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ABSTRACT

In this paper we shall deal with the functional central limit theorem (the version of
Donsker’s invariance principle) for uniform mixing sequence.

BiLLINGSLEY (1968) proved a version of Donsker’s theorem for the variables of a sta-
tionary sequence satisfying a uniform mixing condition and extended the results to functions

of such sequence.
We shall show that Billingsley’s results also hold for the variables of a double sequence

for which the variables in any row are stationary and uniform mixing sequence.

1. Introduction and Summary

We shall consider a double sequence of random variables

Eg, 1y 52..?,, ----- s oy e
: R : (S)

where the variables in the same row are defined on the same probability space and
are strictly stationary and uniformly mixing sequence. Let k., =1, .-, be positive
integers going to infinity and X,(w) be the random element of Skorohod space
DI[0, 1] whose value at ¢ is

Xn(t, (1)) =1/U \/k'r;' {sn l(w) + e +En' [knt](w)}) (1 . 1)
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where ¢ is a suitable positive number and 0<¢<1. We shall investigate the pro-
blem of finding the conditions which the relation

D
Xy — W 1.2)

holds, where W denotes a Wiener process and X, —> W means that X, converges
in distribution to W.
When X, is defined by

X2, a)):l/a\/h 7'{51‘1(0))“"“ +§1'[m](w>} (LS)

in stead of (1.1) and i ¢/(k)<oo for which ¢(k) is the mixing coefficient of
k=1

(61,5 7=1,2,---}, BILLINGSLEY (1968) proved that the relation (1.2) holds, by using
the theorem which characterizes Wiener process, given by Rosin (1967).
In this paper, we shall show by the same manner as the proof of Theorem
k
20.1 of BiLLINGSLEY (1968) that if lim < goi{z(j)) < oo for which ¢g(j) is the mix-
Jj=1

n.k—o0

ing coefficient of {£, ;7>1} and lim <E{ %,1}+Zi E{g,, 1$n,j}> < oo, and if {£%,,,; n>1)
j=2

N,k o0
is uniformly integrable, then the relation (1.2) holds. Furthermore, we shall extend
the above result to functions of strictly stationary, uniformly mixing sequence.
The proof is similar to the one of Theorem 21.1 of BILLINGSLEY (1968).

Given a one-sided strictly stationary and uniformly mixing sequence, we can
always construct a two-sided sequence with the same finite-dimentional distribu-
tions and the same mixing coefficient as before, from the arguments in BILLINGSLEY
(1968), pp 168—169. In what follows, therefore, we shall always consider a two-
sided double sequence {&,, ;#n=1,2,---,7=0, +1, 2, ---} in stead of (S).

2. Notation and Results

Let {&,; n=0, +1, £2,---} be a sequence of random variables defined on a pro-
bability space (£, B, P). For a<b, define H4 as the o-field generated by the ran-
dom variables &, -+, &; define HM%., as the o-field generated by -, 6,1, & ; and de-
fine M5 as the o-field generated by &4, 8.1, .

Consider a nonnegative functin ¢ of nonnegative integers. We shall say that
the sequence {&,} is ¢-mixing (uniformly mixing) if, for each k2 (—co<k<oco) and
for each #n (n>1), Eie M., and E,e My, together imply

This is a joint property of {£,} and ¢. We consider only functions ¢ satisfying
lim ¢(%)=0, 2.2)

n-—rco
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and usually we require that ¢(z) go to 0 at some specified minimum rate. If we
say that {&,} is ¢-mixing without specifying ¢, we mean that (2.1) holds for some
¢ satisfying (2.2). The random variables &, are said to be uniformly integrable if

lim sup S 1€ dP=0.
{|ép| 20}

a-—-co n

Given a double sequence of random variables {&, ;; #=1,2,---,7=0, 1, +2, .-}
defined on (2, B, P), let S, ;=&n.1+--+&,; be the partial sums in the #n-th row
and X, be the random element of Skorohod space D[1,0] whose value at # is

Xu(t, w)=1/o \/kn *Sa., Ucnz](a)), 2.3)

where k, are positive integers and 0<¢<1. Then, we have the following theorem
which is a simple generalization of Theorem 20.1 of BILLINGSLEY (1968).

