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ABSTRACT 

In this paper we shall investigate whether certain convolution operators related to 
feedback systems are invertible in some space of functions or distributions. The pro­
perties such as integrability and differentiability of the inverse are discussed. 

1. Introduction 

Consider a linear feedback system shown in Fig. 1, where g is a convolution 
operator defined by an integrable function over (0, oo ). The equations governing 
the system are 

a(t) = l(t)- y(t), t ~ 0, 

y(t) = g*a(t), t ~ 0, 

where g*a(t)= ~: g(t--r)a(-r)d-r, t~O. If (o+g) is invertible in some class of distri­

tions, then the equations 

l + a y 

"I... ,-I / g / 

-

Fig. 1. A Linear Feedback System. 
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l + (J y 

f ---7 g .... ..... ,,..~ / ,. 

-
,, 

Fig. 2. A Nonlinear Feedback System. 

a(t) = (r'5+g)- 1*l(t), t~O, 

y(t)=g*(('5+g)- 1*l(t), t~O, 

are meaningful. The system shown in Fig. 2 is called a nonlinear feedback 
system where f is a memoryless nonlinear function and g is the same as in the 
linear case. The system equation is given by 

a(t) =l(t) -g* f(a)(t), t~O. 

If f satisfies a certain slop condition and if (o+cg)- 1 exists in some class of func­
tions or distributions, then we have 

a(t) =(a+ cg)- 1*l(t)- (a +cg)- 1*a* !Ca)(t), t~O, 

where J is defined by j(a)=f(a)-ca. [See KAWASHIMA, 1973-a] 

These examples show that the investigation of conditions for the existence of 
the operators (o+cg)- 1 and (o+cg)- 1*g are basic problems in the analysis of feedback 
systems. Note that if the operator (o+cg)- 1*g exists, then we have a*(a+cg)- 1 = 
(o+cg)- 1*g. This shows that we only need to study the properties of (o+cg)- 1*g, 

since g*(a+g)- 1 is a special case. 

On the other hand, suppose that g is the impulse response of a linear constant 

coefficient differential equation, that is g(t)= ± ~ aiJtJ-le-bit, t~O, Re bi>O and 
r i=lj=l 

I: mi=n. In this case the existence of (o+cg)- 1 and (a+cg)- 1*g is obvious. This 
i=l 
can be easily shown, since the Laplace transform of g becomes a rational function 

of s and the method of partial fraction expansion can be used. Moreover, (o+cg)- 1*g 
r' m'i r' 

can be written as (a+cg)- 1*g= I: L:a~jli- 1e-b'it, t~O and L:m~=n. With an addi-
i=lJ=l i=l 

tional restriction on g, we may assume that the real parts of M are non-negative. 
r' m'i 

Then the functions of the form I: I: aiJ ti- 1e-b'it have the following properties; 
i=1j=l 

i) infinitely differentiable, 

ii) belong to Lfo.oo) where l~p<oo, 

iii) their supports are not bounded in (0, oo ). 

A question now arises: What can we say about (o+cg)- 1 and (o+cg)- 1*g if we 
can not assume that g is the impulse response of a differential equation? In this 
paper we shall deal with this problem in a more general setting in which g in-
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volves, in addition, the delta functional, derivatives of the delta functional and 
Heaviside unit step function. We first show an existence condition for the operators 
(o+cg)- 1 and (()+cg)-- 1*g in a certain class of distributions. Next, we shall examine 
the properties of these operators such as differentiability, integrability and un­
boundedness over (0, (X)) of the support. The problems cited above are not only 
interesting in itself but also the solutions to the problems become a powerful tool 
in the analysis of nonlinear systems. For example see KAWASHIMA (1973-a, b) 
and also HoLTZMAN (1971), WILLEMS (1971), ZAMES (1964, 1966-a, b) and SANDBERG 
(1964). 

In § 2 we shall give notations and definitions used in this paper. § 3 is de­
voted to show the existence of (o+cg)- 1 which gives as a special case the result 
of PALEY and WIENER (1934). In § 4 the integrability conditons are studied and 
in § 5 differentiability and unboundedness of the support are handled. 

