered pipe. 
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