THEOREM 1. Suppose that the following conditions hold :
(i) for each #, the sequence {&,,; 7=0, £1, +2,---} is strictly stationary and
p,-mixing with E{&, .} =0,

k
(i1) there exists a lim Ty .x(=T), where Tn,kzz o 1),

N,k —o0 =0
(iii) the random variables &, #=1,2, ---, are uﬂiformly integrable,
k
(iv) there exists a lim %, (=0?), where o4, ;=F{&%,}+2 3, E{&x. ofn. j}-
n, k-—-co j=1

If 42>0 and X, is defined by (2.3) for which &, are positive integers going to in-
finity, then

D
X, — W

Next, we shall generalize Theorem 1 by analyzing sequence {7,.;; #=1,2, -,
7=0,+1, 2, .-} for which each 7, ; is a function of the entire process {£,}, which
we assume to be strictly stationary and ¢-mixing.

For each #, let f, be a measurable mapping from the space of double infinite
sequence (---, a_y, @, ay, --+) of real numbers into the real line:

f’n(a Ay, Oy, Ay, "‘)€R1~
Define random variables

ﬂnv/:fn("'y Ej"l!éj) §j+1; )’ (2. 4)

where &; occupies the 0-th place in the argument of f,. Then, for each #, the
sequence {7, ; =0, £1, +2, ---} is strictly stationary, since {&,} is strictly stationary.
For each %, define random variables

T.n, 1= B, 11| MIHY, 2.5

where 4% is the o-field generated by &;_», -+, ;.4 Then, for each %, the sequence
(fnn. 5 =0, +1, +2, .-} is strictly stationary and ¢-mixing, where
' [ 1, if j<2h
e =1 o
loti—2m), if j>2n,
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and hence we can apply Theorem 1 to the sequence {7, 5 n=1,2,---,7=0, =1, +2,
--}. We shall obtain limit theorems for {5, ; #=1,2,--,j=0, 1, +2,---} under the
assumption that {y, ;} can be closely approximated by {ys..;}. Therefore, we shall
assume for the functions f, and the process {¢,} that E{y,..}=0 for each #, and that
the 7%, are uniformly integrable. We shall assume further that if,

vn() = E{|9n.0 = 7pn. 1.0 |*}

(2.6)
Pnw= hZ: vi'(h),
then there exists a 1i£w Dn i(=¢).
Write |
Sp. i =t
and define X, by, for 0<#<1,
Xo(t, 0)=10~Fn+Sn. k1o ®)- 2.7

Furthermore, define 6.4, ;=%n.;—%a.n. ;- Then, we have the following theorem which
is simple generalization of Theorem 21.1 of BILLINGSLEY (1968).

THEOREM 2. Suppose that the following conditions hold:

(1) {&m »=0, x1,..-} is strictly stationary and ¢-mixing with > ¢'*(n)<oco,

n=0
(ii) the w,. ; defined by (2.4) have mean 0 and the #%, are uniformly integra-
ble,

k
(iii) there exists a lim ¢n. x(=¢), Where ¢n. =2, vi*(h),
n, k--o0 h=1

k
(iv) there exists a lim ¢%,,(=0?%), where o4, =E{ho+2 2 Eljn. ot i}
j=1

n, k—oo

(v) there exists a lim ¢%,,(=0) uniformly with respect to %, where % ,,=

n, k—co

k
E{Uzrl,lL,o}+2 Z E{ﬂn‘h.oﬂn.h.]’};

J=1
(vi) there exists a lim <2, 5 x(=7%) uniformly with respect to 4, where 72, 5.«

n, k—oo

k
= E{azn, h, 0} +2 Z E{an R, 0571, h, j}'
Jj=1

If 4>>0 and X, is defined by (2.7) for which &, are positive integers going to in-
finity, then

X, — W. (2.8)

3. Proof of Theorem 1
In order to prove Theorem 1, it is necessary to first state several definitions
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and lemmas. At first, we shall state the theorem characterizing Wiener process
which is due to Rosen (1967). Let X, be a random element of D[0,1]. We say
X, has asymptotically independent increments if

0331§f1<32§t2<'"<5r§trS1

implies, for all linear Borel sets A, ---, H,, that the difference
P{Xn (t@)—Xn(Sl)Gm,lzl, "',1’}— ]—[P{X,L(l‘l)—X"(St)GH;}
i=1

converges 0 as n—oo. The modulus of continuity of X, is defined by

w( X, 5)=| sup | Xn(t)—Xa(s)l,  0<o<1.
t—s|<é

Thereupon, Rosen proved the following result.

