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ABSTRACT 

The author has previously made studies about existence of eigen-values for 
various cases of vibration problems. Recently, the author has been asked, how he 
could infer that these eigen-values are positive. In this supplementary note, the 
author has given an account, which shows the positivity of these eigen-values. 
The discussion is confined to two cases: (a) vibration of rectangular elastic plate 
fitted with a stiffener rib, (b) vibration of an elastic bar which is fitted in a water 
region. 

1. Introduction 

The author has previously made studies about vibration of elastic plates (1968, 
1969, 1970 and 1972), which is fitted with stiffener rib-bar, or which is in contact 
with a water region. For each one of these cases, the author has discussed the 
existence of eigen-values (natural frequencies), reducing the problem to that of 
linear integral equations. Recently, the author has been asked by a reader, how 
he could infer that the eigen-values have real positive values. One way to answer 
this question would be to point out that, we have the relation 

where if and i7 are timely mean values of kinetic- and potential-energies of the 
whole dynamical system under consideration, however complicated it may be. Since 
T and i7 have positive real values, so we could conclude that the value J.= V/T is 
always positive. Nevertheless, it was thought that, it may be of some interest to 
deduce the inference directly from the differential equation of vibration for respective 
cases. In what follows, this deduction will be made, for each individual cases. 
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2. Vibration of a rectangular elastic plate, fitted with a stiffener rib 

Consider an elastic rectangular plate, as shown in Fig. 1, which is fitted with 
a stiffener rib-bar. In order to treat the small transverse vibration of this plate, 
we use the following notations : 

Qx, Qy=vertical shearing forces acting on cross-section of the plate, (per its 
unit length), Mx, My= bending moments acting on cross-section of the plate (per 
its unit length), D=flexural rigidity of the plate=Eh3/[12(1-~.~ 2)], h=thickness of 
the plate, E, 1.1= Young's modulus and Poisson's ratio of plate material, a, b=length 
and width of the rectangular plate, p=density of plate material. 

As to quantities relating to the stiffener rib, we use following notations; G1 = 
shear modulus of elasticity, K1 =modulus of torsion, E1 =Young's modulus, !1 = 
secondary moment of sectional area of stiffener bar, p1=material density, A1=cross­
sectional area, !1 =longitudinal secondary moment. 

The fundamental equation of free transverse vibration, for small displacement 
w, is given by, 

( 1) 

For the case of sustained free vibration with angular frequency w=2nf, we put 

w=Wsin Wt, 

and obtain following equation for W(x, y), 

[ 
a

4
W a

4
W a

4
WJ 

D iJX4+2axzayz +w -phJ.W=O (2) 

where we put, for shortness, ). =w2
• Boundary conditions to be satisfied by the 

solution W is (taking the case of fixed four edges, as an instance), 

(a) for x=O and x=a [O::=;;y::=;;b] W=O, 

(b) for y=O and y=b [O:::;;x::=;;a] W=O, 

aw;ay=O 

aw;ax=O 

Values of shearing forces and bending moments are given by 
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Fig. 1. Rectangular Elastic Plate fitted with a Stiffener Rib 

78 



On a Property of Eigenvalues Concerning Some Vibration Problems 

One way to express the fact that stiffener rib is attached to the elastic plate, at 
the location x=,;, is to put 

+s o4w o2w 
+IQxl_s =Ed1a?f4+p1A1--atz 

+s 03W o3W 
+IMx+MYI_s=G1K1 axayz -pd1 0tzax 

wherein, the right-hand sides must be taken values at x=,;, and on the left-hand 
side we have to make ultimately s~O. 

Now, multiplying both sides of our equation (2) by W, and integrating over 
whole area of rectangular plate, we obtain an equation of the form, 

( 5) 

where the put for shortness, 

the integration being to be carried out for y=O to b, and x=O to -s, x= +s to a. 
We are to take s~O ultimately. Also, we note that 

and, by repeated application of partial integration, and taking into account boundary 
conditions along four edgelines, we obtain 

* Signs of left-hand side were mistaken, in previous paper. 

79 



FuMIKI KITO 

Furthermore, we have, by values of Qx and Mx+ My as given above, 

iJ3W1-.s W- -.s 
W---.- 11 = --IQxl 

oX'~ +.s D +.s 

iJW u2 W 1-.s 
a-x aX2J +.s 

-1 aw - - -.s 
(1 )D ~ IMx+Myl +!.1 oX +.s 

( 6) 

In these equations Qx, M x and My are values of Qx, Mx and My wherein time 
factors sin wt are omitted. Thus we have, by relations (3) and (4), 

!=[b. w-a3H-:'_ __ aw _a__z__~_, -.sdy 
j 0 . ax3 ax ox2 

i + c 

1 [b aw[ rJ3W aw] 
- (1 +"')D Jo ax G1K 1 axoy 2- + p1

]
1J. ox _ dy 

where the integrands on right-hand side are to take values for x=~. Reminding the 
relation 

we have 

+ (1+1!.1)D ~I GlKl(~~:~-r-pJl).ca:rJdy ( 7) 

Putting these values of equations (6) and (7) into the equation (5), we are led to 
an equation of the form 

where !4 and Is are values depending on W and its partial derivatives, which are 
always positive. Thus, we may conclude that J. is a positive real constant. 

