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ABSTRACT 

In this paper we shall deal with the functional central limit theorem (the version of 
Donsker's invariance principle) for uniform mixing sequence. 

BILLINGSLEY (1968) proved a version of Donsker's theorem for the variables of a sta
tionary sequence satisfying a uniform mixing condition and extended the results to functions 
of such sequence. 

We shall show that Billingsley's results also hold for the variables of a double sequence 
for which the variables in any row are stationary and uniform mixing sequence. 

1. Introduction and Summary 

We shall consider a double sequence of random variables 

~2. I, ~2. 2, •••••• , ~2. k, •••••. . . . . . . . . . (S) 
~n. I, ~n. 2, ...... , ~n. k, "' ... . . . . . . . . . 

where the variables in the same row are defined on the same probability space and 
are strictly stationary and uniformly mixing sequence. Let kn, n=1, ... , be positive 
integers going to infinity and Xn(w) be the random element of Skorohod space 
D[O, 1] whose value at t is 

(1.1) 
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where a is a suitable positive number and O::::;;t::::;;l. We shall investigate the pro
blem of finding the conditions which the relation 

D 
Xn ~ W (1.2) 

D 
holds, where W denotes a Wiener process and Xn ~ W means that Xn converges 
in distribution to W. 

When X~ is defined by 

(1. 3) 

00 

in stead of (1.1) and I: cpl12(k) <co for which cp1(k) is the mixing coefficient of 
k=] 

{~1, j; j = 1, 2, · · · }, BILLINGSLEY (1968) proved that the relation (1. 2) holds, by using 
the theorem which characterizes Wiener process, given by RosEN (1967). 

In this paper, we shall show by the same manner as the proof of Theorem 

20.1 of BILLINGSLEY (1968) that if ~~~oo Ct
1 
cp~2(j)) <co for which cpn(j) is the mix-

ing coefficient of {~n.j; j~1} and n~~fl_1= ( E{~~. 1 }+2j~2 E{~n.l~n.j}) <co, and if {en.l; n~1} 
is uniformly integrable, then the relation (1.2) holds. Furthermore, we shall extend 
the above result to functions of strictly stationary, uniformly mixing sequence. 
The proof is similar to the one of Theorem 21.1 of BILLINGSLEY (1968). 

Given a one-sided strictly stationary and uniformly mixing sequence, we can 
always construct a two-sided sequence with the same finite-dimentional distribu
tions and the same mixing coefficient as before, from the arguments in BILLINGSLEY 

(1968), pp 168-169. In what follows, therefore, we shall always consider a two
sided double sequence {~n.j; n=1, 2, ···,}=0, ±1, ±2, ... } in stead of (S). 

2. Notation and Results 

Let {~n; n=0,±1,±2, .. ·} be a sequence of random variables defined on a pro
bability space (Q, 93, P). For a::;;;b, define 51{~ as the a-field generated by the ran
dom variables ~a, ... , ~b; define 51{~00 as the a-field generated by ... , ~a-!, ~a; and de
fine 51{~ as the a-field generated by ~a, ~a. 1, .. •• 

Consider a nonnegative functin cp of nonnegative integers. We shall say that 
the sequence {~n} is cp-mixing (uniformly mixing) if, for each k (-co<k<co) and 
for each n (n~1), E1e3rt':oo and EzE3Yt'k+n together imply 

(2 .1) 

This is a joint property of {~n} and cp. We consider only functions <p satisfying 

lim cp(n) =0, (2.2) 
n-= 
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and usually we require that cp(n) go to 0 at some specified minimum rate. If we 
say that {~n} is cp-mixing without specifying cp, we mean that (2. 1) holds for some 
<p satisfying (2. 2). The random variables ~n are said to be uniformly integrable if 

lim sup [ l~nldP=O. 
a-co n J{l~nl;::a) 

Given a double sequence of random variables {~n.j; n=1, 2, ···,j=O, ±1, ±2, ... } 
defined on (Q, 93, P), let Sn. i=~n.l + · .. +~n. i be the partial sums in the n-th row 
and Xn be the random element of Skorohod space D[1, 0] whose value at t is 

(2.3) 

where kn are positive integers and O::;;t::;;l. Then, we have the following theorem 
which is a simple generalization of Theorem 20.1 of BILLINGSLEY (1968). 

