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ABSTRACT 

Let us consider the problem of free vibration of an elastic circular plate under a 
given condition (such as the case of fixed edge-lines). We arrive at an infinite set of 
eigen-values (km) and corresponding set of eigen-functions Ym(r) (m=l, 2, 3, ···). These 
functions are known to form complete set of orthogonal functions. Also, it is shown (by 
referring to theory of linear integral equation with symmetrical kernel, for example) that 
any given function F(r) can be expanded into form of an infinite series of Fourier-type, 
provided that F(r) satisfies certain required condition. In the present note, the author 
has given some considerations about the expansion of Fourier-type of this nature, when 
the given function F(r) does not satisfy the above mentioned requirement. 

1. A Set of Orthogonal Functions which relate to Vibration 
of a Circular Elastic Plate 

In what follows, we shall treat the case of small free vibration of an elastic 
circular fiat-plate of uniform thickness. Similar considerations can be made for 
other case such as elastic circular plate of non-uniform thickness, at least in the 
principle. (The general discussion about eigen-value problem has been given by 
the author.) (KITo 1972-1973) 

The fundamental equation of free vibration of our problem, then, can be 
written in following form; 

( 1 ) 

where we denote by L1 the Laplacian az;ax2 +iJ2jay2
• The transverse displacement 

~ at any point (x, y) on middle plane of our elastic plate will be expressed by 
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~=w(x, y) sin wt 

w being angular frequency of free vibration. The constant k in equation (1) is an 
eigen-value which corresponds to natural frequency w. There may arise many 
cases of boundary conditions, such as free-, supported-, or built- in edge-lines. 
Here we restrict ourselves to the case of fixed (built-in) edge-lines, but similar ac
counts can be made about cases of other boundary conditions. The eigen-value k 
and corresponding eigen-function w(x, y) must be determined in such way to satisfy 
the differential equation (1) together with the given boundary condition. Let us 
assume that we have two sets [k~, w1(x, y)] and [kz, wz(x, y)] of solutions of our 
problem. Then we shall have, from equation (1), 

( 2) 

Now, by actual calculation, we see that the expression 

can be given in form of 

where we have put 

( 3) 

-2( awz azwl -awl a
2
wz) . 

ax axay ax axay 

Next, let us put 

and take integral about a domain S enclosed by one or several closed (regular) 
curves (Fig. 1). From the equation (2) we have 

y 

OL----------x 

Fig. 1. Domain of Integration. 
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The closed curves C1, C2, etc. being such regular closed curves so that we can 
apply Gauss' theorem, we have 

( 4) 

where left hand side represents contour integrals along closed curves C1o C2, ··· 
(with suitable signs). 

According to our boundary condition, we have 

w=O, 

along the boundary curve, and we have, from equation (4), 

( 5) 

provided that k1 =f::.k2. and also that w1, w2 and their derivatives up to third order 
are continuous functions. 

For the case of a circular plate, we put 

w(x, y)= W(r) cos n(J 

where n is an integer. Then we have 

( 
d 2 1 d n2 )2 Llilw= -+---- W(r)cosn(J 
dr2 r dr r 2 

and the equation (3) becomes 

(r=a (
8

=
2
"Ardrd0=0 

Jr=b JfJ=O 
( 6) 

taking the case of circular plate of inner radius b and outer radius a. Also, the 
equation (5) is formed into 

( 7) 

Next, in order to connect our problem to theory of linear integral equation 
with symmetrical kernel, we consider two functions W(r) and K(r, ~) defined in 
following manner. 

(a ) For w= W(r) cos n(J the function W(r), together with its derivatives W', 
W" and W"' are continuous functions in the domain b:::;,r:::;,a, and satisfy the dif
ferential equation 

( 8) 

and such that at r=b and b=a, we have W=O, W'=O. In the case of whole 
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y 

Fig. 2. Annular Domain of Integration. 

circle in which b=O, the boundary condition at r=b is to be replaced by the con
dition that at r=O, Wand W' are regular. 

(b) For U=K(r, ~)cos nO, the function K(r, ~) as function of r is, together 
with its derivatives U~, ... U~" are continuous in two annular domains b~r~~-0 
and ~ +0~ r~a (see Fig. 2). Moreover, we set conditions at r=b and r=a that 
K(r, ~)=0, K;(r, ~)=0. 

(c) We introduce discontinuity of K?l(r, ~) at r=~ ±0 given by the equation 

[K<3l(r ~)lr=~-0 = -1 
r ' r=~+O 

(10) 

As a next step, we replace w1 by w given in above item (a), and W2 by U 
given in above item (b), in the equation (4). The domain S of integration in eq. 
(4) is considered to consist of two annular regions b~r~~-0 and ~+O~r~a. 

