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ABSTRACT 

The purpose of the present paper is to characterize statistically completely randomized 
mixture of equisized solid particles which are classified into less than two types according 
to their densities or compositions. 

To measure the degree of mixing, the author defines the mean square deviation about 
the weight concentrations of key component between the partitions of mix, and calculates 
its expectations for completely randomized mixture based on hypergeometric distribution. 
It is essential improvement that the void fraction is taken into consideration and the method 
of ratio estimate is used. 

Finally, the author describes the mixing process by using one- and two-dimensional 
mixing Markov chains and shows the expectation of mean square deviation for com
pletely randomized mixture can be achieved as a limit of the process. 

1. Introduction 

The two-component m1xmg system of equisized particulate solids has been 
discussed by a lot of authors. Above all, the completely random mixture has been 
often treated by their research works since P.M. C. Lacy showed the theoritical 
variance of sample content based on binomial distribution (1943). 

The number of specific type of particles in a spot sample drawn from com
pletely randomized mix with various types of equisized finite particles is a random 
variable with hypergeometric distribution, which was stated by S.S. Weidenbaum 
(1953), but the author could find no reporters who make a theory of the mixing 
with hypergeometric distribution. This fact is out of the question for practical 
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application such as large mixture in industry or under the assumption of particles' 
movements being independent to others, while it can not be set at naught when 
we study theoretically the complete mixing state as a realized state of stochastic 
process. Therefore, most results caluculated in this paper are based on hypergeo
metric distribution. 

Though we image many kinds of material as composition of particles, only 
two components-the key component and the rest- are essentially treated. While all 
particles are classified into not less than two types according to their compositions 
or densities. 

To measure the degree of mixing and to describe the mixing processes, we 
divide the space of mixture into some cells and defines the mean square deviation 
about the weight concentrations of the key constituent between these cells. For 
completely randomized mixture, the author calculates the expectation of the mean 
square deviation and then, using this value, derives the expected values of the 
mixing indexes. 

If the densities of particles are different, it is to be noted that the total weight 
of particles in each cell is also a random variable (K. STANGE, 1954). And only a 
few reporters (Y. Qy AMA, 1939, 1940) have discussed on the influences of void 
fraction to solid mixing. Not only the changes of apparent volume of mixture, 
but also the variation of the total number of particles in a spot sample (R. 
BLuMBERG & ]. S. MARITY 1953) is considered to be caused by void fraction. In 
view of these facts, the author introduces the method of ratio estimate and the 
model of void particle which was proposed by him. 

Y. OYAMA, & K. AYAKI, (1956), I. INOUE, & K. YAMAGUCHI, (1969) studied the 
mixing process described by Markov chain, but their reports were not necessarily 
clear with respect to following three points. 1; They did not give the sufficient 
conditions for the movement of particle to be a Markov chain. 2; They neglected 
the changes of void fractions in whole mixture and in each cell. 3 ; They did not 
derive the expected value of mean square deviation. 

The author improves these points, and then shows the expectation of the 
mean square deviation for completely randomized mixture is equal to one of the 
limits of mixing process described by Markov chain under the assumptions of local 
randomization and ergodicty of two dimensional Markov chain. 

2. Definition of Mean Square Deviation 

The author wants to study the mixing process for an aggregate of heterogene
ous equisized solid particles. In order to describe the state of such aggregate, let 
us consider a space in which the aggregate of particles is located. At first, we 
consider the size of this space to be measured by N unit spaces whose volumes are 
u (equivolume). Let us assume the size of each unit space is enough to contain 
at most one particle. Next, we divide this space into K cells so that the i-th cell 
has mi unit spaces ('L,J~'fmi=N). 