LEMMA 1 (RoseN 1967). Suppose that X, has asymptotically independent in-
crements, that {X,%(#);#>1} is uniformly integrable for each ¢, and that E{X,(¢)}—
0 and E{X,%#)}—>t as n—>oco. Suppose finally that, for each positive ¢ and 7, there
exists a positive § such that

Plw(Xn, 0)2ef <y 3.1

D
for all sufficiently large ». Then X,— W.

Next, we shall state several properties for ¢-mixing. In all that follows,
€y =0, 1, +£2, ---} is assumed strictly stationary and ¢-mixing unless the con-
trary is explicitly stated, and H%, HM%., My are o-fields defined in §2. For the
proof, see IBRAGIMOV and LinNik (1971), BiLLiNGsLEY (1968), for example.

LemMma 2. If & is measurable 9%, and » is measurable Hy,.(%>0), then

E{lg]"} < oo, E{|pIt<co, 7,s>1, ljr+l/s=1,
implies
| Efen} — EXE B} <202 "(m) V(€Y E 3|5}

LemMma 3. If & is measurable *.. and |&|<C;, and if » is measurable g,
(n>0) and [ <Cs, then

| E{gn} — E{} E{n}| <2C:Cop(n).
Let
Sp=614+&,

and S,=0. In order to prove the next lemma, it is sufficient to only assume that
{€.} is weakly stationary.

LemmA 4. Suppose that i El{&oe}| <oo. Then,
k=0
1/n- E{S}} — o®
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where o*= B +2 5" Elfots.

k=1
Suppose that, for each n, {&.;7=0, +£1, =2, -} is strictly stationary and ¢,-
mixing. Let

Sui=na+ -+
and S,.,=0 for each .

Lemma 5. If the &,,, n=1,2, -, are uniformly bounded by C and E{, ,}=0
for each #, then

j 2
EISh ,} <T68C"* [ﬁ ) ] .
i=o

The following lemma extends lemma 4 to double sequence. In order to prove this
lemma, it is sufficient to assume that, for each #, {&, ;} is weakly stationary.

Lemma 4/, If sup F{g3 }<co, and if there exists a hm a5 (=%, where o%

=F{e4 ) +2 Z E{&,. 660, 5}, then, for any positive integers k,, n=1,2, ---, going to in-
finity as naoo

1/_nE{S? 1, ) —> 0%

Now, we shall prove Theorem 1 by the aid of the above lemmas. First of
all, we shall prove that

lim sup E.{1/5-S; ;}= (3.2)

a—oo m,j2ng
where 7, iS a positive number for ¢>0 determined by the convergency of condition
(ii) and
Ef{X }=S XdP.
(X2a)

Define, for real number z and positive number #,

z, if |z|<u, 0, if |z|<%,
Sulx)= )=
0, if |z|>u, z, if |z|>u,

and put
f-u(x>:fu(x) E{ fulén.0)}, Gul)=gu(®) — E{gu(&n.o)}-

- J J
Then x:fu(x)+gu(x>=fu(x)+gu(-r)» SO thaty if Sn jou= Z (En z)y n jou— Z 57; i
then Sy, ;=Su.j,u+Dn. j.» and hence )

Szn.jgzs2n, I u+2D2n,j, U (3 3)

Since fu(€n.o) is bounded by 2x and {f.(&.. ;) is strictly stationary and On-mix-
ing, it follows by lemma 5 that
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E{1]7-S%, 5, u} <1 ¢, 5+ (2u)4, 3.4)
j 2
where ¢, ]:768[2 gpyz(i):l . By lemma 2,
_t=0

