慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	A note on a renewal reward process				
Sub Title					
Author	前島，信（Maejima，Makoto）				
Publisher	慶応義塾大学工学部	$	$	Publication year	1973
:---:	:---				
Jtitle	Keio engineering reports Vol．26，No．8（1973．），p．85－89				
JaLC DOI					
Abstract	In this note，a renewal reward process is dealt with，and the asymptotic behavior of the expected total reward when time tends to infinity is studied in the case of independent and non－identically distributed random variables．				
Notes	Departmental Bulletin Paper Genrehttps：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00260008－ URL				

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

KEIO ENGINEERING REPORTS
 VOL. 26 NO. 8 YOKOHAMA 1973

A NOTE ON A RENEWAL REWARD PROCESS

BY
MAKOTO MAEJIMA

A NOTE ON A RENEWAL REWARD PROCESS

Makoto Maejima
Dept. of Mathematics, Keio University, Yokohama 223

(Received Dec. 17, 1973)

Abstract

In this note, a renewal reward process is dealt with, and the asymptotic behavior of the expected total reward when time tends to infinity is studied in the case of independent and non-identically distributed random variables. 1. Let $\left\{X_{i}, i=1,2, \cdots\right\}$ and $\left\{Y_{i}, i=1,2, \cdots\right\}$ be sequences of independent, nonnegative random variables with $0<E X_{i}=\mu_{i}<\infty$ and $0<E Y_{i}=\lambda_{i}<\infty$, respectively. We shall consider the renewal process with the time interval X_{i} between the ($i-1$)-st and the i-th renewals, and Y_{i} is supposed to be a reward at the time of the i-th renewal. Y_{i} may depend on X_{i}, but we assume that the pairs (X_{i}, Y_{i}), $i=1,2, \cdots$ are independent of each other.

Set $S_{0}=0$ and $S_{n}=\sum_{i=1}^{n} X_{i}, n \geqq 1$, and define $N(t)=\sup \left\{n ; S_{n} \leqq t\right\}$. Then if we let $Y(t)=\sum_{n=1}^{N(t)} Y_{n}$, then $Y(t)$ denotes the total reward earned by the time t. We call the process $Y(t)$ a renewal reward process. The purpose of this note is to show a theorem on the asymptotic behavior of the expected total reward $E Y(t)$, in the case of not necessarily identically distributed random variables.

Renewal reward processes have been taken by Smith (1955) who call them cumulative processes, and Ross (1970) has discussed the case in which Y_{i} may depend upon X_{i}, but only the case where each of $\left\{X_{i}\right\}$ and $\left\{Y_{i}\right\}$ is identically distributed has been studied.

2. We first state some assumptions. Let $F_{i}(x)$ and $G_{i}(x)$ be the marginal distribution functions of X_{i} and Y_{i}, respectively. Set

$$
\begin{equation*}
\lambda_{i}(t)=\int_{0}^{t}\left[1-G_{i}(x)\right] d x . \tag{2.1}
\end{equation*}
$$

Suppose that the following assumptions are satisfied:
(a) $\lim _{A \rightarrow \infty} \int_{A}^{\infty} x d F_{i}(x)=0$ holds uniformly with respect to i.
(b) $\mu=\lim _{n \rightarrow \infty} n^{-1} \sum_{i=1}^{n} \mu_{i}$ exists.
(c) $\lambda(t)=\lim _{n \rightarrow \infty} n^{-1} \sum_{i=1}^{n} \lambda_{i}(t)$ exists uniformly for t.
(d) $\lambda=\lim _{t \rightarrow \infty} \lambda(t)$ exists.

In view of the assumptions (c) and (d), it follows that

$$
\begin{equation*}
\lambda=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \lambda_{i} \tag{2.2}
\end{equation*}
$$

exists.
Now, we state a lemma for the renewal process with non-identically distributed random variables.

Lemma. Let $\left\{X_{i}, i=1,2, \cdots\right\}$ be a sequence of independent, nonnegative random variables with $0<E X_{i}=\mu_{i}<\infty$. Under the assumption (a), we have

$$
\begin{equation*}
E N^{\alpha}(t)<\infty \tag{2.3}
\end{equation*}
$$

for $\alpha=1,2, \cdots$, and if the assumption (b) is added, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{E N^{\alpha}(t)}{t}=\frac{1}{\mu^{\alpha}} \tag{2.4}
\end{equation*}
$$

for $\alpha=1,2, \cdots$.
This lemma was first proved by Kawata (1956) for $\alpha=1$, and Hatori (1960) proved it for any positive integer α.