We classify the components of particles into key material and the rest, and 
then name the key material "A". Besides, "qi ", j=1,---L are used to distinguish 
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the L types of particles according to their composition or densities. Let us intro
duce the following symbols; 

! 1 is the weight of component A contained in QrParticle. 
w1 is the weight of Qrparticle. 
N1 is the number of QrParticle in whole mixture. 
Ns is the total number of particles in whole mixture, where Ns= L.}~fN1• 
v is the volume of each particle (equisized). 
V is the true volume of mixture, where V=Ns·V. 
W is the weight of mixture, where W= L.~~fw1N1. 

Ua is the apparent volume of whole mixture (ua~ V). 
m1i is the number of Qrparticles in the i-th cell. 
hi is the total number of particles in the i-th cell, where hi= L.~~fmJi· 
9i is the total weight of particles in the i-th cell, where gi= L.~~fw1mii· 
Yi is the wall effect in the i-th cell. 
miT is defined as miT= mi- Yi. 
NT is defined as NT=N- L.~~~Yi, where Ns~NT. 

ei is the void fraction of the i-th cell. (The void fraction of whole mix-

. Ua- V ) ture IS---. 
Ua 

Now we define the concentration of the key constituent A m the i-th cell as 
follows: 

(2 .1) 

which is the ratio of the weight of component A to the total particle weight in 
the i-th cell. 

The concentration of key constituent A in whole mixture, ct, is written as 

(2 .2) A_ 1 "=LfN 
Co - W L.~=l j j • 

If we suppose not only Ns=N, L=2 (only two types of particles), ft!w1 = 1, 
fz/w2=0, but also w1=Wz (equal density), then we have 

(2.3) 

We shall treat this case in the following section III. Most writers have adopted 
the volume (number) fractions (2.3) as concentration which are the special cases 
of (2.1) (2.2). 

Using above definitions, the author defines "mean square deviation from c1 ", 
by (at)2

, which is; 

(2.4) 

B 't t d -A- '\'i=K 9i A h e 1 no e ; c0 -L..li=l W ci, ence 
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For a completely unmixed. system where each cell is composed of the same 
type of particle, the value of ct is any one of fJIWJ, j=1~L. Therefore it is 
easily verified that (a~) 2 is given by: 

(2. 5) 

we denote this by (a~) 2 • 

If fi=O j?::.2, then (at?=ct(-[f;-ct). As is well known, (at)2 =ct(1-ct) when 

L=2, fdw1 =1, fdw2=0. 
For a perfect mixing, which can be hardly achieved by the ordinary mixing, 

we put cf=ct, i=1~K, by distributing L-types of particles in the same proportion 
to each cells. Then we have 

(2 .6) 

If we introduce such (a~) 2 as ct(1-d)=(a~)2+(at) 2 , then we may think (a~) 2 is 
between cells variance and (a1,) 2 is within cells variance. For a completely un-

. d t ( A)·2_ 1 .._,j=L('fN)(1 f.i) f f t . . ( A'2- A(1 .A m1xe sys em, (Jw -WLJJ=! J J -~J-, or a per ec m1xmg, aw) -c0 -c0 ). 

(For a perfect mixture, (a~) 2 =0.) 

In the following, the superscripts of c{', ct, a~, at are omitted for simplicity. 

The concentration at each cell varies from time to time as the mixing pro
ceeds, but the mixing process is not always a stochastic process. Hence, for clear 
distinction, we use the random variables Mii(t), Hi(t), Gi(t), Ci(t) and D~(t), corres
ponding to mJi, hi, gi, ci, a~ respectively, when we regard the value of concentra
tion at any fixed mixing time t as a realized value of a stochastic process. 

By the same reason, we use Ua(t), ci(t) as the random variables which describe 
Ua, ei at mixing time t ( V:::;; Ua(t):::;;uN). 

Let us represent the intial condition prior to mixing at mixing time t=O by 
So: the number of QrParticles in the i-th cell is represented by mJi(O). We shall 
use this symbol in the last section. 

