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Abstract 

Our purpose here is to present a method for obtaining a global solution to a linearly 
constrained general quadratic minimization problem. The Kuhn-Tucker nc::essary condi­
tions for a global solution of the problem are a linear complementarity problem. The 
author of this paper has proposed a method for a generalized linear complementarity 
problem, which bases on an algorithm for finding all extremal rays of a polyhedral convex 
cone with some complementarity conditions. In this paper, we apply the method to the 
linear complementarity problem of the general quadratic programming. And several 
devices will be adopted to decrease the amount of computation. 

1. Nonconvex Quadratic Programming and Kuhn-Tucker Conditions 

The problem with which we are concerned can be stated as 

(1.1) Minimize Q(x) =x' Dx/2+c' x 

subject to Ax~b, x~O. 

where D is a symmetric (n, n) matrix, A is an (m, n) matrix, c is an n-column 
vector, b is an m-column vector and the symbol ' is used to denote the transposi­
tion of a matrix or a vector. And minimization here means to obtain the global 
minima of this programming. 

Theorem 1. (KUHN and TUCKER (1951)) 

For a local minimum solution x of the quadratic program (1.1), there exist 
vetors y, u and v such that 

(1.2) u=Dx-A'y+c 
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(1.3) 

(1. 4) 

(1. 5) 

(1.6) 

KAORU ToNE 

v=Ax-b 

.r'u=O 

y'v=O 

x~O, y~O, u~O, v~O 

If the matrix D is positive semidefinite, the existence of x, y, u and v satisfying 
(1.2)-(1.6) is sufficient for x to be a global minimum solution of (1.1). But when 
D is not positive semidefinite (so-called nonconvex quadratic programming), the 
existence of such x, y, u and v is merely a necessary condition for x to be an 
optimal solution of (1.1). We will say that a point x satisfies the KuHN-TUCKER 
conditions of the quadratic programming if there exist y, u and v such that (1.2)-(1.6) 
are satisfied by (x, y, u, v). Such (x, y, u, v) will be called a KuHN-TUCKER solution 
for x. And x will be called a KuHN-TUCKER point of the quadra'js program. A 
feasible point x of a quadratic program is called a stationary point if the directional 
derivative of the objective function is nonnegative in each feasible direction at x. 
For a quadratic program, it is well known that an optimal point is a stationary 
point, and that a point is stationary if and only if it satisfies the KuHN-TucKER 
conditions. 

Now, let 

(1. 7) 

and 

(1. 8) M=(~ -A') 0 . 

Then (1.2)-(1.6) become the following system of linear equations for which we wish 
to find out nonnegative and complementary solutions. 

(1. 9) 

(1.10) 

(1.11) 

w=q+Mz 

w~O,z~O 

z'w=O 

(system of linear equations) 

(nonnegativity) 

( complementarity). 

We can regard (1.9)-(1.11) to be a sort of a generalized linear complementarity 
problem and we can solve the system by an extremal ray algorithm proposed by 
the author of this paper in ToNE (forthcoming). 

In the next section, we will describe the outline of the algorithm. 

2. The Extremal Ray Algorithm 

We define a polyhedral convex cone P m by a set of nonnegative vector x in 
the intersection of m half-spaces, that is, 

(2.1) Pm={xJx~O, aix~O, ···, a:nx~O}, 
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where x, ab ···,am are n-vectors. We introduce slack variables A=(At, ... , Am)' to 
make the inequalities in (2.1) into equalities. Thus, we have 

(2.2) Pm={xlx:2::0, A:2::0, aix-21 =0, ... , a:nx-Am=O}. 

Now, we put some complementarity conditions on the elements of x and A. 
For example, x1A1=0,x2XI=0,A2As=O,xsx4x5=0 etc .. We call them the complemen­
tarity conditions. 

The problem is to find out all extremal rays of Pm that satisfy these conditions. 
We will call an extremal ray of a polyhedral convex cone in these conditions a 
complementary extremal ray and a vertex of a polyhedral set in these conditions a 
complementary vertex. 