The theorem we are going to show in the non-identically distributed case is the following.

Theorem. Let $\left\{X_{i}, i=1,2, \cdots\right\}$ and $\left\{Y_{i}, i=1,2, \cdots\right\}$ be sequences of independent, nonnegative random variables with $0<E X_{i}=\mu_{i}<\infty$ and $0<E Y_{i}=\lambda_{i}<\infty$, respectively. We suppose that the pairs $\left(X_{i}, Y_{i}\right), i=1,2, \cdots$, are independent of each other, while Y_{i} may depend on X_{i}. Then, under the assumptions (a), (b), (c) and (d), we have

$$
\lim _{t \rightarrow \infty} \frac{E Y(t)}{t}=\frac{\lambda}{\mu} .
$$

Proof. Write

$$
E Y(t)=E \sum_{n=1}^{N(t)+} Y_{n}-E Y_{N(t)+1}
$$

in which letting

$$
Z_{n}=\left\{\begin{array}{l}
1, \text { if } n \leqq N(t)+1, \\
0, \text { otherwise }
\end{array}\right.
$$

we have

$$
E \sum_{n=1}^{N(t)+1} Y_{n}=E \sum_{n=1}^{\infty} Y_{n} Z_{n}=\sum_{n=1}^{\infty} E Y_{n} Z_{n}
$$

Here, Z_{n} is independent of Y_{n}, because Y_{n} is independent of $\left\{X_{1}, \cdots, X_{n-1}\right\}$ and Z_{n} depends only on $\left\{X_{1}, \cdots, X_{n-1}\right\}$ as we see in the following way:

$$
\begin{aligned}
\left\{Z_{n}\right. & =0\}=\{N(t)+1<n\} \\
& =\bigcup_{k=1}^{n-1}\{N(t)+1=k\} \\
& =\left\{X_{1}>t\right\} \cup\left[\bigcup_{k=1}^{n-1}\left\{\left(X_{1}+\cdots+X_{k-1} \leqq t\right) \cap\left(X_{1}+\cdots+X_{k}>t\right)\right\}\right] .
\end{aligned}
$$

Hence,

$$
\begin{align*}
E \sum_{n=1}^{N(t)+1} Y_{n} & =\sum_{n=1}^{\infty} E Y_{n} E Z_{n} \\
& =\sum_{n=1}^{\infty} \lambda_{n} \operatorname{Pr}\{N(t)+1 \geqq n\} . \tag{2.5}
\end{align*}
$$

We rewrite (2.2) as

$$
\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}=\lambda+\varepsilon_{n}
$$

from which we have

$$
\lambda_{n}=\lambda+n \varepsilon_{n}-(n-1) \varepsilon_{n-1},
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then we get from (2.5) that

$$
E \sum_{n=1}^{N(t)+1} Y_{n}=\lambda(E N(t)+1)+\sum_{n=1}^{\infty}\left(n \varepsilon_{n}-(n-1) \varepsilon_{n-1}\right) \operatorname{Pr}\{N(t)+1 \geqq n\} .
$$

Noticing that

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|n \varepsilon_{n} \operatorname{Pr}\{N(t)+1 \geqq n\}\right| \leqq \sup _{n}\left|\varepsilon_{n}\right| \sum_{n=1}^{\infty} n \operatorname{Pr}\{N(t)+1 \geqq n\} \\
& \leqq \sup _{n}\left|\varepsilon_{n}\right|\left(E N^{2}(t)+2\right)<\infty
\end{aligned}
$$

holds by (2.3) with $\alpha=2$, we have

$$
\begin{equation*}
E \sum_{n=1}^{N(t)+1} Y_{n}=\lambda(E N(t)+1)+\sum_{n=1}^{\infty} n \varepsilon_{n} \operatorname{Pr}\{N(t)+1=n\} \tag{2.6}
\end{equation*}
$$

so that

$$
E Y(t) \leqq \lambda(E N(t)+1)+\sum_{n=1}^{\infty} n \varepsilon_{n} \operatorname{Pr}\{N(t)+1=n\} .
$$