2. General Preliminaries 

This preliminary section gives a brief sketch of Fourier and Laplace trans­
forms for distributions and its related topics. [ZEMANIAN, 1965] 

The spaces Lfm, 1:::;;; P< CXJ, consist of all Lebesgue measurable functions k( ·) 
which vanish for negative arguments with the property that 

The spaces Lf-oo, oo) on the real axis (- CXJ, (X)) are similary defined. A Lebesgue 
measurable function is said to be of class LP Joe em, 1:::;;;p:::;;;(X), if it vanishes on 
negative arguments and satisfies 

for any finite T. 
The space of testing functions of bounded supports is denoted by SD and its 

dual space is denoted by SD'. Furthermore, we let SD~m be the space of distribu­
tions whose supports are contained in the non-negative real axis. The space of test 
ing functions of rapid descent is written by @:> and its dual space is written by@:>'. 

The Fourier transform of kE®' is denoted by 

(':{Jk, ~>)=(k, 'f!N)), ~?EtS. 

If k(t)EL~-oo,ooJ' then the ordinary Fourier transform K(iJ..) of k(t) exists and ('fjk, cp) 
=<K(iJ..), cp) for any cpE®. If k(t)EL~-oo,oo)' then the limit in the mean Fourier 
transform K(iJ..) of k(t) exists and ('fjk, cp)=(K(iJ..), cp) for any cpE®. In both cases 
we may identify 'fjk with K(iJ..). Moreover, the Fourier transforms of the delta 
functional and its derivatives are given by 
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If k belongs to SD~R) and if e-"tk(t)E®' for a>a', then the Laplace transform of 
k(t) is given by 

K(s)=2k=fJ{e-"tk(t)}, a>a', S=a+iA. 

K(s) is an analytic function in its region of convergence Re s>a'. The Laplace 
transforms of the delta functional and its derivatives are given by 

Let k*l denote the convolution of distributions k and l whenever the convolution 
is defined. Let u be a distribution with the representation 

n 

u(t)= I: o0 )*kit), kit)ELf-co,coJ• O:s;;n<co 
J=O 

and let v be a distribution with the representation 

m 

v(t)= I: ()cJ)*lj(t), lJ(t)ELf~co,oc), O:s;;m< co, 
j=O 

where (1/P)+(1/P')-1>0. Then, it can be shown that the covolution U*V is well 
defined and belongs to ®'. Moreover, the Fourier transform of U*V is given by 

n m 

( 1) iJ[u*V]= iJ[u]fJ[v] = I: (iA)i KJ(iJ..) I: (iJ..).i Lj(iA), 
j=O j=O 

where KJ(i).) and LJ(iA) are the Fourier transform of functions kJ(t) and lJ(t) re­
spectively. (SCHWARTZ, 1966, p. 270) 

3. Existence of (b+ cg)- 1 in SD~Rl 

3-1. A Theorem Related to the .Result of Paley and Wiener 

Let :r~ be a class of distributions such that 

n 

g(t) = I: ak()Ck-l)(t) +ao1, (t) + g1(t), 
k=l 

where 

i) g1(t) is a real-valued function in L~RJ• 

ii) ak is a real constant and an=FO, 

iii) ()Ck)(t) is the k-th derivative of the delta functional, 

iv) 1+(t) is the Heaviside unit step function. 

PALEY and WIENER (1934) first showed the existence of (a+cg)- 1 in SD~Rl when 

g(t)=gl(t). We shall show their result in a slightly generalized form. 
m 

Theorem 1. Let g(t) be in n LfR), where l:s;;m< co. If the Laplace transform 
p=l 

G(s) of g satisfies !l+cG(s)! =;t:O in Re s~O. then there exists a function g(t) in 
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Proof. We may assume c=1 without any loss of generality. Define the func­
tion ¢> A(A) by 

and put 

{ 

1, [A.[<A; 

s'~A(A.)= 2-
1~, A~ iA.I ~2A; 
0 , [A.[ >2A; 

G(iA) = if>A(A)G(iA) + (1-¢A(A))G(iA.) 

=G~(iA.)+Gz(iA.). 
m ~ 

We first show that there exists a function (JI(t) in n Lf-oo,oo) such that G1(iA.)=?Jg1. 
~ p=l 

Now, from the definitions of G1(iA.) and ¢A(A), we have 

J if>A(A.)G(iA.) 
G1(il.)= 

1 
qJzA(A)[1+G(iA.)]' 