We define completely randomized mixture as randomly mixed batch in which 
every combination of the locations of particles (not always countable) is realized 
with an equal chance. Let MJi, Hi, Gi, ci; DL Ua, Ci be random variables for 
completely randomized mixture, which are independent of time parameter t. We 
distinguish randomized mixture from random mixture in which any pair of parti
cles has no correlation. On the other hand, we do not distinguish randomly mixed 
state from complete mixing state as mentioned in section IV. The complete mix
ing state is usually attained as a limit of a mixing operation. It should be noted 
that the complete mixing we treat here must satisfy the mixture property, which 
is a stronger condition than ergodicity (E. HoPF, 1934). 
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3. Degree of Mixing for Completely Randomized Mixture 

A number of formulas to measure the degree of m1xmg have been devised. 
In this paper, they are restricted to statistical formulations based on concentration. 
T. Y ANO & Y. SANO (1964) classified the statistical formulas for the degree of 
mixing of binary solid mixture. In order to evaluate the state of mixture at the 
end of mixing, they assert the following index is suitable; 

And, they say, for the purpose of describing the state of mixture on the way of 
mixing, the following index is reasonable ; 

where aJ=E(D~), is the expected value of mean square deviation from Co. 

In this paper, let us consider 1- Id and the following index It instead of le; 

lt=1-a~/a~ 

For a completely unmixed system (see 2.2), 

For a perfect mixing, from (2. 6) 

/t=1, 

In the following discussion in this section, we are to treat only the simplest 
case that Ns=N, L=2, fdwi=1, !2/w2=0, w1=W2, but the arguments about mixing 
index and volume sampling can be extended to the general case by applying the 
results in the succeeding sections. 

For completely randomized mix, every one of the (~:) combinations of state 

as to the i-th cell is achieved with equal probability (~:r
1

, where mi=M1i+M2i. 

Therefore we may consider that, for any i, the random variable M1i has hyper
geometric distribution whose mean and the second moment are 

(3 .1) 

and 

From (2.3) and (3.1), 
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(3.2) 

Hence, the variances of Ci, i = 1,......., k, are 

(3 .3) V(Ci) 

By definition of at and (3.3), we obtain the expected value of mean square 
deviation from Co, ah, as follows; 

Thus ak depends on K, co and is in inverse proportion of Ns-1. But it is 
independent of the way of division of mixture into cells. Here we note that the 
formula (3. 3) can be easily seemed in the usual simple random sampling theorem. 

By the way, the covariance of Ci and C1 is: 

(3. 5) 

since 
Nl(NI-1) 

E(M1iM1J)= Ns(Ns-l)mimJ . 

From (3.4), the expected values of l-Id and It are: 

and 

(3 .6) 
Ns-K K-1 

E(l- Dl/ aD= ~~- = 1- -~~---. 
Ns-1 V/v-1 

Formula (3. 6) implies that, if K < 1, and the other conditions are unchanged, 
the smaller the size of particles becomes, the better the degree of mixing does. 
This coincides with the result given by T. FuJIMORI, & H. IsHIKAWA in their 
experiment (1972). 

In a similar way, we can give the expected value of mixing index which is 
to be estimated by the spot sampling. Note that each realized state of completely 
randomized mixture is not only a sample drawn from the stochastic processes, but 
also a population by itself for spot sampling. We may consider each lot has one
to-one correspondence to an aggregate of particles in a cell. 

Let c and s2 be the sample mean and the sample variance from completely 
randomized mixture such as the sample size is n and increment sizes are m(i), 
i=l,.......,n. That is; 

-- "'i =nmci) C 
C- L..oi=I -fv:: (i) ' 

z '\'i=n mco(C ) s =L..oi=t-N Ci)-Co , 
n 
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Then, from (3. 2), (3. 3) and (3. 5) 

E(c)=co, V(c)= ?~:-c;~ (~: -1) , 

Comparing above formula with (3 .4), we have 

E( 2)_ (nNs/ Nn)-1 2 
s - K-1 aR. 