Our method is iterative in the sense that knowing all complementary extremal 
rays of the polyhedral convex cone 

(2.3) 

we add a constraint a~x::::::O to it to determine all complementary extremal rays of 
the polyhedral convex cone 

(2.4) 

Here, when we mention of the complementary extremal rays of Pk> we only consider 
the complementarity conditions among x 1 , ... , Xn, At, ... , Ak. We ~ake no account of 
the complementarity conditions related to Ak+t, ... , Am. The latter conditions are 
taken into consideration step by step as we proceed our algorithm and when the 
index. k attains m, the complementarity conditions among all variables x1, ... , Xn, 

At, .. ·,Am will be taken into consideration. As, at step k of the algorithm, we only 
consider a subset of the whole conditions, we call it sub-complementarity conditions. 
Similarly, we mean by a sub-complementary extremal ray or a sub-complementary 
vertex a ray or a vertex which satisfies these sub-complementarity conditions 
among its elements and corresponding slack veriables. 

In regard to Pk> let 

(2. 5) where 1' =(1, ... , 1). 

Ck is a convex polyhedron. And there is a one to one correspondence between the 
vertex set of Ck and the extremal ray set of Pk. Indeed, the correspondence between 
xEPk(x*-0) and y=x/(1'x)ECk is such one. Also, by this correspondence, the sub­
complementary extremal rays of Pk correspond to the sub-complemen'cary vertices 
of Ck and vice versa. So, we hereafter deal with the set of sub-complementary 
vertices of ck which we denote vk. 

The Extremal Ray Algorithm 

Step 1. Initialization. 
For 

Co={xlx:2::0, 1'x=1}, 
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the sub-complementary vertex set is 

(2.6) Vo={eilei: the i-th unit vector, i=1, ···, n}. 

Repeat the following steps for k=1, ···, m. 

Step 2. Adding a constraint. 

Assume all sub-complementary vertices of Ck-1 are known. Let it be 

(2. 7) 

and let 

(2.8) 

Step 2.1. If AikZO for all ViE Vk-1! then the adding constraint a~xzO is not 
binding. That is, 

(2.9) 

And let 

(2.10) 

(Go to step 2.5.) 

Step 2.2. If Aik<O for all ViE Vk-ll then ck is null. 
(The end.) 

Step 2.3. If Aik~O for all i, then let 

2.11) 

(Go to the beginning of step 2. Increase k by one.) 

Step 2.4. If, for some i and some j, Aik>O and AJk<O, then try the following 
[Common Zero Test] for vi and v1. If they passed the test, then 
compose a vector WiJ by 

(2.12) 

(2.13) 

The WiJ is on the line segment joining vi and v1 and on the hyper­
plane Hk: a~x=O. Try this process for all pairs of vi (with Aik>O) 
and v1 (with AJk<O). Then let 

(Go to step 2.5.) 

Step 2.5. Try the following [Sub-Complementarity Test] to the elements of V k 

to remove all non-sub-complementary vertices of Ck and let the 
remaining set be V k· 

(Go to step 2.6.) 

Step 2.6. Try the following [Degeneracy Test] to V k to remove all non-vertex 
points of ck from v k and let the remaining set be vk. 
(Go to the beginning of step 2. Increase k by one.) 
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[Common Zero Test] 
For Vi and VJ, let 

(2.14) 

(2.15)) 

(s=1, ···,k-1), 

(s=1, ···,k-1) 

and let the extended vectors v~ and vj of vi and vi be 

(2.16) 

and 

(2.17) 

respectively. They are (n+k)-vectors. If v~ and vj have no less than (n-2) common 
zeros in their corresponding elements, then they pass the test. Otherwise, they fail. 

[Sub-Complementarity Test] 
For each vi of V k• check the sub-complementarity among the elements of its 

extended vector v~. If it does not satisfy the conditions, then remove vi from V k· 

[Degeneracy Test] 
V k consists of ViE Vk-1 and Wij composed by (2.12). Let V k be the subset of V k 

composed of the points on the hyperplane Hk: a~x=O. Of course WijEVk. If Wij 

can be expressed by a convex combination of other points of Vk, then Wij is not 
a vertex of Ck. To see this, test the following. 

If there exist WijEVk and YtEVk whose extended vectors we denote by w~ 1 and y~ 
respectively, such that for every positive elements of y~, the corresponding elements 
of w~i are also positive and there is at least one positive element of w~i whose 
corresponding element of y~ is zero, then Wij is not a vertex of Ck. And we remove 
it from vk. 