THEOREM 1. Suppose that the following conditions hold : 
( i ) for each n, the sequence {~n. i; j =0, ± 1, ±2, ... } is strictly stationary and 

<;vmixing with E{~n. o} =0, 
k 

( i i) there exists a lim Tn. ~c( = T ), where Tn. 1c = ~ cp~2(j), 
n,k-oo j=O 

(iii) the random variables ~~. 0 , n= 1, 2, .. ·, are uniformly integrable, 
k 

(iv) there exists a lim a~1 .~c(=a2 ), where a~.~c=E{~~.o}+2 ~ E{~n.o~n.j}. 
n,k--co j=l 

If a2 >0 and Xn is defined by (2. 3) for which kn are positive integers going to in
finity, then 

Next, we shall generalize Theorem 1 by analyzing sequence {7Jn.j; n=l, 2, ... , 
j=0,±1,±2, .. ·} for which each 7Jn.j is a function of the entire process{~n}, which 
we assume to be strictly stationary and cp-mixing. 

For each n, let fn be a measurable mapping from the space of double infinite 
sequence ( .. ·,a-t,ao,ai, ... ) of real numbers into the real line: 

Define random variables 

(2. 4) 

where ~i occupies the 0-th place in the argument of fn· Then, for each n, the 
sequence {7Jn. i; j =0, ± 1, ±2, ... } is strictly stationary, since {~n} is strictly stationary. 

For each h, define random variables 

(2. 5) 

where c5i1J:::~ is the a-field generated by ~j-h, ... , ~i+h· Then, for each h, the sequence 
{7Jn.h.j; j=O, ±1, ±2, ... } is strictly stationary and cpCh)_mixing, where 

f1, if j::;;2h 
<p(h)(j) =1 

<p(j-2/z), if j>2h, 
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and hence we can apply Theorem 1 to the sequence {r;n.h,j; n=1, 2, ···,j=O, ±1, ±2, 
... }. We shall obtain limit theorems for {r;n.j; n=1, 2, ... ,j=O, ±1, ±2, ... } under the 
assumption that {r;n. j} can be closely approximated by {r;n. h. j}. Therefore, we shall 
assume for the functions fn and the process {~n} that E{r;n. 0 } =0 for each n, and that 
the r;~.o are uniformly integrable. We shall assume further that if, 

(2. 6) 
k 

cjJn, k = 2:::; ).;W2(h ), 
h=! 

then there exists a lim ¢n. k( = ¢ ). 
n, k-+oo 

Write 

Sn, j = 1}n, 1 + · · · + 1}n. j 

and define Xn by, for 0::; t::; 1, 

(2. 7) 

Furthermore, define on.h,j=7Jn,j-1Jn.h.j· Then, we have the following theorem which 
is simple generalization of Theorem 21.1 of BILLINGSLEY (1968). 

THEOREM 2. Suppose that the following conditions hold : 
= 

(i) {.;n; n=0,±1, ... } is strictly stationary and ~-mixing with l::;so112(n)<oo, 
n=O 

( ii) the r;n. i defined by (2. 4) have mean 0 and the r;~.o are uniformly integra
ble, 

k 

(iii) there exists a lim ¢n.k(=cj,), where ¢n.k= I; ).)W2(h), 
n,k--= h=l 

k 

( iv) there exists a lim a~.k(=a2), where a~.k=E{r;~.o}+2 I; E{r;n.o1}n.j}, 
n,k_.= j=l 