0, 

[A.[<2A; 

[A.[~2A. 

Since ¢2A(/.) belongs to Ll-oo,oo) the inverse Fourier transform exists and ?J-1¢zA(A) = 
1 {cos 2At-cos 4At } _ 1 " --2AT- -- =PzA(t) EL<-oo.co)· From the assumptions, ¢zA(A)(1 +G(iA.)) is 

never zero for A.E[ -2A, 2A]. Thus, there exists a function q in L~-oo,oo) such that 

its Fourier transform Q(iA.) has the property 

A.E[ -2A, 2A], 

~ m 

[WIENER, 1958, p. 91]. Therefore, we have GI(iA)=?J{q*PA*g} and q*PA*gE n Lf-oo,oo) 
p=l 

by the Hausdorff-Young inequality. 

On the other hand Gz(iA.) can be written by 

l [1
- r ( 1 )] G(iA)[1-rpA 1z(A)] 

~ ~A A . ' G 2(iA.)= l+G(zA.)[l-¢A,z(A.)] 

0, 

[/.[~A; 

[A.[<A. 

Letting A sufficiently large, we have [G(iA.)[1-¢A z(/.)][ < 1, for all I.E( -oo, oo ), from 
the Riemann-Lebesgue lemma. Hence, we get 

Gz(iA.) = [1-¢A(A)]@(A.), 

where riJ(A.) = ~ ( -l)n[G(iA.)(l-rpA;z(A))]n. From the denitions of ¢A 1 z and G(iA.), 
n=l 

we have 
= = 

&(i.)= ~(-lr'[?J(-</JA;z)]n= ~?J{sf~~;z}, 
n=l n=l 

41 



HIRO;\JAO KA w ASI liMA 

where ¢~;2 =</JA1 z*</JA 12 ···*</JA 1 z (a convolution of n distributions) and tl{ -</JA1 z} = 
m 

tl{g-g*PA;z}=G(iJ.)[l-9SA;z(J.)]. Obviously, 9'JA/2 belongs to n Lf-oo,oo)• Therefore, we 
p=J 

have lf1;~izlll~II¢A;z[W and ll¢~;z[[p~[f1;~~2°*[[p·[[</;A/z![I> for l<P~m. This implies that 
111 

~J~iz belongs to n Lf-oo,oo) for any n>O. Moreover, after some calculations we have 
p=l 

l~p~m, 

where F4(t)= 2:.A ~~C•) g(t+:-){ sinr~:-/2 rdt. Since the Fejer integral F~(t) con­

verges tog in LP norm (l~p~m), we have II91A 1zii]J<l for sufficiently large A. 

Thus the series I: <j;~iz converges in LP norm (l~p~m). Since Lf-oo,oo) is com-
n=l N 

plete, there exists a function ~~P in Lf-cn,D)' l~p~m, such that lim I: ¢~iz=9) 1) in 
.V·--•cx; n=l 

m 

Lf-oo,oo>· Next we shall show that there exists a common function ~~ in n Lf-oo,co) such 
N p=l 

that lim I: <j;]i2 =~) in L 1) norm (l~p~m). This can be easily shown, since for 

any ~~;;~~t setNK in R1, we have },i~ ~Jnt1 <j;];z-~l~dt=0 and }.i~~K~n~1 ¢1iz-9PI 
xdt~lim K 11q1

! I: ¢]i2 -<j>p =0, where 1/P+l/q=l with l~p~m. Therefore </)=9~ 
.V~oo n=l I :p co Xl 

=~P' a.e. in ( -oo, oo), where l~p~m, and we have ~~=~I: ~:;~~;z= I: tl</;1;z=d>(J.) 
n=l n=J 

by interchanging the summation and the integral. Consequently, we have n!lz= 

[1-~)A(J.)]&(A) and OzE n Lf-co,co)• 
p=l 

Now, we shall show that u(t)=O for t<O. Since u(t)=ul(t)+uz(t)ELl-·~.·J'>' 

we have 

( 2) ~o ·c (j(t)e Iu dt+ ~o, (J(t)e ii.t dt = TJ~1~x)· 

On the other hand, G(s) is analytic in Re s>O, continuous and bounded in 
l+G(s) 

Re s ~0 by the assumption. Define L1(s) and Lz(s) by 

G(s) 
l+G(s) 

~: ij(t)e-st dt, 

Re s~O. 