As to the validity of this algorithm, see TONE (forthcoming). 

Remark. Degeneracy may happen rarely. And we need not try [Degeneracy 
Test] at every step. We may try it at the final step to final candidates. 

3. The Extremal Ray Algorithm and N onconvex Quadratic Programming 

We can apply the extremal ray algorithm of the preceding section to the KuHN­
TucKER conditions (1.2)-(1.6) of the general quadratic program (1.1). For such 
purpose, we introduce a scalar variable t so as to make the system homogeneous 
as follows: 

(3 .1) 

(3.2) 

(3.3) 

u=Dx-A'y+ct 

v=Ax-bt 

x'u=O 
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(3.4) 

(3. 5) 
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y'v=O 

x~O, y~O, u~O, v~O, t~O. 

Here we impose an assumption on the coefficient matrix A of (1.1). 

Assumption 

A certain row vector of the coefficient matrix A is negative. And we assume, 
without loss of generality, a~< 0. 

This assumption would be met or could be made to be met in most cases of 
practical problems. If not, we add a constraint to the original problem as the first 
constraint such as 

where L is a sufficiently large positive number. 
This assumption will make the feasible region of the quadratic program a 

compact set, that is, a bounded polyhedron. Under this assumption the matrix A 
is of a bounded type and has one of and hence all of the following properties : 

( 1) {xlx~O, x=FO, Ax~O}=¢, 
( 2) for any b, {xlx~O, Ax~b} is bounded, 
( 3) there is a J.~O such that J.' A<O. 
Thus, the quadratic program (1.1) either has no feasible solution or a global 

minimum at some point of the feasible region. 

Theorem 2. 

If a nonzero solution (x, f), u, v, l) of (3.1)-(3.5) has l>O, then (x/l, 11/l, ujl, vjl) 
is a KuHN-TucKER solution for Xjl. Converserv, if (x, y, u, v) is a KuHN-TucKER 
solution of (1.2)-(1.6), then (x, f), u, v, 1) is a solution of (3.1)-(3.5). 

Otherwise if a nonzero solution (x, y, u, v, l) of (3.1)-(3.5) has l =0, then x must 
be zero. 

Proof. ( i) The case l>O is obvious. 
( ii) If l =0, then (x, y, u, v) satisfies 

u=Dx-A'V 

v=Ax 

x'u=O 

y'v=O 

x~O. y~O, u~O, v~O, (x, 'Y)=FO. 

Thus, if x=FO then Ax~O has a solution x~O, x=FO and it contradicts the bounded­
ness of the feasible region. 

Remark. Because there exists no x such that Ax~O, x~O and x=FO by the 
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assumption, there is a iJ such that -A'iJ>O, y;;;:::O, iJ=I=O by a theorem by TucKER 
(1956). And (0, i), -A'iJ, 0, 0) is a solution of (3.1)-(3.5). That is, there always 
exists a solution with t=O. 

As was mentioned above, the x-part of the solution of (3.1)-(3.5) with t=O is also 
zero and if we make a positive linear combination of such solution vector with 
other solution vector with t>O, the x-part of the latter solution suffers no influence. 
Thus, we can conclude that to get all KuHN-TuCKER points of (1.1), it is necessary 
and sufficient to have to do with the complementary extremal ray solution of (3.1)­
(3.5) with t>O. 

Theorem 3. 

TVe can find a global optimal solution of the quadratic program (1.1) among 
the x-parts of the complementary extrmal ray solutions with t=1 of the generalized 
linear complementarity problem (3.1)-(3.5). 

Proof. If (x, y, u, v, 1) is a solution of (3.1)-(3.5), then we have 

Q(x) = (c' x+b'y)/2 

That is, for the KuHN-TucKER point of the quadratic programming, the objective 
function is a linear functional of the x and y. Thus it takes its global minimum 
on a certain extremal ray with t = 1. 

4. Algorithm for Nonconvex Quadratic Programming 

Though we could directly apply the extremal ray algorithm to the linear 
complementarity problem of the quadratic programming, the necessary memory 
size and computational time would grow rapidly as the scale of the problem grows. 
Now, we will take several devices to improve the algorithm as outlined below. 