The above discussion was made about the case of a rectangular plate of uniform 
thickness having a homogeneous elastic property. The author has made some 
consideration about the case of free vibration of rectangular plate of non-uniform 
thickness, which has heterogeneous elastic property and which is in a stressed 
state. It may here be remarked that, again in this case, we can infer that eigen­
values corresponding to free vibration have positive values, by an argument similar 
to the above discussion, that is multiplying both sides of equation [which is of 
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more complicated form than the above equation (2)], and integrating over whole 
area of the plate. 

3. Free vibration of an Elastic Bar placed in a Water Region 

Let us consider a case of elastic bar, which is placed inside a water region, 
as sketched in Fig. 2(a). When this elastic bar is making free transverse vibration 
of small amplitude, its equation of motion will be given by, 

( 8) 

In this equation, following notations are used: w=small transverse displacement 
of the elastic bar, EI =flexural rigidity of the bar, pm, A= density and cross-section­
al area of the bar, q=external force applied to the bar, which is due to action of 
surrounding water. 

There will be set up, in surrounding water, a motion of water induced by 
vibration of the bar itself. Assuming that water is a non-viscous incompressible 
fluid, this motion of water may be given by velocity potential cp(x, y, z; t) which 
satisfy the Laplace equation 

( 9) 

in water region. This velocity potential cp must also satisfy following boundary 
conditions. 

(a) On the surface of rigid wall, we must have 

where a;an denotes the derivative in direction normal to wall surface, which is 
understood to be drawn inwards into the fluid region. 

z(w) 

fa) (b) 

Fig. 2. Vibr::ttion of an Elastic Bar placed in a Water Region 
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(b) On the surface of vibrating bar we must have [see Fig. 2(b)] 

o¢ ow 
an =·---at cos (n, z) 

where cos (n, z) is the cosine of angle subtended between the normal to surface of 
the vibrating bar and the z-axis. This normal is understood to be drawn outwards 
from body of bar, that is, inwards into fluid region. It is assumed that direction 
of transverse displacement of the bar is taking place in direction of z-axis. 

For the case of free vibration with an angular frequency w=2rrf, we may put 

cp=wf/J cos wt, w=Wsinwt, q=Q sin wt (11) 

As to hydrodynamical pressure p of water, we may put approximately 

- of/J- 2m • P-Pw7Jt- -pww 'V sm wt, (12) 

pw being density of water. The equation of free vibration (8) becomes as follows, 

(13) 

where we put A=w2
• The function f/J must satisfy, together with Laplace equation 

following boundary conditions. 
(a) On the rigid wall surface, 

(b) On the surface of bar 

of/J =O 
on 

of/J 
on = w cos (n, z) 

Moreover, we have 

Q=-ApwR, R= ~ f/J cos (n, z)ds 

where ds is curvilinear element of closed curve of cross-section of the bar. 
To fix ideas, we assume that ends of bar is kept in state of fixed ends, which 

is located at x=O and x=l. Let us multiply by W the both sides of our equation 
(13), and integrate over the whole length of the bar. Then, we shall have (after 
making integration by parts, and taking into account above-mentioned end conditions 
at x=O and x=l), 

~:EI( a;;yax-pmA~:AW2dx-pwA~:RWdx=O (14) 

On the other hand, we have 

J = ~: RW dx= ~: W dx[~ f/J cos (n, z)ds J = ~ ~ Wf/J cos (n, z)dS 
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where dS means elementary area of surface of the bar. But we have by above­
mentioned condition (b) 

J=\r(/Jaw as 
JJ an 

and this surface integral is seen to be equal to following volume integral which 
extend to whole water region; 

J = ~ ~ ~ [ ( ~~ ) 
2 

+ ( ~: ) 
2 

+ ( ~~ ) ]axdydz 

Summing up these results, we see that our equation (14) may be expressed in 
following form 

(15) 
where we have put 

\t (d2 w)2 
It= JoEl · dx2 dx, 

Since It, !2 and ] are positive quantities, we may conclude from this relation (15) 
that eigen-value i! must always be positive. 

As a final remark, it may be allowed to state that similar argument as given 
above may be made about more complicated vibration problems in elasticity and 
in hydro-elasticity. 
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