E{éu(&n 0)614(67;. k)} < 299;1/2(k)Eu2{52n 0},

and it follows by lemma 4 that

j
B D s <4] 3 ) |- Bt 3.5)
From (3.3), the relation E U+ V}<2E, {U}+2E{V}, (3.4) and (3.5), we obtain

E{1]7 S, j} < 2% pu sttt a4 Eual€?n,o}]-

Since there exists a constant ¢ such that sup ¢. ;<¢ from condition (ii) and the
n,jzno

€2, , are uniformly integrable, therefore, we obtain (3.2).

We shall show that X, defined by (2.3) is satisfied with all the conditions of
lemma 1 by the aid of (3.2). We shall first prove that X, has asymptotically indepen-
dent increments. Suppose that s; and #; are real numbers with 0<s, <5t <s: <t < <
s, <t,<1 and let E, ; be the event {X,(&;)— X,.(s;)e H;}, where H;, i=1,2,--.,7, are any
linear Borel sets. Then E,; lies in , Hrtd., and, if 6 is the smallest difference
Si—ti1, then [Bysi]+1—[kat;-1]=>[ka0], so that, by the definition of ¢-mixing, we have

]P{Xn(tz)’—Xn(sz)eHl“ i:l, ey r}

(1 Pt — X5 € HY| <rpn(ead]):

i=1

Since ¢ is positive, therefore, X, does have asymptotically independent increments.

It is briefly proved by (3.2) that {X,%#); >1} is uniformly integrable for each
t. Certainly, E{X,(®)}=0, and lemma 4’ implies that E{X,%(#)} —>¢ By stationarity,
(3.1) will follow if we prove that, for each positive ¢, there exist a 2(¢), 2,(¢)>0,
and an integer m(e) such that n, m>ms(e) implies

P{max 1S4 =20 \/ﬁ}ge/zg. (3.6)
ism

Let us set

J
S?.‘.f=__Zl ifnt‘

Since {£%,,0; #>1} is uniformly integrable, there exists an increasing sequence of in-
tegers m; independently with respect to # such that, for each » and each positive
2, m>m; implies

P[&n,ol = 2+/m[i} <1/ 2mi®.

If we define pn=i for m;<m<m;., (and p,=1 for m<m,), then p,, goes to infinity
but so slowly that
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lim sup mP{S¥,, >iv/m}=0 3.7

m—oo n

for each positive . We may at the same time choose p, in a such way that pm
<m.
From (3.2), there exists a A,(¢) for each positive ¢ so that 2,>¢ and so that

P{IS,. | > 207} <el 2

for n, j>ne). 1

En.iz{max (S s1 < 320/ SISMI}
j<i

then
P{max [Sn.s] =32 \/ﬁ}

i=m

) m-1
<P{an,m\zxo Nz }+ 5 P{En.m[|sn‘m—sn,1~,|zzzox/;z[].
i=o

With p=pm, the sum here is at most

m—p—1 -
Z P{lsn,i_sn,'b‘+p|220\/m}
i=1

S

m—

—1
+ P{Enzn [ISn.m_Sn.iaLpl 220 \/7}7]}

-
Il
-

+ 5 PUSunSuil > hov/m).

i=m—p

Each term in the first and third of these sums is at most P{S¥p>20+/m}, and we
can estimate the second sum by using the fact that £, ;€, M’ w:

P{max [Sn il =32 v'm

i=m

< P{|Sn, m| = 2o m} +(m— 1) P{S¥E > Aon/m}

7% B PISnm=Sntesl 2 V1) + (D)
And now (3.8) and the fact that the E, ; are disjoint yield that, for , m>n,(c),
Pymax |Sn,i| 23% vm
<2/Z+mP{S}p= 207/ m) +¢n( p)

no(e)

+ ; P(En,mAifp)P{|Sn‘i|220 \/”7}.