Now, since $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$, for any given positive number ε, we can choose an integer N such that $\left|\varepsilon_{n}\right|<\varepsilon$ for $n>N$. We then have

$$
\begin{aligned}
& \mid \sum_{n=1}^{\infty} n \varepsilon_{n} \operatorname{Pr}\{N(t)+1=n\} \\
& \quad<\sum_{n=1}^{\infty} n\left|\varepsilon_{n}\right| \operatorname{Pr}\{N(t)+1=n\}+\varepsilon \sum_{n=N^{+}}^{\infty} n \operatorname{Pr}\{N(t)+1=n\} \\
& \quad<N^{2} C+\varepsilon(E N(t)+1),
\end{aligned}
$$

where $C=\max _{1 \leqq n \leqq N}\left|\varepsilon_{n}\right|<\infty$. Since ε is arbitrary, we get, using (2.4) with $\alpha=1$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t}\left|\sum_{n=1}^{\infty} n \varepsilon_{n} \operatorname{Pr}\{N(t)+1=n\}\right|=0 \tag{2.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{E Y(t)}{t} \leqq \frac{\lambda}{\mu} . \tag{2.8}
\end{equation*}
$$

Next, take $\delta>0$ arbitrarily and let Y_{n}^{*} represent the variables truncated according to the rule

$$
Y_{n}^{*}= \begin{cases}Y_{n}, & \text { if } Y_{n} \leqq \delta t, \\ \delta t, & \text { otherwise }\end{cases}
$$

For this truncated variables, it is clear that $E Y_{n}^{*}=\lambda_{n}(\partial t)$, where $\lambda_{n}(\cdot)$ is defined by (2.1). Repeating the same argument as (2.6) was obtained, we have

$$
E \sum_{n=1}^{N(t)+1} Y_{n}^{*}=\lambda(\delta t)(E N(t)+1)+\sum_{n=1}^{\infty} n \varepsilon_{n}(\delta t) \operatorname{Pr}\{N(t)+1 \geqq n\},
$$

where $\varepsilon_{n}(\cdot)$ is defined by the relation

$$
\lambda(t)=\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}(t)+\varepsilon_{n}(t) .
$$

The assumption (c) says that $\varepsilon_{n}(t) \rightarrow 0$ uniformly for t as $n \rightarrow \infty$. Therefore, we have

$$
\begin{aligned}
E Y^{*}(t) & \equiv E \sum_{n=1}^{N(t)} Y_{n}^{*} \\
& \geqq \lambda(\delta t)(E N(t)+1)+\sum_{n=1}^{\infty} n \varepsilon_{n}(\delta t) \operatorname{Pr}\{N(t)+1 \geqq n\}-\delta t,
\end{aligned}
$$

and hence

$$
\liminf _{t \rightarrow \infty} \frac{E Y^{*}(t)}{t} \geqq \liminf _{t \rightarrow \infty} \frac{\lambda(\delta t)(E N(t)+1)}{t}-\delta,
$$

by the same reasoning as in (2.7). For the fixed $\delta, \lim _{t \rightarrow \infty} \lambda(\partial t)=\lambda$; we thus have

$$
\liminf _{t \rightarrow \infty} \frac{E Y^{*}(t)}{t} \geqq \frac{\lambda}{\mu}-\delta .
$$

Since δ is arbitrary, we have

$$
\liminf _{t \rightarrow \infty} \frac{E Y^{*}(t)}{t} \geqq \frac{\lambda}{\mu} .
$$

On the other hand, it is clear that $E Y^{*}(t) \leqq E Y(t)$; consequently we have

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{E Y(t)}{t} \geqq \frac{\lambda}{\mu} . \tag{2.9}
\end{equation*}
$$

The required result follows from (2.8) and (2.9).

A Note on a Renewal Reward Process

Acknowledgements

The author wishes to express his sincere appreciation of Professor Tatsuo Kawata of Keio University for his continuing guidances and encouragements.

REFERENCES

Hatori, H., (1960): A note on a renewal theorem, Kodai Math. Sem. Rep., 12 28-37. Kawata, T., (1956): A renewal theorem, J. Math. Soc. Japan, 8, 118-126.
Ross, S. M., (1970): Applied Probability Models with Optimization Applications, Holden-Day, 51-53.
Smith, W. L., (1955): Regenerative stochastic processes, Proc. Roy. Soc., A232, 6-31.