( v) there exists a lim a~.h.k( =a~) uniformly with respect to h, where a~.h.k= 
n,k--+co 

k 

E{r;~.h.o}+2 2:::; E{r;n.h.o1}n,h.j}, 
j=l 

(vi) there exists a lim r 2n.h,k(=r2h) uniformly with respect to h, where r2n,h.k 
n,k-HXJ 

k 

=E{o2n,h,o}+2 I; E{on,h.oon,h.j}. 
j=l 

If a 2 >0 and Xn is defined by (2. 7) for which kn are positive integers going to in
finity, then 

(2. 8) 

3. Proof of Theorem 1 

In order to prove Theorem 1, it is necessary to first state several definitions 
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and lemmas. At first, we shall state the theorem characterizing Wiener process 
which is due to RosEN (1967). Let Xn be a random element of D[O, 1]. We say 
Xn has asymptotically independent increments if 

implies, for all linear Borel sets H1, · ··, Hn that the difference 

r 

P{Xn (ti)- Xn(si)Elh, i=1, ... , r}- 0 P(Xn(ti)- Xn(si)Elli} 
i=l 

converges 0 as n---co. The modulus of continuity of Xn is defined by 

w(Xn, o)= sup IXn(t)-Xn(s)l, 
lt-sl <3 

Thereupon, Rosen proved the following result. 

LEMMA 1 (RosEN 1967). Suppose that Xn has asymptotically independent in
crements, that {Xn2(t); n~ 1} is uniformly integrable for each t, and that E{Xn(t)}__. 

0 and E{Xn2(t)}---t as n---co. Suppose finally that, for each positive s and r;, there 
exists a positive o such that 

P {w(Xn, o) ~s}:::;: r; 

D 
for all sufficiently large n. Then Xn-----+ W. 

(3. 1) 

Next, we shall state several properties for 9-m1xmg. In all that follows, 
{.;n; n=O, ±1, ±2, ... } is assumed strictly stationary and 9-mixing unless the con
trary is explicitly stated, and J}t~, JM~oo, J}t~ are a-fields defined in § 2. For the 
proof, see IBRAGIMOV and LINNIK (1971), BILLINGSLEY (1968), for example. 

LEMMA 2. If .; is measurable JM':oo and r; is measurable Jl-tk'+n(n~O), then 

E{l.;n<co, E{lr;n<co, r,s>1, 1/r+1/s=1, 

implies 

LEMMA 3. If .; is measurable JM~oo and 1.;1 :S:C1, and if r; is measurable Jl-tk'+1z 
(n~O) and lr;l :S:C2, then 

Let 

and 50 =0. In order to prove the next lemma, it is sufficient to only assume that 
{.;n} is weakly stationary. 

00 

LEMMA 4. Suppose that :E El {.;o.;k} I< co. Then, 
k=O 

1/n· E{~} -----+ a2 
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00 

where a2 =E{~~}+2 I: E{~o~d. 
k=l 

Suppose that, for each n, {~n.j:j=0,±1,±2,···} is strictly stationary and <pn· 
mixing. Let 

and 8 11 • o = 0 for each n. 

LEMMA 5. If the ~n.o, n=1, 2, ···, are uniformly bounded by C and E{~n.o}=O 
for each n, then 

The following lemma extends lemma 4 to double sequence. In order to prove this 
lemma, it is sufficient to assume that, for each n, {~n. j} is weakly stationary. 

LEMMA 4'. If sup E{~~.o} < oo, and if there exists a lim a~.k( =a2
), where a~ .k 

n n,k-~oo 

k 

=E{~~.o}+2 I: E{~n.o~n.j}, then, for any positive integers kn, n=1, 2, ... , going to in
j=l 

finity as n---+oo, 

1/knE{S2n. kn} ---+ a2
• 

Now, we shall prove Theorem 1 by the aid of the above lemmas. First of 
all, we shall prove that 

lim sup Ea{1jj ·~.j} =0, 
a---+oo n,j~no 

(3. 2) 

where no is a positive number for c>O determined by the convergency of condition 
(ii) and 

Ea{X}=l XdP. 
J{x~a} 

Define, for real number x and positive number u, 

and put 

{
x, if lxl:::;; u, 

fu(x)= 
0, if lxl >u, {

0, if lxl:::::u, 
gu(x)= 

x, if lxl >u, 

1 u(x)= fu(x)- E{fu{~n. o)}, Ou(X) =gu(x)- E{gu(~n. o)}. 