In particular, increment sizes are all m and Ns/m=K, then 

2-£( 2)_ Co(l-Co) !!_s-m _ Co(1-co) o(_l_) aR- s - _ + . 
m Ns-1 m Ns 

In this case, s2 is coincident with an estimator of Dg. 
Most of the works so far adopted this estimator to measure the degree of 

mixing. The expectations of 1- Id and It are 

E(1- a~-s2) =0 
a~-aJ 

E(1- _!~·) = ~(1- __!__) = (1- ___!_) +0(2__) : Ns ?::.1 , 
a~ Ns-1 m m Ns 

which depend on the increment sizes. 
(To measure the quality of mixture, we had better use co(1-co) instead of a~ 

in Id and It.) 

4. Ratio Estimate 

In this section, we shall examine the general case the the density of particles 
is not homogeneous and the number of particles in a cell is varing. We can no 
longer call E(Ci(t)-cfj)2 "variance" because Ci(t) is usually a biased estimator of 
Co. 

From (2. 5), ak(t), the expected value of mean square deviation from Co at mix
ing time t, is 

(4.1) 

The value of ak(t) increases as the differences of weights, compositions, among 
L kinds of particles become large. 

For example in case of L=2, (4.1) is expanded as; if w2>w1, 
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1 "'i=KE((j. J")M (t)+f )z("'r=oo(wz-wiYMr(t)) 2 w L..i=l 1- 2 li zmi L..r=O Tw;;n~y;I li -Co ' 

and if W1 > Wz, 

Therfore ak(t) decreases as /2-+/1 or W2---"W1. 

E(Ci(t)) and ( 4 .1) can be calculated approximately on replacing Gi(t) in the 
denominators of themselves by E(Gi(t)). Then, 

(4 .2) E(Ci(t)) ~ l::J~ffjE(Mji(t))/ L:j~fwjE(Mji(t)) 

(4 .3) 
1 . . 

a}M) ~ W L:~~~{l::}~[f]E(M]i(t)) +2 l::r<jfrfjE(Mri(t)l\!lji(t))}/ 

(EJ~fwjE(Mji(t))-c~ . 

For an aggregate of particles with different densities, no completely randomiz
ed mix can be attained practically because the segregation occures by gravity or 
acceleration (Y. OYAMA, 1939; M. B. DoNALD & B. RosEMAN, 1962; etc.). However, 
the influence of such phenomena may be reduced as small as possible by using 
some special kind of mixers. In the following discussion, we deal with such an 
ideal critical mixing that the differences of particle weights do not cause the 
segregation. 

Now, let us investigate completely randomized mix. To begin with, we in
troduce the frequency function (density) of Hi, which is expected to be obtained 
from experiment, and denote it by fi(y). (As for the definition of Hi, see section 
II.) 

Using the hypergeometric distribution, we get 

(4.4) 

(4. 5) 

(4.6) E(MjiMri) = ~ {E(Mji + Mri)2
- E(M{j)- E(Mii)} 

NjNr 
2 

Ns(Ns- 1) (E(Hi)-E(Hi)) . 

Let substitute (4.4) (4.5) (4.6) into (4.2) and (4.3), we have 

E(Ci)~co , 

(4. 7) 

where d- i=KE(Hl) 
r- 2:: i=l E(Hi) 
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Here, for the sake of convenience, let Q(Ns) be 

If wi~w.i for some i~j and yet Nc;;=N, then from (4.7), 

If Ns-:;,N and yet w.i=w for any j, then it should be noted that Ci is an un
biased estimator of Co. Namely, 

= "\'i.:L_l!___ "\'Y=:_mif·( )"\'X=:_Y!}_( Nj)\ (Ns-Nj)/(Ns) =. 
I...JJ-1 LJY-o t Y LJx-o Co • w y x y-x y 

Moreover, in this case, 

N.i{ Ns-K } =-·-- (N.i-1)---+K , 
N" Ns-1 

Therefore, we get 

(4 .8) 
1 K-1 

ak=w2Q(Ns)Ns-f' 

where w.i=w for all j. 
It is important (4.8) gives a exact value. In other words, the expected value 

of mean square deviation for completely randomized mix does not depend on the 
void fraction or the number of particles in each cell. 