Re s~O; 

Obviously, L1(s) is bounded and continuous in Re s~O and analytic in Re s>O; 
Lz(s) is bounded and continuous in Re s~O and analytic in Re s<O. Moreover, 

from (2), we have L1(s)=L2(s) on Re s=O. Hence L1(s) and Lz(s) are analytic con­

tinuations of each other and they reduce to a constant. Since lim [Lz(s)[ =0 by 
lsl·-•o. 

the Riemann-Lebesgue lemma, this constant must be 0. This implies 

and 

G(s) 

l+G(s) 
~ 0 • g(t)e st dt, Re s~O, 
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~~co g(t)e-st dt=O, Re s<O. 

Thus, we have g(t)=O, a.e. t, tE( -oo, 0) and the theorem is established. 

. 1 G(iJ.) 
REMARK 1. Note that smce 1+cG(iJ.) = 1- 1+cG(iJ.) for any .I.E( -oo, oo), 

Theorem 1 also states the existence of (o+cg)- 1 in SD~m· Actually, if gEL~Rl then 

(o+cg)- 1 can be written by (o+cg)- 1=o+g where g= -tr-1
{ 1 ~~b~}J.)} EL~m· 

3-2. Extension of the Result to a General Case 

Next we shall show the conditions for existence of (o+cg)- 1 in SD~m when g 
belongs to ~~ and n ~ 1. 

Theorem 2. Let g be in ~~~- Suppose that g satisfies one of the following 
two conditions for some nonzero constant c; 

( 3) IB{o+cg}l ;t:O, in Re s~O when ao=O, 

(4) IB{oC1)+coc1)*g}l;t:O, in Res~O when a0 ;t=O. 

Then the following results hold. 

(A) If n=1, ao;t=O, then there exists a function h zn L~m such that 

(B) If n = 1, ao = 0, then there exist a function h in L~m and a nonzero num­
ber d such that 

(C) If n~2, then there exists a function h in L~m such that 

Proof of (A). From the assumption ii), 11+cG(s)l is nonzero in Re s>O. De­
fine K 0 ( s) by 

1 
Ko(s)= 1+ca~+cao/s-+a;~-(s)' Re s>O. 

On the other hand we can define K1(s) and H(s) by 

Re s~O. 

where a~=cao, ai=1+ca1. Moreover, we may assume ai;t:O without any loss of 
generality. The assumption ii) of this lemma implies that H(s) and K1(s) are con­
tinuous in Re s~O and regular in Re s>O. 

We shall show next that H(s)=lf(a+iJ.) belongs to the Hardy class H 2 for 
a >0. Since g1(t) belongs to L~Rl• we see that for any c >0, there exists a constant 
M such that IG(s)l <c for any s with lsi >M Setting c safficiently small, we can 
choose 1\1 which satisfies the following two conditions for any s with Js\ >M; 

43 



lliRONAO KA \VASI!ll\IA 

and 

We, thus, have 

( 5) 

Let l' be the bounded closed region defined by F={s; lsl~i\1, Res~O}, where 1\1 
is the constant defined previously. Then, from the continuity of H(s), we have 
IH(s)! ~No in r. Therefore, in Re s~O, we get 

( 6) 

where N1=max {No, NjM}. Now, from (5) and (6) we see 

c= IH(a+iJ.)I 2 dJ.= \ IH(a+iJ.)I 2 dJ.+ \ IH(a+iJ.)!ZdJ. 
J J[.l['(.M J[-l[.M 

for any a~O. This implies that JI(s) belongs to H 2 in Re s>O. From the known 
theorem (YOSHIDA 1965, p. 163) there exists a function fl (iJ.) in L~-oo,oo) satisfying 
the following condtions. 

i) H(iJ.)=l.i.m. H(a+iJ.), 
a-->0+ 

ii) the inverse Fourier transform h(t) of H(iJ.) is in L7m and 53h(t) =H(s) in 
Res>O, 

iii) H(iJ.)=limH(a+iJ.), a.a. J.. 
q-tQ+ 

Since H(a+iJ.) is continuous in a~O, we have H(iJ.)=H(iJ.), a.a. J.. Therefore, the 

inverse Fourier transform h(t) of H(iJ.) = ~-- - --
1

- - - - belongs to L~m and 5Yz 
a~ +ai(iJ.) + c(iJ.)G1(iJ.) 