- j - j 

Then x=fu(x)+gu(x)= f u(x)+!lu(x), SO that, if Sn.j,u= I: f u(~n.i), Dn.j.u= I: gu(~n.i), 
i=l i=l 

then Sn. j = Sn, j, u + Dn. j. u and hence 

(3. 3) 

Since 1 u(~n. o) is bounded by 2u and {1 u(~n. j)} is strictly stationary and <pn·mix
ing, it follows by lemma 5 that 
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E,{1jj · S 2n, j, u} ~ 1/a · c/Jn. j · (2u)\ 

[ 

j ]2 
where c/Jn,j=768 i~o <p~2(i) . By lemma 2, 

E{(ju(~n. o)gu(~n. k)} ~ 2<p}/2(k)Euz{~2n, o}. 

and it follows by lemma 4 that 

E{1jj · D2n, J, u} ~4[to <p~2 (k)l Euz{en.o}. 

(3. 4) 

(3. 5) 

From (3.3), the relation Ea{U+ V}~2Ea/z{U}+2E{V}, (3.4) and (3.5), we obtain 

Ea{1jj ·S2n, J} ~24 ·cpn, j[U4 /a+Euz{en. o}]. 

Since there exists a constant ¢ such that sup cpn,J~¢ from condition (ii) and the 
n,j<i;;no 

~2n, 0 are uniformly integrable, therefore, we obtain (3. 2). 
We shall show that Xn defined by (2. 3) is satisfied with all the conditions of 

lemma 1 by the aid of (3.2). We shall first prove that Xn has asymptotically indepen
dent increments. Suppose that Si and ti are real numbers with O~s1~t1 <sz~tz< ... < 
Sr~tr~1 and let En,i be the event {Xn(ti)-Xn(Si)EHi}, where JL, i=1, 2, ... , r, are any 
linear Borel sets. Then En, i lies in n~E~~H)+ 1 and, if o is the smallest difference 
si- ti-b then [knsi] + 1- [knti-1] ~ [kno], so that, by the definition of <p-mixing, we have 

r - n P{Xn(ti)- Xn(Si)EHi}l ~ Y<pn([kno]). 
i=l 

Since o is positive, therefore, Xn does have asymptotically independent increments. 
It is briefly proved by (3.2) that {Xn2(t); n~1} is uniformly integrable for each 

t. Certainly, E{Xn(t)} =0, and lemma 4' implies that E{Xn2(t)}---+ t. By stationarity, 
(3.1) will follow if we prove that, for each positive s, there exist a Ao(s), Ao(s)>a, 
and an integer mo(s) such that n, m~mo(s) implies 

P{max ISn,il ~Ao vm } ~c/A~. 
t~m 

(3.6) 

Let us set 

Since {en.o; n~1} is uniformly integrable, there exists an increasing sequence of in
tegers mi independently with respect to n such that, for each n and each positive 
A, m ~ mi implies 

If we define Pm=i for mi~m<mi+l (and Pm=1 for m<m1), then Pm goes to infinity 
but so slowly that 
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lim sup mP{Sj<,Pm:?:A~m}=O (3. 7) 
m~CX) n 

for each positive A. We may at the same time choose Pm in a such way that Pm 

~m. 