In the next section, we shall construct a model such that the distribution of 
Hi is provided by the following distribution, 

(4. 9) 

Then the bias of ratio estimate in (4.7) is, from (4.8), 

where 
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5. Void Fraction of Completely Randomized Mix 

Both the number of particles in the i-th cell, hi, and the apparent volume of 
mix, Un, change every moment on account of porous in the mix. In particular, 
the void fraction of the i-th cell, ei, should vary even if Un were constant. 

For instance, AKAO, Y. and NoDA, T. (1968) showed by their experiment that 
the apparent volume of mix which contains a large number of equisized spherical 
particles increases at the beginning of mixing and then approaches a constant 
value as the mixing proceeds, while the void fraction of equivolume spot samples, 
i.e., local voidge variation from the mix, always fluctuates. Also this kind of 
phenomena was mentioned by D.P. HAUGHEY & G. S. G. BEVERIDGE (1966) and H. 
KvNo (1972) in a random packing, 

Let us denote by "emin" the minimum value of void fraction of the mixture 
obtained by the closest packing. 

In the practical application, emin is given, and yet the capacity of unit space, 
u, is unknown. Then, u must be set as follows ; 

(5 .1) u=v/(1- emin) 

We further define by "emnx" the maximum value of void fraction. Here, 
max Ua=UN= V/(1-emax). 

u. OISHI (1956), T. UEMATSU (1951), H. E. WHITE & s. H. WALTON (1937) 
showed em 1n is about 0. 26 for spherical or elliptical particles. D.P. HAUGHEY and 
G. S. G. BEVERIDCE (1969) stated in their review that the bulk mean value of 0.40 
to 0.41 are obtained by the loose random packing of identical spheres. It may be 
natural that the void fraction in the loose random packing corresponds to the 
upper bound of void fraction for completely randomized mix, which we write by 
er-

The difference between emax and er is mainly due to the wall effect (in a wide 
sence). The wall effects, Yi, i=1.-.....,K, are the ones of a mixer's wall, floor and 
opening (i. e., boundary of mix) upon the mixing in thier vinical cells. In this 
paper, we assume Yi, i=1.-.....,K, are all constant. Then, er is constant and modelled 
as follows; 

(5.2) 

The determination of Yi depends on not only the type of mixer but also the shape 
of particles. 

Note that, if we suppose all particles are able to occupy only Nr-fixed-locations, 
then our model is a kind of " imaginary particle model ". In this case, as there 
is no distinction between imaginary particles (i. e., the locations with only void), 
the density fi(Y) is given by 

(5. 3) 

where 

(mir)y · (Nr-mir)Ns-Y 
L;~::::~iT (mir)y· (Nr-miT)Ns-Y 

x' 
(x)y means (x-~) ! 
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When the capacity of the i-th cell, mi, is sufficiently large relatively to particle 
size, we can neglect wall effect Yi (see P. F. BENENATI & C. B. BROSILOW (1962), 
etc). 

If the effect of gravity is completely neglected such as mixing in an artificial 
satellite, we need not consider wall effect: in this case, (5.3) is formally true if 
Nr and mir are replaced by Nand mi. 