( 1) Constraints are taken into account one by one. 
( 2 ) An upper bound of the minimum of the objective function is set. And 

we neglect such constraints that were decided to have no KuHN-TucKER points 
with Q(x)-values less than the upper bound. 

( 3 ) The upper bound shall be updated in the process of optimization. 
The basic ideas are as follows. 

Now, suppose, we have already processej the constraints up to the k-th, and 
we have found all KuHN-TUCKER points lying on it whose Q(x)-values are not 
greater than the upper bound. If the KuHN-TucKER point which has the minimum 
Q(x)-value, is also a feasible point of the quadratic program, then we have already 
found an optimal solution. Otherwise, if the KuHN-TucKER point with the minimum 
Q(x)-value is not feasible, we will choose a new constraint which cuts off the KuHN­
TuCKER point, as the (k+1)-st constraint. Then, we apply the extremal ray algo­
rithm to find out the KuHN-TUCKER points of the Q(x) belonging to the region of 
k constraints and lying on the (k + 1)-st constraint. If all KuHN-TuCKER points 
on the (k+1)-st constraint have Q(x)-values greater than the upper bound, then we 
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can decide that the (k+ 1)-st constraint is "inactive" and we have Yk+I =0 hereafter. 
Otherwise, we will regard the constraint as ''active" and update the KuHN-TucKER 
point set, and the upper bound, if possible. Similarly, if there is no KuHN-TUCKER 
point not greater than the updated upper bound on the hyperplane ajx=b1 which 
have been active on the foregoing stage, then we can decide that the constraint ajx 
?:. b 1 has become " inactive " and we have y 1 = 0 hereafter. Also, we can apply the 
same criterion to the constraint xi?:.O and if there is no KuHN-TUCKER point not 
greater than the upper bound on the hyperplane xi=O, then we have ui=O hereafter. 

The above devices would contribute to decrease the necessity of getting all 
KuHN-TUCKER points and to decrease the necessary memory size. 

Summary of Notations and Abbreviations Used 

AS= {Index of active constraints}. By active constraints are meant such con­
straints that might contain an optimal solution on the corresponding hyperplane. 
But this set is temporary and its elements may vary from time to time. 

And, in order to keep the feasible region of each problem QPk (see below) 
compact, we always hold the first constraint (the bounding constraint) to this set. 

lAS= {Index of inactive constraints}. We call a constraint inactive if it was 
decided to contain no optimal point on the corresponding hyperplane, or if there 
exists, on the corresponding hyperplane, a KuHN-TUCKER point whose Q(x)-value 
updates the upper bound of min Q(x). 

RS= {Index of remainder constraints}. At the beginning of the algorithm, all 
constraints belong to this set. 

UZS={Index i of elements of x for which the hyperplane xi=O was decided to 
contain no optimal point}. The corresponding ui =0. 

KTS={KuHN-TUCKER points which have Q(x)-values not greater than the upper 
bound}. 

X= {xI Ax?:. b, x?:. 0}. The feasible region. 
UPB=An upper bound of the minimum of Q(x)(xEX). 
KTXmln={x in KTS which has the minimum Q(x)-value}. 

Algorithm 

Step 1. Initialization. 

Step 1.1. AS=IAS= UZS=KTS=if>. 
Step 1.2. RS={i!i=l, ···,m}. 
Step 1.3. UPB=An upper bound of min Q(x), if available. Otherwise, co. 

(Go to step 2.) 

Step 2. Solving QPJ. 
According to the assumption of the preceding section, the constraint a~x?:. b1 

is bounding, that is, {xlaix?:.b 11 x?:.O} is bounded and non-empty. So we have non­
empty KuHN-TucER point in this region. 

Step 2.1. Solve the KuHN-TucKER point set of the following QPl, by the 
extremal ray algorithm. 
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[QP1] Minimize Q(x), 
subject to aix?:.b1, x?:.O. 

Step 2.2. AS=AS+{1}. 
S7eP 2.3. RS=RS-{1}. 
Step 2.4. KTS={KuHN-TucKER points of QP1 whose Q(x)-value is not greater 

than UPB}. 
Step 2.5. Let Q(x)=min Q(x)(x, xEXnKTS). 