=ll(s) in Re s>O. Define k 1 by k 1 =o<1)*h. Then, k 1 belongs to SD~m and Laplace 
transformable. We, thus, have 

53{ki} =sH(s), Re s>O. 

Since K1(s)=K0(s) in Re s>O, we obtain 

{1 + cG(s)}KI(s)= {1 +cG(s)}Ko(s) = 1, Re s>O. 

This implies 

Re s>O, 
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and by the uniqueness theorem of the Laplace transformation, we get 

where h(t)EL~m and fiih=- 1 - , . ~-- -:--- .--, and part (A) is proved. 
ao+a~(zJ.) +c(zJ.)G1(zJ.) 

(B) is a direct consequence of Theorem 1. See also Remark 1 of Theorem 1. 

Proof of (C). We only deal with the case in which a 0 ::;t:O. The case in which 
ao=O can be treated m a similar way. 

Define !10 ( s) by 

1 
Ilo(s) = ----- - -, 

1+cG(s) 
Re s>O, 

and define H(s) by 

( 7) H(s)= n 
s 

Re s~O, 
I; a£sk +csG1(s) 

k -~o 

where a~=cao, a~=1+caJ, ai=cai for 2~i~n. Following the procedure given in 
the proof of (A), we may show that there exists a constant Jvl such that for any 
s with lsi >111, the following inequality holds. 

I H(s) I ~ __ _£_ - 1 - ~ _!!___ 
""" Ia~ I lsln-1 """ Mn-1. 

Since H(s) is continuous in Re s~O, we can verify that H(s) belongs to H 2 in 
a >0. Therefore, the inverse Fourier transform lz(t) of H(iJ.) belongs to nm and 
53/z=H(s)=Ho(s) in Re s>O. Consequently, we have 

(iJ.) 
where hEL~Rl and fih= n • This completes the proof of part (C). 

I; a£(iJ.)k + c(iJ.)G1(iJ.) 
h:=O 

What we have shown in Theorem 2 is that if g satisfies the condition of 
Theorem 2 then an inverse convolution operator of (r}+cg) exists and unique in 
SD~RJ· Furthermore, this inverse has one of the three forms indicated in Theorem 
2. We shall write this inverse by (r}+cu) 1

• 

A direct consequence of Theorem 2 is 

Corollary 2-1. Let g be in '3:~~ and satisfy either (3) or ( 4) of Theorerem 2. 
Then the following results hold. 

i) lf n=1, ao=FO, then there exist a nonzero number d and a function h in 
L~Rl such that 

(D + cg) ___ 1*g =dr'J +r)C 1 )*h. 

ii) If n= 1, ao =0, a1 ::;t=O, then there exist a nonzero number d and a function 
h in Lim such that 
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iii) If n= 1, ao=O, a1 =0, then there exists a function h in L)R) such that 

iv) If n~2, then there exist a nonzero number d m,·(! a function h in L~m 
such that 

Proof. If n~2 and ao=O, then we rewrite ~{(a+ca) 1*g} m the following 
form and apply Theorem 2 (C). 

\Vhen n = 1 and au= 0, a 1 :;t 0, we may assume 1 +a 1 c :;t 0, without any loss of gene­
rality. Hence, we have 

1 a1 1 G1(iJ.) 
~{(D+ca) *a}=-------------

1+ca1 c(1+ca1) 1+G1(i/.) 

where G1(iA) = (c/1 +ca1)G1(iJ.). By Theorem 1, we see that there exists a function 
1 c1(i;.) 

h in Llm such that fjh (1 ) -,.------ . When n= 1, a1 =0, ao=O, then the 
c +ca1 1+G1(iJ.) 