Let us denote by a the cells on the border plane of mix intersecting its cover
ing space. It must be cared that we do not recognize the void included in a as 
mix. We assume the void fraction in a is emin· Then, 

From (5.1) and from the definitions of Ua(t), ei(t), we have 

(5.4) E( Ua(t)) 
v 

1-emax 

(5. 5) 1- emin E(JL(t)) ' 
mi 

(5 .6) 

To show the change of void fraction in the i-th cell, we make the following 
definition ; 

Let 111iv be the random variable corresponding to m~ for completely randomized 
mix. Since Mt=mi-Hi- Yi, P(M~=y)=fi(y- Yi-mi). In general, there are too 
many physical conditions to study the theoretical background of m~ in mixing 
(many-body problem), so we construct a model: the void in the i-th cell whose volume 
is m~u behaves as if it were an aggregate of particles and the rest containing Yi 
were settled in some fixed point in the i-th cell. We call this new kind of particle, 
the (L+ 1)-th type particle, the "void particle". 

In this thesis, we treat the typical case that the volumes of void particles are 
all v (hypothesis). Then M? shows the number of void particles in the i-th cell. 
Under this hypothesis, to introduce the void particle is equivalent to replacing the 
probability (5. 3) in imaginary particle model by the hypergeometric distribution 
(4.9). On the other hand, Y. AKAO and T. NooA approximated the probability 
(5. 3) by binomial distribution (1968). (For practical sake, both distributions are 
almost equal since Nr~ 10 mi.) 
For completely randomized mix on the void particle model, 

While, from (5 .1) and (5. 2), N - 1- emln N 
r- 1-er 8 • 

Using above formuras and (5.4), (5.5), (5.6) and (4.7), we have 
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V(s;)= 11liT(1-er)(er-;emin)(Ns-11ltT- Nsemin-11liTer) , 
mJNs-1-Nsemin-er) 

6. Local Randomization and Markov Chain 

The wall effects are not to play any essencial part through this section, hence 
we put Yi=O for all i and use N, mi instead of Nr, miT with generality. While, 
the following discussion is based upon the hypothesis of the void particle model. 
Consequently, the total number of locations which are occupied by particles is at 
most N. Therefore the locations of all particles at mixing time t can be represen
ted by N-tuple valued random variable X(t). We can number N! permutations as 
the state space of X(t). 

The mixing process {X(t)} is induced by Markov process if the mixing opera
tions are mutually independent as to mixing time and have a common distribution 
(]. K. DooB, 1953, p. p. 187-190.). (Whenever the hypothesis of the void particle is 
rejected, the results of this section may be applied by putting N=Ns.) 

The three problems pointed in section I are improved by introducing the con
cept of "independent mixing operator", "local randomization" and '·two dimen
sional transition probability". 

Now, we think the mixer where mixing time parameter t is considered to be 
discrete, and suppose the following two assumptions for every cell in addition to 
uniformity of physical properties of particles. 

The first assumption is the existence of independent m1xmg operator. That 
is; the particles in the k-th cell (k=1""'--'K) are always distributed to the i-th cell 
(i=1""'--'K) at the rate, P1~ 1 , with probability Pd (d=1""'--'l) such that for every mix
ing time 

(6 .1) 

This is a natural assumption if the operating conditions of the mixer are station
ary and independent of mixing time. 
We put Pki=L..~~{P1~ 1Pd. Then, from (6.1) and L..~~{Pr~=1, 

(6.2) 

The second assumption is the local randomization. Namely, at least any one 
of next two cases has to hold for any k-th cell such that there exists no i-th cell 
satisfies P1~ 1 = 1 for all d. 
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The one; the particles coming into the k-th cell input randomly to every part of 
it. The other; the particles being distributed from the k-th cell to other cells 
output randomly from every point they locate. 

The mechanism of mixing is considered as whole and local mixing, the former 
concerns with connective mixing and the latter concerns with diffusive mixing. 
The distribution of particles from a cell to another depends on whole mixing and 
uniformity of a cell (local randomization) depends on local mixing. The concept 
of local randomization has been applied by H. SAKAMOTO (1960). 

Let us give a number to all particles by l=1~Nr, and further define the 
random variable Xl(t), such that Xl(t)=i, if the l-th particle visits the i-th cell at 
mixing time t. 