Thus we arrive at the equation 

W(r)=k4 ~:K(r, ~) W(~)~ d~ (11) 

which is a homogeneous linear integral equation in W(r). Furthermore, let us put 
in eq. (4), U1=K(r, ~) in place of Wr, and U2=K(r, r;) in place of w2. To fix ideas 
we assume that b<~<r;<a. The domain of integration in eq. (4) is, here taken 
to consist of three annular regions represented by b~r~~-0, ~+O~r~r;-0, r;+O 
~r~a respectively. Thus we obtain, from eq. (4), the following relation 

K(~, r;) =K(r;, ~) 

which shows us that K(r, ~) in integral equation (11) is a symmetrical kernel. 
In what follows, we shall confine ourselves to the case of whole circle 0 ~ r~ a 

this being most common case. But similar treatment can also be made for the 
case of annular ring region b~ r~a. In the case of whole circle, the condition at 
r=O is that W(r) and W'(r) are regular in the neibourhood of r=O. 

According to theory of linear integral equation with symmetrical kernel by 
KNESER (1922), the equation (11) has an infinite set of eigen-values and eigen
functions [km, Wm(r)] (m=1, 2, ... ). Functions Wm(r) and Ws(r) (m~s) among them 
are orthogonal each other. A given function F(r) can be expanded into an infinite 
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series of Fourier type, using these orthogonal functions ~n(r). It is known that 
for any function F(r) which can be expressed in source-like form of 

(12) 

this Fourier type expansion is valid (converges) (KNESER 1922; CouRANT, HILBERT 

1931). Also it can be shown that any function which is finite and continuous 
together with its derivatives F', F", F"' in the interval and which is such that 
F(a)=O, F'(a)=O, can be expressed in form of (12). This is done by putting 

wi =cp(r) cos nO=LILI[F(r) cos nO] 

Wz=K(r, ~)cos n(} 

into the expression B, and integrating over the domain S of Fig. 2. 

2. Set of Orthogonal Functions which are related to 
Problem of Circular Plates 

In what follows, in considering elastic circular plate (O:::;;r:::;;a) we shall put 
a= 1, which can be done without loss of generality. The solution of equation (8), 
which satisfies above-metioned condition of fixed boundary is given by 

Y(r) =Afn(kr) + Bfn(ikr) 

wherein constants A and B are so chosen that we have 

whence we have 

Afn(k)+Bfn(ik)=O} 

AJ~(k)+iB]~(ik)=O 

nt(k)!fn(k) =i]~(ik)!fn(ik) 

(13) 

(13 a) 

(14) 

The eigen-value k4 must be a solution of the equation (14). It will be seen that 
there exist an infinite number of solutions of this eq. (14). The fact that all these 
eigen-values k 4 are real numbers will be seen from the theory of linear integral 
equation (11). Furthermore, it will be seen that all the eigen-values may be taken 
to be positive real numbers. In order to see it, we remark following identity 

aMI aNI [( a
2
w )

2 ( azw )
2 ( azw )2] 

wLILiw=----a;-+ay-+ axz +2 axay. + ayz 

where we have put 

o3w aw azw a3w 
MI = w axs -a;; ·a_;;2- + w axayz 

asw aw a2w aw 02W 
NI=w----------

oy3 oy oy2 ox oxay 
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Therefore, by integrating both sides of the relation 

which is derived from equation (1), over the domain S, and inserting the boundary 
condition, we arrive at a relation of form of 

(positive value)=k4 (positive value) 

Thus we infer that k4 is a positive number. Putting then k4 =c2 we have k2 = ±c. 
Thus there are following four cases 

As we see from the solution (13) and (14), practically the same function is ob
tained, when any one of above four choices is made. Therefore, we may for our 
estimation take only one case of k=/c, that is positive real eigen-value. The 
constants A and B must be so chosen that the eigen-function Y(r) is normalized, 
that is 

This is done by using the known formula 

Thus we obtain 

~:] n(kr)fn(lr)r dr= k2 ~ f2 [lfn(kr)]~(lr) -- kfn(r)n(kr)] 

~:[fn(kr)]2rdr= ~ r 2 [{n(kr)} 2+ ( 1- k~;2 ){!n(kr)F] 

where km (m= 1, 2, ···) are positive roots of equation (14). 

3. Property of Orthogonal Functions Ym(r) 

(15) 

It is known that for a value of real argument z, which is very large in com
parison with unity, we have approximately 
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We note also that (McLACHLAN 1934) 

J/z(ik) 
fn(ik) 

(i)n-l f~(k) 

(i)nfn(k) 

Therefore, for a very large value of integer m, km will approximately be given 
by roots of equation 

(16) 

So that we have approximately 

km=(n+2m); l 
2m-1 r.: rr nrr 

¢=-2-rr+4=km-4-2-

(17) 

On the other hand, when n is a positive integer, we know the maximum value of 
lfn(z)j for real positive argument of z. Let us denote this maximum value by 
fn(M). Also we have, approximately 

when m is very large. Thus we obtain an inequality 

(18) 

where A is a positive constant. On the other hand, we have 

fn(ikmr) ln(kmr) 
-/:(ikm) - fn(km) 

For positive value of z, the function ln(z) is an increasing function, and for very 
large value of m (that is, for very large value of km), there exist two constants 
B, C such that 

l(k ) B
exp('!_mr;) 

n mY < ..J2rrkmr; 