From (3. 2), there exists a Ao(c) for each positive s so that Ao>a and so that 

for n, j:?:no(s). If 

then 

P{max ISn,il :?:3Ao ~m} 
t;;i;m 

With P=Pm, the sum here is at most 

m-p-1 
L: P{ISn.i-Sn,i+pl :?:Ao~m} 
i=l 

m-1 

+ L: P{ISn,m -Sn,il :?:Ao ~m}. 
i=m-p 

Each term in the first and third of these sums is at most P{S;f,p:?:Ao~mt and we 
can estimate the second sum by using the fact that En,iEn.3rl~oo: 

P{max ISn,il :?:3Ao ~m } 
t;;i;m 

m-p-1 
+ L: P(En,i)[P{ISn,m-Sn,i+pl :?:Ao ~m}+SDn(P)]. 

i=1 

And now (3. 8) and the fact that the En,i are disjoint yield that, for n, m:?:n0(s), 

P{~ax ISn,il :?:3Ao ~m } 
t;;i;m 

no(<) 

+ L: P(En,m-i-p)P{ISn,il :?:Ao ~m}. 
i=1 

Since 
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no(•) 

I: P(En.m-i-p)P{ISn.il ;?::..<o vm}~no(s)P{I~n.ol ;?::-<ovm/no} 
i=l 

and {en. 0 ; n;?:: 1} is uniformly integrable, there exists a m1(s) >0 for each positive s 
such that m;?::m1(s) implies 

no(•) 

I: P(En,m-i-v)P{lSn.il ;?::Ao vm}~s/..<~ 
i=l 

for each n, so that, from (3. 7), condition (ii) and the fact that Pm~co, it follows 
that the relation (3. 6) holds. Therefore, this completes the proof of Theorem 1. 

4. Proof of Theorem 2 

In order to prove Theorem 2, it is necessary to first state several definitions 
and lemmas. At first, we shall show that a double sequence {Xn, k} of random varia
bles satisfies the analogous property for Theorem 5. 4 of BILLINGSLEY (1968). 

Let S be a metric space and let ( be a a-field generated by the open sets in 
S. We shall say that, for a double sequence {Pn, k} of probability measures on (S, (), 
Pn, k converges weakly to P and write Pn, k~p if such probability measures Pn, k 

and P satisfy ~ 8fdPn,k~~8fdP for every bounded, continuous real function f on 

S, i.e. if there exists a no(s), no(s)>O, for each positive s, such that n, k;?::n0(s) im
plies 

for every bounded, continuous real function f on S. Furthermore, we say a sequence 
{Xn. k} of random elements on S converges in distribution to the random element 

D 
X, and we write Xn, k~ X, if the distributions Pn, k of the Xn, k converge weakly 
to the distributi~n P of X, i.e. Pn, k~P. The random variables Xn, k are said to be 
uniformly integrable if 

Then, we have the same property as TheQrem 5. 4 of BILLINGSLEY (1968). 

D 
LEMMA 6. Suppose Xn.k--+X. If the Xn,k are uniformly integrable, then 

lim E{Xn,k}=E{X}; (4.1) 
n,k~oo 

if X and the Xn,k are nonnegative and integrable, then (4.1) implies that there 
exist a no(s)>O and a 0(s)>O such that a;?::ao implies 
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The proof is completely analogous to that of Theorem 5.4 of BILLINGSLEY (1968) 
and therefore omitted. 

The following lemma implies that, if r;n. h. i is given by (2. 9), then J)n(h) is a 
non-increasing function of h for each n. 

LEMMA 7. Let g and !/ be a-fields with g c g. If E{e} <co, then 

Now, we shall prove Theorem 2 by using the above lemmas and Theorem 1. 
We first prove 

D 
1/ V'k~ • Sn, kn ----+ N (0, 0'

2 
). (4. 2) 

Put 
an, h, j=r;n. j -r;n. h, j ( 4. 3) 

so that J)n(h)=E{iPn.h.j} and E{on,h,j}=E{r;n.h.j}=O. We have 

(4. 4) 

and the idea in proving (4. 2) is to show, by using Theorem 1, that the first sum 
on the right in ( 4. 4) is approximately normal for large n and then to show that 
the second sum is small for large h. 

From conditions (iv) and (v), there exists a no(.s)>O independently with respect 
to h for each positive .s such that n, k?.no(.s) implies 

for each h, and from (iii), there exists a ho(.s), ho(.s)?.n0(.s), such that n, h?:..h0(.s) 
implies 

J)i{2(h) < .s/ {no(.s) + 1}. 