From (6.2) and L.~:rmi=N, for all i 

In view of the first and the second assumptions, for any given d, the probability 
that the l-th particle moves from the k-th cell to the i-th cell is equal to the chance 
that a specific particle is involved in the sample selecting randomly mkp~~) particles 
out of mk particles. 
Therefore, 

P X I 1 - 'IXl( )-k- d=Ip ( mk-1 ) /( mk ) -P ( u+ )-l t- )-L.d=! 11· p!ql_ 1 1 p!t!J - ki 
mk kt mk kt 

Giving the initial condition P(X1(0)=so)=1, P(Xl(O)~so)=O, it is easy to show 
that discrete random variables {Xl(t), t~O} possess the Markov property (Markov 
property; K. L. CHUNG 1960.). Consequently, {X(t), t~O} is a Markov chain with 
stationary transition probabilities Pki, k, i = 1 ~ K. 

Let F be {(ij); i, j=1~K} n{(ii); mi=1}c. The two dimensional conditional 
probabilities are defined by Pckr) ciJ) =P(Xl(t+ 1) =i X ll(t+ 1) =jiXl(t) =k Xll(t) =r) 
for any mixing time t, any pair of particles (l, !'), l~l', and any (kr)EF. 

In view of the first and the second assumptions, we define Plf)HiJ) such as; 

; k~r, 

It can be verified that 

(6 .3) 

p~~l(mkp~~J -1) 

mk-1 
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From (6.3), for any (kr)EF 

L: Cij)EFPCkr) Cij) = 1, 1;::: Pckr) Cij);::: 0, i, j = 1 ~ K. 

Giving the initial condition P(Xl(O) =So xu(O) =s~) = 1, it is proved that {(XL(t), 
Xzt(t)), t;:::O} is two dimensional Markov chain whose state space is F and transi
tion probabilities are Pckr)Cij), (kr), (ij)EF. 

Let Pki(t), k, i=1~K be t-step transition probabilities and Pckr)(ij)(t), (kr), (ij)EF 
be t-step two dimensional transition probability. As is well known, 

(6 .4) 

where B I is a stochastic matrix, (Pki), and B II is a two dimensional transition 
matrix, (PckslCij)). 

We note that if mi=mk for all (ik), then from (6.2), L:t,;fPki=1, namely BI 
and Err are double stochastic matrices. 

Now, by using the method of indicator function, we can derive: 

+ L:~~fmjs(O)(mjs(O) -1)Pcss) cio(t), 

When the initial condition So is given and B I, En are provided by experiment, we 
can approximately calculate E(Ci(t)), aR(t), V(Ci(t)) and Cov(Ci(t)Cj(t)) by (4.2), (4.3) 
and (6. 5). (Then, we utilize the eigenvalues of B I, Err or the relation (6. 4).) Besides, 
E(Jh(t)ISo)= L:~~f E(Mji(t)ISo), E(Hi(t)ISo) = L:~::fE(M]i(t)ISo) + 2 L:r<jE(Mji(t) Mri(t)), 
so that we can derive E( Ua(t)), E(ci(t)) and V(ci(t)) from (5 .4), (5. 5) and (5. 6). 

We remark, if the mixing operator is deterministic, the foregoing arguments 
can be applied by putting Pi=1, Pki=pk<p. Then, using (6.3), i.e., Pckr)CiJ)=Pil~Jciil• 
the formulas (6. 5) are transferred into the formulas written with only E I. 

By the way, from (6.2), 

Here, we set md N=rri, so that 

(6.6) 

If the Markov chain {X1(t), t;:::O} consisted of finite states is ergodic (i.e., ir
reducible and aperiodic, or irreducible and regular, or strongly mixing; P. BILLING-
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SLEY, 1965), {rri, i=1,...__K} is the unique solution of the system of equation (6.6) 
and is the limit distribution of {Pki(t), i=1,...__K}. Namely rri is independent of the 
initial condition So and rri=lim Pki(t), k=1,...__K. 

t~-oo 

Let two dimensional Markov chain with state space F be ergodic. Then, it 
can be proved as follows that the original Markov chain {X1(t), t20} is also ergodic. 