Since
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no(e

5 P(Bnmeic ) US| 2 20 /7t SO P .ol = a0}

and {£%,.,; n>1} is uniformly integrable, there exists a m.()>0 for each positive ¢
such that m>m.(e) implies

noe

) -
Z P(En.mfiép)P“Sn,i] 220 \/m}<5/23
=1

for each 7, so that, from (3.7), condition (ii) and the fact that p,—oo, it follows
that the relation (3.6) holds. Therefore, this completes the proof of Theorem 1.

4. Proof of Theorem 2

In order to prove Theorem 2, it is necessary to first state several definitions
and lemmas. At first, we shall show that a double sequence {X,, :} of random varia-
bles satisfies the analogous property for Theorem 5.4 of BILLINGSLEY (1968).

Let S be a metric space and let { be a o-field generated by the open sets in
S. We shall say that, for a double sequence {P, ;} of probability measures on (S, {),
P, converges weakly to P and write P, =P if such probability measures P, ;

and P satisfy S fdPn_,,aS fdP for every bounded, continuous real function f on
S S

S, i.e. if there exists a n(c), no(e) >0, for each positive ¢, such that n, k>n,(c) im-

plies

}szdPn,k—szdP’Q

for every bounded, continuous real function f on S. Furthermore, we say a sequence
{X..x} of random elements on S converges in distribution to the random element

X, and we write X, ;——X, if the distributions P, s of the X,  converge weakly
to the distributien P of X, i.e. P, :=>P. The random variables X, ; are said to be
uniformly integrable if

lim sup | X x| dP=0.

a—co m,k S(1xn,k|;a)

Then, we have the same property as Theorem 5.4 of BILLINGSLEY (1968).

D
LEMMA 6. Suppose X, —>X. If the X, ; are uniformly integrable, then

lim E(X, J=E(X}; @)

n, k—oo

if X and the X, . are nonnegative and integrable, then (4.1) implies that there
exist a 7y(¢)>0 and ay(e)>0 such that a>a, implies
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sup | X, k| dP<e.

n,kzno S(\Xn.ldza)

The proof is completely analogous to that of Theorem 5.4 of BiLLINGSLEY (1968)
and therefore omitted.

The following lemma implies that, if 5., ; is given by (2.9), then v, (h) is a
non-increasing function of % for each n.

LEMMA 7. Let & and & be o-fields with F< ¢. If E{&%}<oo, then
El|¢— B¢l @M< E(E— EE|F %)

Now, we shall prove Theorem 2 by using the above lemmas and Theorem 1.
We first prove

D
1/ By Sk, —> N0, a%). (4.2)
Put
On e, i =0n, 5= Y. h, j (4.3)

so that vu(h)=FE{02%..;} and E{du.n, j}=FE{pn.r.;}=0. We have
kn )
1/ \/Esnknzl/V/En * Z 77n,h,.j+1/ \/kn * Zan.h‘jy (4- 4)
j=1 Jj=1

and the idea in proving (4.2) is to show, by using Theorem 1, that the first sum
on the right in (4.4) is approximately normal for large » and then to show that
the second sum is small for large #.

From conditions (iv) and (v), there exists a #,(c)>0 independently with respect
to £ for each positive ¢ such that n, k>n.(¢) implies

|06%.x— 0% <&, |0%n,n.x—0%| <e

for each A, and from (iii), there exists a /o(c), Ao(e)>n4(c), such that n, 4> h(e)
implies
Vi) <ef{nole)+1}.
Furthermore, we have for each j from the uniformly integrability {52, #>1}
|E{7]n 0%n, j} - E{ﬂn h.0n, k. ]}| SZCV%Z(k)
for some constant C. Therefore, we have that 4> /,(c) implies
lo?n —a? <2 +4C,

ie.
lim ¢% =0 (4.5)
h—oco

Since {yan 5 n=1,2,-,j=0, =1, +2, ..} satisfies all the conditions of Theorem
1 for each %, we have

kn D
YNVED S tni — N0, 0%). (4.6)
j=1

140



A Note on a Functional Central Limit Theorem for Uniform Mixing Sequence

If 6¢%,=0, (4.6) is the same as 1/+/k, - f Tnoh.j _P>0, which is satisfied by lemma