Furthermore, we have for each j from the uniformly integrability {r;2n.o; n?.1} 

for some constant C. Therefore, we have that h?.ho(.s) implies 

i.e. 
lim a2

h =a2
• 

h-•00 
(4. 5) 

Since {r;n.h.j; n=1, 2, ···,j=O, ±1, ±~,···}satisfies all the conditions of Theorem 
1 for each h, we have 

(4. 6) 
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If a2h=0, (4. 6) is the same as 1/ vkn · ~ r;n.h.J ~0, which is satisfied by lemma 
j=l 

4'. D 
Now N(O,a 2h)---+N(O,a2) by (4.5); because of (4.4) and (4.6), the relation (4.2) 

will follow by Theorem 4.2 of BILLINGSLEY (1968) if we show that 

(4. 7) 

for each positive c. 

From conditions (iii) and (iv), we have by the same way as proving ( 4. 5), 

(4. 8) 

and E{iPn.h.o}~E{r;2n.o} by lemma 7. By lemma 4' applied to {on.h .. 1}, 

(4. 9) 

for each h. Chebyshev's inequality, (4. 8) and (4.9) now yield (4.7), which completes 
p 

the proof of (4.2). If a2=0, (4. 2) is the same as 1/vk~ ·Sn.kn---+0, but we have by 
lemma 4' that 

(4. 10) 

so that (4. 2) is satisfied even if a2 =0. From now on we assume that a2 >0. 
To prove (2. 12), we establish the convergence of the finite-dimensional distribu

tions and then tightness. Let Pn be positive integers going to infinity at a rate to 
be specified later and define 

(4. 11) 

(4.12) 

In these definitions, we adopt the conventions that Sn.i-2Pn=0 if i<2Pn and Sn,kn
Sn. i+ 2Pn = 0 if kn < i + 2Pn· We shall often write P in place of Pn· 

By Minkowski's inequality and lemma 7, 

k+p 

E 112{[Sn.k-E{Sn,k[ [5W~t!;}[ 2}S 2:: ))U2(j)~ 
j=p 

Then, it follows that 

E{[ Un,i-Sn,i[ 2}s2E{S2n,2p}+2 [ni~P-p ));(2(j) J, 
for all i. In the same way we obtain 

E{[ Vn, i-(Sn. kn -Sn. i)[ 2}S2E{S2n, 2p}+2 lk:~P-p ))U2(j)T. 
Since Un. i and Vn, i are measurable 5W~"! and 5rti+P respectively, 
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for all linear Borel sets H1 and H2. 
Consider now the finite-dimensional distributions. From (4. 2), it follows that 

We shall prove that 

D 
Xn(t)-Xn(s)--+ Wt- VVs. 

D 
(Xn(t), Xn(1)-Xn(t)) ~ ( Wt, W1- Wt); 

(4. 17) 

(4. 18) 

the argument is easily adapted to cases of dimension exceeding 2. Let Pn go to 
infinity slowly enongh that Pnlkn~O. By (4.14), Chebyshev's inequality, (4. 10) and 
condition (iii), we have 

Similarly, 

p 
1/avk~· Un,[kntJ-Xn(t) ~ 0. 

p 
1/avk~· Vn.[kntJ-(Xn(1)-Xn(t)) ~ 0, 

and ( 4. 18) will follow by Theorem 4. 1 of BILLINGSLEY (1968) if 

D 
(1/avkr; · Un.CkntJ• 1/avk~· Vn.ckntJ) ~ ( Wt, W1- Wt). 

(4. 19) 

(4. 20) 

Because of (4. 16), it is enough to show that there is convergence in distribution 
in each of the two coordinates here; but this follows from (4.17) by (4. 19) and 
(4. 20). 