corollary obviously holds from Theorem 2 (B). Now, when n~2 and ao:;t=O, the 

relation (7) of Lemma 2 (C) states that the Fourier transform of h is given by 

Therefore, if u is defined as in the case (i) or (iv) with ao:;t=O, then we may as­

sume that (r)+cg)- 1 has the representation (r3+cg)· 1 =o<1)*q, where q(t)EL~m and 
1 

'i[Jq = n , n;,): 1. Since the convolution r)< 1)*q*L is associative and 
L:: a~(iJ.)k + c(iJ.)GI(ii.) 

k=O 

commutative operation in SD;RJ• we have 

n 

(D+cg)- 1*g= L:: ak,J<k)*q+iJ0 )*q*g1 (n~ 1). 
k=O 

Noting that q(t)EL~w and g1(t)ELlw, from (1) we have 

n 

L:: ak(ii.)h" + (iJ.)G1(i/.) 
( 8) kccQ 

n 

L:: a~(iJ.)k + c(ii.)GJ (iJ.) 
k~-o 

Recalling the definitions of a~, O~i~n, (8) can be rewritten by 

fj((r] + CQ) n~l. 
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If we define h by h=-l-~ 1
[ n . ii. .. --~]when n?;;2, au¢0 and h= 

c L: a~(zJ.)h' + c(zA)G1(zJ.) 
k=O 

- ~ iJ-t ar+(12)[a~.f.cc-1(1J:)LJ when n= 1. au=FO, then we obtain the statement of 

this corollary. 
The proof of Corollary 2-1 shows that the corollary can be restated as in 

the following. 

Corollary 2-2. Let g be in 'l~, and satisfy either (3) or (4) of Theorem 2. 
Then () is given by 

~ 1 {~ (~ ) 11 g=- o- o+cg 1• 
c 

4. Integrability 

The functions that belong to the class L~m n L~m are easy to handle. This 
is because; i) the Fourier transform of a function in L)m n L~m is continuous, 
bounded and satisfies the Parceval relation, ii) the Laplace transform exists in 
Re s>O. Since ~() and ~(o+cg)- 1 are bounded, continuous and both (j and (a+ca) 1 

are Laplace transformable, it is natural to study the conditions which assure the 
existence of h and h in L)m n L~w· 

First we shall show 

Theorem 3. Let u be in 'l~ and satisfy either (3) or (4) of Theorem 2. If u1(t) 

l L L . cao 0 I I . be ongs to lm n 7m and satzsfies -
1
-->0 when ao* , t zen t zere exzst a func-
+cal 

tion !zELlm nL7m and a constant d=FO such that 

(r'5+ca)- 1 =dr5+h. 

Proof. If ao=O, then Theorem 3 is a special case of Theorem 1. Therefore, 

we only deal with the case in which a 0 *0. 
cao 

From the assumption b = -
1
--> 0, we have 
+cat 

. s 
H(s) = ~-·-~----·------;--

cao +(1 + ca1)s+ csCJ1(s) 

_ ~s 1 _ 
- s+b 

1 
rsG1(s) ' +-­s+b 

1 
where r;= 1+ca

1
, ·/=c~. 

s 
The inverse Laplace transform of is given by 

s+b 

Thus, we have 
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53 I{_rsGJ(s~}=··(, +··k*(/ =k s+b I· I / , I 

and fi belongs to Llm n L7m· From Theorem 1, there exist a nonzero constant d 4.::-0 
and a function h in Limn Lzm such that 

Consequently, we obtain 

- ~ 1 S3{dr1+h}=-- -- -
rsG1(s) ' 

1+--­
s+b 

so that the proof of the theorem is complete. 

Re s~O. 

REMARK 2. Note that the assumption f/J EL)m n Dm can not be replaced by 
the condition g1 EL}m in Theorem 3. 