j=1

4/, D

Now N(0, 6%,)—> N (0, 6?) by (4.5); because of (4.4) and (4.6), the relation (4.2)
will follow by Theorem 4.2 of BIiLLINGSLEY (1968) if we show that

h- =00 p—o0

ky i
lim limsup P”l/ Vi3 Ounizep=0 4.7
i= ‘

for each positive e.
From conditions (iii) and (iv), we have by the same way as proving (4.5),

lim %, =0, (4.8)

he—oo

and E{9?%,, h,0}<E{02n_0} by lemma 7. By lemma 4’ applied to {da.x..,},
‘ kn 12
lim 1/kn-E{\Z Onn.j }=r2h 4.9)
N—00 j=1 ;

for each 4. Chebyshev’s inequality, (4.8) and (4.9) now yield (}3.7), which completes

the proof of (4.2). If ¢*=0, (4.2) is the same as 1/vk, -Su.x,—>0, but we have by
lemma 4’ that

1/kn 'E{Szn. kn} — 0.2’ (4' 10)

so that (4.2) is satisfied even if ¢*=0. From now on we assume that ¢*>>0.

To prove (2.12), we establish the convergence of the finite-dimensional distribu-
tions and then tightness. Let p, be positive integers going to infinity at a rate to
be specified later and define

Un.i‘:E{Sn. i—2pn| Lﬂ’tl:op"} (4. 11)
Vn.i:E{Sn, kn_Sn. i+21’n| |j'i$:°+11n}- (4- 12)

In these definitions, we adopt the conventions that Sy i-2p,=0 if i<2p, and Sy s, —
Sr.iv2p, =0 if ky<i+2p,. We shall often write p in place of p.
By Minkowski’s inequality and lemma 7,

EV2{|Su = E(Sn il HED ) sZ ) 4.13)
Then, it follows that
Bl Uni=Sul) 2Bl +2| 2 ) | (4.14)
for all i. In the same way we obtain o
Bl Vii=(Sney=Sn M 2B 42| L 0| (4.15)

Since U,.; and V, ; are measurable *7? and _M3.p respectively,

|P{Unr, s€H,, Va,i€ Ho}— P{Uy. i€ Hi} - P{ V. i€ b} | < p(2p) (4.16)

141



Yuraka KaTo

for all linear Borel sets A, and H,.
Consider now the finite-dimensional distributions. From (4. 2), it follows that

D
Xu(t)— Xu(s) — W,— Wi (4.17)
We shall prove that
D
(Xa(®), Xu(1)— Xu(8)) —> (W, W= W)); (4.18)

the argument is easily adapted to cases of dimension exceeding 2. Let p, go to
infinity slowly enongh that p./k,—0. By (4.14), Chebyshev’s inequality, (4.10) and
condition (iii), we have

P
Yo ka+ Un, ey — Xn(t) —> O. (4.19)
Similarly,
_ pP
o'k Vi ey~ (Xa(1) = Xu(t)) — 0, (4.20)

and (4.18) will follow by Theorem 4.1 of BiLLINGSLEY (1968) if

D
(]-/U\/kn N Un [kptds 1/0\/kn . Vn, [knlj) D (VVL, VVI - VVz)~

Because of (4.16), it is enough to show that there is convergence in distribution
in each of the two coordinates here; but this follows from (4.17) by (4.19) and
(4. 20).

We turn now to the question of tightness. The tightness of {X,(¢); >1} follows
by Theorem 15.5 of BILLINGSLEY (1968) if we prove that there exist a Ao(c), A,(¢)>
g, and an integer m,(c) for each positive ¢ such that #, m>m,(c) implies

P{max|S,.;| > vV'm} <e| 2. (4. 20)
i<m

j

Put S¥ ;=73 [yn.:]. By the argument leading to (3.7), there is a sequence pn going
i=1

to inﬁnity1 so slowly that, if

B m(D)=P{S¥ o5, > 2V m}, (4.22)
then
lim sup 728, w(4)=0 (4. 23)
for each positive 4. Define
Un.m.i:E{Sn,i—me] [Wl—:opm (4.11)
I/n,m.i:E{Sn.m_Sn.iJerm‘ |W?+p,,,} (4. 12)/

then we have, by (4.13) and Chebyshev’s inequality,

PUSai— Unomil 225/ }< S m(312) -+ 4f22m1- [Z’" x| 4.24)