I (k ) C exp (km) 
n m > ..{2rrkm 

so long as we have O<r<r;<l. Hence we nave an inequality 

I 

ln(kmr) 1 B 1 
ln(k.m) < C -:;~ exp { -(1-r;)km}<Eexp ( -).km) 

Thus we deduce from eq. (15) that when m (km) is very large there exist a 
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positive constant A1 such that for any value of r lying in range of O<r<7J<1 
we have 

4. Expansion of Fourier-type of Function which does 
not satisfy the Boundary Condition 

(20) 

As was already remarked, any function F(r) which satisfy following three 
conditions, can be expanded into an infinite series of Fourier type in form of 

(a) F, F', F" and F"' are finite and continuous in the interval Osrs1 

( 13) at r=O, F, F' are finite and regular 

( r) at r= 1, F(1) =0 and F'(1) =0 

(21) 

Even if the given function F(r) does not satisfy these conditions (a), (p), (r), we 
can obtain formal expansion in form of (21), but we can say nothing about vali
dity (convergence) of it. In what follows, we shall consider about some cases of 
functions F(r), which do not satisfy these conditions (a), (p), and (r). 

Let us take up the case of a function F(r) which satisfies condition (a) and 
(13), but not the condition (r). For that case we form a new function G(r), in fol
lowing manner 

{ 

F(r) 
G(r)= 

<p(~) 

Osrs1-c 

Os~sc (~=1-r) 

where c is a positive constant which we may take as small as we please. Suit
ably choosing the function cp(~) we can make this new function G(r) to satisfy all 
conditions (a), (p), and (r). One way to accomplish this purpose is to put 

here we have (KITo 1973) 

2 1 
a2= 10cp(c)- 6cp'(c) +-cp 11 (c) --cp"'(c) 

3 6 

1 
-a3=20cp(c) -14cp1(c)+ 4 cp 11 (c)- 2 <p 111(c) 

7 1 
a4 = 15<p(c) -llcp'(c) + -2<p11 (c)- 2 cr"'(c) 

1 -a5= 4cp(c)- 3cp'(c)+ 1 <p 11 (c)- 6 cp"'(c) 

For this modified function G(r), we can make Fourier type expansion in form of 
(21), which converges in our region 0 s rs 1. Similar consideration can be made, 
for example, for a given funcLion F(r) which satisfies the conditions (a), (p), and 
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Fig. 3. Modified Function G(r). 

(r) except that F 1(r) has a finite discontinuity at r=e (0<e<1). 
Next, let us show, by actual example, that there exist many functions which 

do not satisfy the condition (r) but whose expansion in form of (21) is absolutely 
convergent in the region O:::;;r:::;;l. For this purpose, we remark a formula relating 
to integral involving Bessel functions namely (k, l being two positive constants). 

rr fn(kr) y [ fn(kr) I J~(kr) J 
JoJ~(kyfn(lr)rdr=k2 -f2 l fn(k) fn(lr)-k-}n(k) fn(lr) 

Denoting by ](k, !) value of above integral for r= 1, we have 

When we make k very large in comparison with unity, while l remain fixed, we 
have approximately 

Next, we have 

( 1 fn(ikr) 
l(k, l)= Jo fn(ik) fn(lr)rdr 

1 [ lfn(ik) 1 • } ~(ik) J 
(ik) 2 -l2 fn(ik) fn(l)-zkfn(l) fn(ik) _ 

-1 [. I'(k)J 
= k2+l2 l]~(l)-kfn(l) h(k) 

which, again when k is very large, can be written approximately 

fn(l) [ b J I(k, l)=-k- 1+k+ .. ·_ 

Combining these approximate estimates we obtain following approximate 
formula for coefficients am in expression of (21), for any large value of m, as 
follows; 

71 



FuwrKr KrTo 

~
1 Jn(l)[ b J am= fn(lr)Ym(r)rdr=--- -2+-+··· 
o km km 

Let us then, consider a function Y(r), represented by the expression 

wherein a1, !1, ···,as, ls are constants. When these constants are chosen such that 

the coefficient am of expansion in form of (21), of this function will be such that 

where A is a fixed positive constant. 
Thus we see that the infinite series (21) is absolutely convergent for O.::;;:r.::;;:1, 

showing us that there actually exist infinitely many functions F(r), which admit 
expansion in form of (21), even if Y(r) do not satisfy the condition (r ). What will 
be represented by this expansion, for the case of these function F(r)? The answer 
is given by Fischer-Riesz theorem (WIENER 1933) in functional analysis. Putting 

SM=a1 Y1(r)+ ... +aM YM(r) 

SN=a1 Yt(r)+ ... +aN YN(r) 

the value of integral 

tends to zero as M-+ co, N-+ co, M and N being made to infinity independently 
of each other. This means that in this case the infinite series (21) represents 
function F(r) almost everywhere in the range of O.::;;:r.::;;:1, in the terminology of 
functional analysis. 
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