When n~2, we already know from Theorem 2 that h belongs to L~m· There­
fore, the problem is reduced to the following; given a function h in L7m whose 
Fourier transform is bounded and continuous, find the condition for h to be in 
Llm· The known results to this problem have difficulties in applying to our cases 
unless g1(t) is restricted to a special cla8s of functions. (HILL, TAMARKIN, 1933) 
Instead, we shall show 

Theorem 4. Let g be in 'it~, and n~2. Suppose that g satisfies one of the 
following two conditions for some nonzero constant c; 

(9) IS3{a+cg}[=F0 and [BL~~a~r)Ck-l)}!*o, 
in Re s~O when ao=O, 

(10) [S3{aCl)+cac 1)*g}!=tO and fS3{,f0 a~ock)}/=to, 
in Res>O z,chen a0 =t0, 

where a~=cao, a;=1+ca], a~=cai (i=2, 3, ... , n). T/zen, there exists a function h in 

n Lfm sue h that 

(i3+cg)- 1 =h. 

Proof. We only show the result when a0 :i=0. Define H(s) by 

ll(s)=- .,-­
s 

Re s~O . 
.6 a~.s" + csG1(s) 

k--0 

Obviously, H(s) is continuous in Re s~O, analytic in Re s>O and satisfies li(s)= 

1 + :G(.i) in Re s > 0. Since I ~~o a~sk / :f 0 in Re s ~ 0, we have 

1 
ll(s)=Q(s) 1+cQ(s)G

1
(s)' 

where 



Iuversien of Convolution Operators 

Noting that n";?::2 and by the partial fraction expansion, we get 

n mi 1 
Q(s) = ,L.: ,L.: Ai.i (s-b·)m·-.i 11 ' 

t=l J~l t t 
(i:; mi=n) 

t=l 

and 

q(t)= i:; ~ aijli- 11 (t)e 0
i
1

• 

i=lj=J 

SinceRe bi<O for i=1, 2, ···, r, q(t) belongs to Lfm, where 1~p<oo. This implies 

that cq*g1 belongs to Lfw, 1~p<oo, by Hausdorff-Young inequality and 2{cq*g1}= 
csG1(s) 

Since 11+cQ(s)G1(s)I=FO in Re s";?::O, there exists a function k in Lfm, n 

,L.: a~sk 
k=O A 1 
1~p<oo, such that 2{(1+k}= 

1
+cQ(s)G

1
(s) Hence, we have H(s)=5J{q*(a+k)} in 

Re s";?::O. This completes the proof of Theorem 4. 

REMARK 3. We note that condition 
1 

cao >0 in Theorem 2 is equivalent to 

ll]Lt, a;.J"') I *0, in Re s;;>O and 1 +ca, *0.~~~~ also Corollary 2-2 of KAWASHIMA, 

1973-a) 

5. Differentiability and Support of the Operator 

In this section we shall mainly examine the problem of the differentiability 
of the operator (o+cg)-- 1. For this aim we introduce some notations and concepts 
related to the Sobolev Space S£l£z. 

Let S£l£z denote the set of distribution k such that all derivatives in the sense 
of distributions of order ~m of k belong to Lz-oo,oo)· S£l£z is normed by 

where II· II denotes the L 2 norm. With this norm S£l£z becomes a Hilbert space. 
Let ~m be the class of functions k such that all derivatives (in the ordinary 

sense) of order ~m of k exist and are bounded and continuous. The Space 
~m is equipped with the norm 

m I dik(x) I 

lk(x)lm= ~ sup -d ,i I· 
t=O xERl X 

Obviously, ~m becomes a Banach space with this norm. 
The following lemma is well known. 

Lemma 5. Let k be in S£l£z. Then k belongs to ~m- 1 and its norm satisfies 
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lk(:e) lm-1 ~ cllkllm.L2· 

Proof. See TREVES 1967, p. 331. 

Lemma 5 tells us that a distribution in Cflr;'_2 can be identified with the func­
tion having bounded and continuous derivatives up to the order m-1. 

By a direct application of Lemma 5, we have 

Theorem 5. Suppose g in st~, n~2. satisfies either (9) or (10) of Theorem 4. 
ca 

And suppose -
1 

- 0 ->0 when n=1, a0 ::;t0 and 1+ca1=F0 when n=1, ao=O. lf 
+ca1 

gl(t)EL~m has derivatives Q1(j)(t) up to the order m and QlC.il(t)EL~m• 1~j~m, then 

the following results hold. 

(A) lf n= 1, then there exist a real number d and a function h in ~m- 2 

such that 

(B) lf n~2, then there exists a function h in ~2 cn- 2 ) m such that 

(r1+cti)- 1 =h. 