J=Pm
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and similarly

Mm—1—pm, 2
P{(Snm—=Sn. )= Vamdd 22 V1) < Pam(2)+ 4] 22m-| 35 ¥K ')I. (4.25)

- J=rmm
Now, we shall prove that
D
1k +Su . —> N(0, 62). (4. 26)

Since (4.6) holds for any k, going to infinity, it follows that
L D
1/ \/k‘ Z Nnh, j ——> N(O, UZIL)
j=1

D
for each 4 and N(0, 62)—>N(0, ¢®) by (4.5), so that, (4.26) will follow by the ver-
sion of Theorem 4.2 of BiLLINGSLEY (1968) if we show that

k |
lim limsup P‘;l/\/k-ZOn,h,j'Za}zo 4.27)
Jj=1

b0 m, K-—oo

for each positive ¢. Since (4.9) holds for any k, going to infinity, it follows that,
for each #,

Pk 2
lim 1/k-E{§ 22 Onng }—_—Tzh, (4. 28)
]

n, k—co

so that, Chebyshev’s inequality and (4.8) yield (4.27) which completes the proof of
(4. 26). Furthermore, we have

lim 1k-E(S* i} =0

n, k--oo

so that, it follows via lemma 6 that there exist a Ay(¢), 4¢(¢) >0, and an integer ,(c)
for each positive ¢ such that #, j>#n.(c) implies

P{Su. j| =207 1 <ef 2
By (4.24),

P{max|S,. ;| =64/ m} < Pimax| Uy, m.i| =53/}
i<m i<

i<m

J=pm.

m 2
Fmpe (241 3 )| (4.30)
Consider the sets
En. m.i= {rnSaX] Un,m, j‘ < 520 \/mé | Un. m. zl}
We have a
P{max| Up, n.i| >52~/m}

i<m

SP“Sn.ml 210 \/m}+ 12": P(En,m.iﬂ”Sn.m' Un,m,il 24/20 \/m})~ (4 31)

t=1

The i-th summand in (4. 31) is at most
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P{ISu.m—Su.i— Vim.il = do~/m}
F+P(Ep i N Vinomo i) =220/ m})
+P{ISu.i— Un.m.il = 2on/m).
Since E, . lies in #¢ZFm and V. ,.; iS measurable 7. p, we have

P(En. .t n {| T/n, m, z] 2210 \/m})

m

R 19
S,gzt,wlt(20/2>+4/lgnl’[ Z Uln/z(j)J +P(En,m.i>30<2pm,)

J=Pp
+P(En IILL)P”SRWL"Ll ZZO\/m}

Using this estimate for the middle term in (4.32) and the estimates (4.24) and
(4.25) for the other two, we see that the i-th summand in (4.23) is at most

m

2
Z Viz/z(])-l + 3/311,. m(/zo/z) + P(En, ., 1)?(2pm)

J=pm

12/23m -

+P(En,m,i)P{|n,mfi‘ 220\/771}.

Therefore, by (4.29) and the disjointness of the £, ... it follows that s, m>n.(c)
implies

P

max |Su.i|= 640 J>

ism

m

2
=2¢/2+16/23- Z ui{z(])J +4mSn, w(A0f2)+ ©(2pn)

-J=pm

+ Z [)(En m,i)P{]Sn.m-il 220 \/m}.

t=m—no+1

By the same argument as the one of Theorem 1, it follows from the uniformly
integrability of {7%,.; 7>1} that there exists an integer m(s) such that m>m(e)
implies

P(En,m,i)PHSn,m-”zlo \/m}=5/1§

i=m-nole)+1

for each n. Then, from conditions (i), (iii) and (4.23), we conclude that there ex-
ists an integer m,(¢) such that s, m>m,(e) implies

Plmax |S,.i| =264 v  =4e/ 2.
is=m

This completes the proof of Theorem 2.
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