If Q(x)< UPB, then update UPB by Q(x). 
Step 2.6. If, for every xEKTS such that aix=bt. Q(x)-value is greater than 

UPB, then we have no optimal point on aix=b1. Thus, put Y1=0 
hereafter. Similarly, if for every xEKTS such that Xi=O, Q(x)-value 
is greater than UPB, then we have no optimal point on xi=O. Put 
ui=O hereafter. UZS= UZS+{i}. 
(Go to step 3.) 

Step 3. Finding KTXm 1n and Checking the Feasibility. 

Step 3.1. Let KTXmtn={xiQ(x)=min Q(x); x, xEKTS}. 
Step 3.2. If there exists an xEKTXmtn which is also QP-feasible, then x is an 

optimal solution of the quadratic program (1.1). (The end.) 
Otherwise, go to step 4. 

Step. 4. Finding a Cutting Constraint. 

Step 4.1. Take up, from RS, a constraint which cuts off a point of KTXmin· 
Let it be a~x?:. bk. 

Step 4.2. RS=RS-{k}. 
(Go to step 5.) 

Step 5. Solving QPk. 

Step 5 .1. Solve the following QPk by the extremal ray algorithm and get the 
KuHN-TUCKER points on the hyperplane a~x=bk. 
[PQk] Minimize Q(x), 

subject to a~x?:.bi(iEAS), a~x=bk, x?:.O, where Yi=O(jEIAS) 
and ui=O(iE UZS) and Y1=0 if step 2.6. is effective. 

Step 5.2. If PQk has no feasible point, then the quadratic program (1.1) has 
no feasible point. (The end.) 
Otherwise, go to step 6. 

[Remark 1 : Here we solve the QPk independently of the preceding subproblem 
QPk'. But we could take advantage of the information about the vertex set of 
the feasible region of QPk', in order to solve the QPk. For such purpose, we must 
keep the information about the vertex set of the polyhedron formed by the active 
constraints and also must update it at certain steps of the algorithm.] 

[Remark 2: It is certain that the necessary memory size for solving the QPk 
is fairly less than that for solving the QP by applying directly the extremal ray 
algorithm.] 

Step 6. Is the k-th constraint active ? 

Step 6 .1. For each KuHN-TucKER point of QPk which is also feasible with 
respect to the constraints in lAS, is the Q(x)-value greater than 

121 



KAORU ToNE 

UP B? If not~ go to 6.2. Otherwise, go to 6.4. 
Step 6 .2. Let Q(x) be the minimum of Q(x) where x is a KuHN-TucKER point 

of QPk, satisfying !AS-feasibility. If xEX, then go to 6.3. otherwise 
go to step 7. 

Step 6.3. If Q(x)sKTXmin, then x is an optimal solution of QP. (The end.) 
Otherwise, update UPB by Q(x). KTS=KTS+{x}. 

Step 6.4. IAS=IAS+{k}. 
(Go to step 8.) 

[Remark 3 : When we follow step 6.3.-6.4., the point x is the only virtually 
necessary point on the k-th hyperplane, as x is the minimum QP-feasible point on 
the hyperplane. In this case, we regard the k-th constraint inactive. This will 
contribute to keep the active constraint set small and hence to decrease the amount 
of computation.] 

Step 7. The k-th constraint is active. 

Step 7.1. AS=AS+{k}. 
Step 7.2. Let Q(x) be the minimum of Q(x) where x is a KuHN-TucKER point 

of QPk, satisfying QP-feasibility. If Q(x) < UPB, then update UPB 
by Q(x). 

Step 7.3. KTS=KTS+{IAS-feasible KuHN-TucKER point of QPk whose Q(x)­
value is not greater than UPB.} 
(Go to step 8.) 

Step 8. Updating KTS, AS, lAS and UZS. 

Step 8.1. Remove from KTS such points that were cutted off by the k-th 
constraint. 

Step 8.2. Remove from KTS such points that have Q(x)-value greater than 
UPB, if possible. 

Stet• 8.3. Remove from AS such indices ( * 1) that have no KTS points on the 
corresponding hyperplanes. Let such indices belong to I AS. 

Step 8.4. If there is at least one QP-feasible point in KTS then UZS= UZS+ 
{i!The corresponding hyperplane xi=O has no KTS point.}, if any. 
(Go to step 3.) 

5. A Numerical Example 
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First, taking up the bounding constraint -xi- xz- xs ~ -10, we solve the 
following QPl. 