We turn now to the question of tightness. The tightness of {Xn(t); n ~ 1} follows 
by Theorem 15.5 of BILLINGSLEY (1968) if we prove that there exist a Ao(c), Ao(c) > 
a, and an integer m0(c) for each positive c such that n, m?::.mo(c) implies 

P{maxJSn.il ?::.AoVm}~c/A~. (4. 20) 
iS.m 

j 

Put S;t,J= I: l~n.il· By the argument leading to (3. 7), there is a sequence Pm going 
i=l 

to infinity so slowly that, if 

then 

lim sup m,9n, m(A) = 0 
m-oo n 

for each positive A. Define 

then we have, by (4. 13) and Chebyshev's inequality, 
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(4. 22) 

(4. 23) 

(4.11)' 

(4. 12)' 

( 4. 24) 
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and similarly 

P{I(Sn.m -Sn. i)- Vn. m.il ;;::::,{ v m}~J3n.m(A/2)+4/A2m·l m-tPm ))}(2(j) _I:~.. 
- J=flm 

(4. 25) 

Now, we shall prove that 

D 
1/ vk · Sn. k -----+ N(O, a 2

). (4. 26) 

Since (4. 6) holds for any ku going to infinity, it follows that 

k D 
1/ vk· L: r;n.h.J -~ N(O, a2h) 

j=l 

D 
for each h and N(O, a~)-----+N(O, a2

) by (4. 5), so that, (4. 26) will follow by the ver-
sion of Theorem 4. 2 of BILLINGSLEY (1968) if we show that 

lim limsupP{:1/vk·±on.h.J';;:::c}=o 
lk~= n, k--co I j=l 

(4. 27) 

for each positive c. Since (4. 9) holds for any kn going to infinity, it follows that. 
for each h, 

{ 

k 2 } 
lim 1/k·E: L: On,h.J =c2

10 
n, k--co j=l 

( 4. 28) 

so that, Chebyshev's inequality and ( 4. 8) yield ( 4. 27) which completes the proof o£ 
( 4. 26). Furthermore, we have 

lim 1/k · E{S2
11 • k} =a2

, 
11, k-~oo 

so that, it follows via lemma 6 that there exist a Ao(c), A0(c) >a, and an integer n 0(c) 
for each positive c such that n, j;;:::no(c) implies 

By (4. 24), 

P{maxiSn.il ;;:::6AoVm}~P{maxl Un.rn. il ;;:::5AoVm} 
i5',m i5',m 

(4. 30) 

Consider the sets 

En.m.i={maxl Un.m.JI <5AoVm~ I Un.m.il}. 
i;;i;m 

We have 

P{maxl Un.m.il ;;:::5AoVm} 
i5',m 

m 

~P{ISn,ml ;;::::,{0 Vm}+ L: P(En.m. in {ISn.m- Un.m.il ;;:::4Ao Vm}). ( 4. 31) 
i=l 

The i-th summand in (4. 31) is at most 
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Since En. rn. i lies in .'Jvl~-;!m and Vn. rn. i is measurable .~i1 Pm we ha-~-c 

P(En.rn. in {I Vn. m.il ~2J.ovm}) 

Using this estimate for the middle term in (4. 32) and the estimates (4. 24) and 
(4. 25) for the other two, we see that the i-th summand in (4. 23) is at most 

Therefore, by (4. 29) and the disjointness of the En,m, i• it follows that n, m~nu(c) 
implies 

P{max ISn,il ~ 6AoVm} 
t~m 

m 

+ I: P(En.m.i)P{ISn,Jn-il ~Ao Vm}. 
i=m-no+l 

By the same argument as the one of Theorem 1, it follows from the uniformly 
integrability of {r/n.o; Jl~1} that there exists an integer mt(c) such that m~m1(c) 
implies 

m 

I: P(En.m.i)P{ISn.m-il ~Ao Vm}=c/A~ 
i=m--no(e)-+-1 

for each n. Then, from conditions (i), (iii) and (4. 23), we conclude that there ex
ists an integer m0(c) such that n, m~mo(c) implies 

P{max ISn.il ~6Ao Vm } =4c/J.~. 
t~m 

This completes the proof of Theorem 2. 
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