Proof of (A). If ao=O, then from Theorem 2-B, we have 

~{(" )_1}- 1 [ 1 eG1(iJ.) l-91::{d" 1} u o+cg --1-- - 1 G (.) -u- o+tz, 
+ca1 +e 1 zJ. . 

1 
where e=--- provided that 1+cal=F0. Since giil(t)EL\m, 1~j~m, the Fourier 

1+cai 
transform of gl satisfies the inequality 

for all J.. Therefore, for any j we obtain 

1

1 ~m-j 
~M2 --x- . 

This shows that r)CJ)*h can be identified with a function in L~m for 1~j~m-l. 
Thus, we have heSDT_~~)· 

Now if ao=FO, then we define two auxiliary functions defined by 

s 
L(s)= , 

(1 +ca1)s+cao +csG1(s) 
in Re s~O, 

and 

K(s)= s = .. _1 (1- _b_) 
(1+cal)s+cao 1+cal s+b ' 

Re s~O, 

where b=-
1 

cao >0 by the assumption. Then we have, in Re s>O, the equality 
+ca1 
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1 
L(s) and 

1+cG(s) 

1 
L(s) =K(s) 1 +cK(s)G

1
(s) K(s)[l- K(s)], Re s;::O, 

~ cK(s)G1(s) 
where K(s)= l+cK(s)G

1
(s). By Theorem 3, we see that the Laplace transform 

H(s) of h is given by 

(11) 
b ~ b ~ 

H(s)=---K(s)----- -K(s), 
s+b s+b 

Re s;::O. 

Now, from the definitions of K(i2) and G1(iJ-), we have IK(s)l = [ 1 +c~~;b1 (iJ-) I~ 
M1 for all 2. Therefore, for any j 

(12) m{acJ)*k}I~Ml[(iJ-)iGl(i2)[~Mzl[ ~ ~m-J' 

where k is the inverse Fourier transform of K(il.). If j~m-1 then ()C.i)*k can be 

identified with a function in L~m· Thus, we see that k belongs to SDT2Ch Define 
~ ~ { b ~ } k(t) by k(t)=ij- 1 b+iJ- K(iA) . Then, we have 

(13) lfJ{r)CJ)*k(t}l~bi(iJ-)i-lK(i2)l~bMzl ~ ~m-j 
1 

From (11), (12) and (13) we see that h(t) belongs to SD22C}v. 

Proof of (B). We only deal with the case in which ao::f=O. The proof for the 
case in which a0 =0 follows in a similar fashion. Define L(s) by 

and define K( s) by 

s L(s)=--n----------------, 
~ a£sk+csGl(s) 

k=l 

in Re s;::O, 

in Re s;::O. 

1 
Then we have L(s), in Re s>O and 

l+cG(s) 

L(s)=K(s)-1+c~s)G(s) K(s{ l- l:~k~~b~s)} 
From the definitions of K(i2) we get 

I 
(i2)zi-3+JK. z(i2)G(i2) ~~ l_!_lzi-atm-J 

l+cK(i2)G(i2) ..._,M 2 I ' 

in Re s;::O. 

Noting that K(i2) is the Fourier transform of an infinitely differentiable function, 

above inequalities imply that h = tr- 1{L(i2)} = ty- 1 
{ 1 + c~(iJ-) } belongs to c~Y22 3 +m, as 
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was asserted. 
Combining the results of Corollary 2-2 and Theorem 5 we have 

Lemma 6. If g in '3::~ satisfies the conditions of Theorem 5 and gJ(t)EL~R) has 
derivatives giil(t) up to the order m and giil(t)EL~m· 1<,j<,m, then the following 
results hold. 

(A) If n= 1, then there exist a real number d and a function h in ssrn-z such 
that 

(B) If n-;;::2, then there exist a nonzero number d and a function h in sszcn- 2
) 'm 

such that 

It is well known that if H(s) is an entire function and of exponential type, 
then its boundary function H(iJ..) is the Fourier transform of a function with 
bounded support. The converse is also true. According to the representation in 
Corollary 2-1 it is natural to study the condition which assures boundedness of 
the support of h(t). Howeverr, we do not have an affirmative or even a negative 
answer to this problem. 
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