[QP1] Minimize Q(x), 

The KuHN-TUCKER conditions are as follows; 

As shown in table 1, we found three KuHN-TuCKER points by the extremal 
ray algorithm, that is, (xi=3, xz=O, Xs=O), (xi=O, xz=O, Xs=4) and (xi=5/3, xz=O, 
xs=2/3) and their Q(x)-values are -4.5, -8, -3.83, respectively. The first is QP­
feasible but the others are not. Thus, we have UPB= -4.5. Because the three 
points do not lie on -xi- xz- Xs = -10 and the first is QP-feasible, we have YI =0 
hereafter by step 2.6. Next, we take up the constraint x1 +xz-xs~ -2, for it cuts 
off KTXmln =the second. Thus, we have: 

[QP2] Minimize Q(x), 

The KuHN-TuCKER conditions are as follows: 

Table 1. The solution of QP1 

xl Xz Xg YI I vl ui Uz Us Remark 

V1 10 -3 * * 
V2 10 0 7 * * 
V3 10 0 17 22 * 
V4 10 0 17 2 6 

V5 0 0 1 1 

V6= V(1, 2) 3 1 7 0 8 2 A KuHN-TucKER 
point, Q= -4.5 

V7= V(1, 3) 3/2 17/2 0 5 * 
V8= V(1, 4) 3/2 17/2 0 2 -5/2 

V9= V(4, 8) 4 6 5 2 0 A KuHN-TucKER 
point, Q= -8 

V10= V(6, 8) 5/3 2/3 23/3 0 16/3 0 A KuHN-TucKER 
point, Q= -3.83 
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Table 2. The solution of QP2 

xi x2 Xs Y2 vt v2 ut u2 Ua Remark 

V1 10 0 12 * * * 
i 

I 

V2 10 0 12 * * * I 

V3 10 0 -8 * * * 
I 

V4 0 0 -1 * * 
V5 1 10 2 * * * 
V6= V(1, 3) 4 6 1 0 0 13 * * 
V7= V(2, 3) 4 6 0 0 17 10 * 
V8= V(3, 5) 2 8 0 1 2 -2 

V9= V(4, 6) 4 6 13 0 0 0 -3 * 
V10= V(4, 7) 4 6 17 0 0 0 -7 * 
Vll= V(4, 8) 2 1 8 0 0 1 -1 

V12= V(9, 11) 3 4 6 0 0 0 5 

V13= V(7, 10) 4 6 10 0 0 7 0 12 

V14= V(10, 11) 1/2 5/2 3 7 0 0 0 3/2 

V15= V(ll, 12) 1/6 13/6 3/2 23/3 0 0 5/6 0 A KuHN-TucKER 
point, Q= -6.08 

Vt = -Xt-X2-xs+10 

O=v2=X1 +x2-xs+2 

Ut =x1 +2x2+2xs-y2-3 

U2=2x1 +2x2-Y2+2 

Ua=2xt +xs+Y2-4 

XtUt =x2U2=XsUs=O. (Notice Yt =0.) 

As shown in table 2, we found a KuHN-TUCKER point (xt=1/6,x2=0,xa=13/6) 
with the Q(x)-value -6.08. Now, KTS consists of (xt=3,x2=0,xa=O),(xt=5/3, 
x 2=0, x3 =2/3) and (x1 =1/6, x2=0, xs=13/6) and KTXmin is the last which is also 
QP-feasible. Thus, we have found an optimal solution of the quadratic program, 
(xt=1/6, X2=0, Xs=13/6). 

6. Concluding Remark 

The nonconvex quadratic programming is, together with the integer linear 
programming, a representative of general nonconvex programmings and several 
methods have recently been proposed on this subject among which RITTER's cutting 
plane algorithm (RITTER (1966)) and Tm's algorithm (Tm (1964)) for the global 
minimization of a concave function subject to linear inequality constraints are 
remarkable. But, to our regret, the convergence to the global optimum solution 
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of these methods does not seem to be guaranteed, as pointed out by ZwART (1973). 
Our ·method will be said to be of an opposite feature as far as this point of con­
vergence is concerned. Although our method is enumerative in nature, it would 
be possible to reduce the amount of computation, by taking advantage of the com­
plementarity conditions and by using several devices developed in the preceding 
section. 
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