Proof. It is obvious, since all possible states of two dimensional chain com
municate, that the states of the original chain consist of one communicating class. 
Here we assume the original chain is periodic. As is well known (W. FELLER, 
1957), all states of the original chain have the same period, which we denote by 
d>O. Now if P(Xl(t)=St, Xl'(t)=sD>O, then there exists {r} such that P(Xl(t+r) 
=St Xl'(t+r)=s~IXl(t)=St, Xl'(t)=sD>O. From the uniformity of period, r=nd, 
where n is an integer, therefore there exists G. C. M. of {r}. This contradicts to 
aperiodicity of two dimentional chain. Q.E.D. 

And then there exists unique stationary distribution {rrij; (ij) E F} which satisfies 
ITij= lim Pckr) Cij)(t), and l: Cij)u·rri,; = 1, rri,; = l: ckr)EFPckr) Cij)ITi,;, ITij 2 0. By these rela-

t-·oo 
tions and (6. 3), it can be verified that 

mim,; 
1rij=N(N-1) 

Therefore, from (6. 5) 

~L~ E(Mji(t)l So)=mi ~ , 

. mi(mi-1) 
!!-~ E(Mji(t)Mri(f) I So)= NCN-_ 1) NjNs ' 

. Nj(Nj-1) 
~~~ E(Mji(t)Mjk(t) I So)= N(N _ 1) mimk , 

1. EM M NjNr 
t!-~ ( ji(t) rk(t)ISo)= N(N- 1)mimk . 

Consequently, if En satisfies ergodic conditions, we get 

and also lim E(Ci(t)ISo)=E(zi), lim V(zi(t)ISo)= V(zi), lim E(Ua(t)ISo)=E(Ua)· 
t--oo /,~-oo t--oo 

In particular, when Wf=W for all j and N=Ns, 
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lim Cov(C(t)CJ(t)ISo)= -Q(Ns)l Ns(N.~-1)=Cov(CiCJ). 
t~= 

I. INOUE, & K. YAMAGCCHI (1969) showed the value of l.:t;'f ~: (E(Ci(t)ISo)-co) 2 in 

the simplest case (L=2, / 1/w 1 =1, fz/w 2 =0, N=Ns), which takes 0 for completely 
randomized mix, but, of course, it is not a}it), which takes the value represented 
by (3. 4) for completely randomized mix. 

Finally, we refer to the relation among X(t) and Xl(t), l = 1 ~ N. (X(t) is defined 
at the beginning of this section.) 
Let J(z(t) be random variable such that 

Xl(t) = i, if the l-th particle occupies the i-th location at time t. 
By the assumption of independent mixing operator, it is clear that {X(t), t~O}, 

X(t)=(Xl(t), l=1~N), is a Markov chain, so that {Xl(t), t~O} is a Markov chain 
with state space (1, 2, ... , N). From the identity of all particles 

Note that, X 1(t) is a lumped process combining the states of X1(t) with respect 
to each cell. A Markov chain {XL(t), t~O} is lumpable if and only if the transition 
probabilities have the same values as to each state of {Xt(t), t~O} (KEMENY & SNELL 
1960). This equality of transition probabilities corresponds to the assumption of 
local randomization. The completely randomized mix is provided as a limit of N
tuple Markov chain {X(t), t~O} if it is mixing, hence the ergodicity of Bu is not 
a sufficient but a necessary condition for completely randomized mix in the strict 
sence. But it is the time we conclude the degree of mixing of complete mixing 
state is evaluated well by lim ak(t), and described one- and two-dimentional transi-

t-oo 
tion probabilities. 
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