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ABSTRACT

In this paper we shall investigate whether certain convolution operators related to
feedback systems are invertible in some space of functions or distributions. The pro-
perties such as integrability and differentiability of the inverse are discussed.

1. Introduction

Consider a linear feedback system shown in Fig. 1, where ¢ is a convolution
operator defined by an integrable function over (0, o). The equations governing
the system are

y(t) = g*a‘(l‘), t>07

t
where g*o(l‘)=S gt —2)a(z)dz, ¢20. If (6+¢) is invertible in some class of distri-
0

tions, then the equations

D)

Fig. 1. A Linear Feedback System.
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Fig. 2. A Nonlinear Feedback System.

()= +g) %), t>0,
y@)=gx(0+9) '), =0,

are meaningful. The system shown in Fig. 2 is called a nonlinear feedback
system where f is a memoryless nonlinear function and ¢ is the same as in the
linear case. The system equation is given by

a®)=lt)—gxf(o)(t),  £=0.

If f satisfies a certain slop condition and if (84c¢g)~' exists in some class of func-
tions or distributions, then we have

o) =(0+cq) (B — (6+cg) xgxf(o)t), >0,

where f is defined by f(o)=f(0)—co. [See KawasHIMA, 1973-a]

These examples show that the investigation of conditions for the existence of
the operators (§+cg)! and (6+cg) '*¢g are basic problems in the analysis of feedback
systems. Note that if the operator (6+cg) 'xg exists, then we have g¢gx(6+cg)'=
(0+cg)'xg. This shows that we only need to study the properties of (6+cg)'#g,
since g*(d+¢)~! is a special case.

On the other hand, suppose that ¢ is the impulse response of a linear constant
coefficient differential equation, that is g(f)= Y, i]aijtf“e"bi‘, t>0, Reb;>0 and

r i=1j=1
>imy=n. In this case the existence of (6+cg)™! and (6+cg)~'*g is obvious. This

i=1
can be easily shown, since the Laplace transform of ¢ becomes a rational function
of s and the method of partial fraction expansion can be used. Moreover, (6+cg) '*g

can be written as (6+cg) 'xg= i %aéjtf‘le‘b’i‘, t>0 and i}m{zn. With an addi-
tional restriction on g, we maylazllsélzllme that the real partsl :(;f b; are non-negative.
Then the functions of the form i%agjﬂ*‘e*”’i‘ have the following properties;

1) infinitely differentiable, o

ii) belong to L% ., where 1< p<co,

iii) their supports are not bounded in (0, co).

A question now arises: What can we say about (6+cg)~! and (0+cg)~'xg if we
can not assume that ¢ is the impulse response of a differential equation? In this
paper we shall deal with this problem in a more general setting in which ¢ in-
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Inversion of Convolution Operators

volves, in addition, the delta functional, derivatives of the delta functional and
Heaviside unit step function. We first show an existence condition for the operators
(04cg)™ and (0+cg)"**g in a certain class of distributions. Next, we shall examine
the properties of these operators such as differentiability, integrability and un-
boundedness over (0, o) of the support. The problems cited above are not only
interesting in itself but also the solutions to the problems become a powerful tool
in the analysis of nonlinear systems. For example see Kawasuima (1973-a,b)
and also Hortzman (1971), WiLLeEMs (1971), ZamEis (1964, 1966-a, b) and SANDBERG
(1964).

In §2 we shall give notations and definitions used in this paper. §3 is de-
voted to show the existence of (6+cg)~' which gives as a special case the result
of PALEY and WIENER (1934). In §4 the integrability conditons are studied and
in §5 differentiability and unboundedness of the support are handled.

2. General Preliminaries

This preliminary section gives a brief sketch of Fourier and Laplace trans-
forms for distributions and its related topics. [ZEMANIAN, 1965]

The spaces L%, 1< p<oo, consist of all Lebesgue measurable functions k(-)
which vanish for negative arguments with the property that

1|kt|pz{8:|k<t>ipdt}”" <co.

The spaces L2, ., on the real axis (—oo, co) are similary defined. A Lebesgue
measurable function is said to be of class L? ey, 1< p<co, if it vanishes on
negative arguments and satisfies

ST]ka)ideoo,

for any finite 7.

The space of testing functions of bounded supports is denoted by ® and its
dual space is denoted by ®’. Furthermore, we let D, be the space of distribu-
tions whose supports are contained in the non-negative real axis. The space of test
ing functions of rapid descent is written by & and its dual space is written by &’.

The Fourier transform of k€&’ is denoted by

<%k! (13>: <k: %(/)>v 9’)6@-

If k(tyeLl-...,, then the ordinary Fourier transform K(i2) of k() exists and {k, ¢)
=(K(@2), ¢> for any ¢e@. If k()eLi .., then the limit in the mean Fourier
transform K(i2) of k(t) exists and (Fk, ¢>=<K(i2), ¢) for any ¢e€&. In both cases
we may identify §k with K(i1). Moreover, the Fourier transforms of the delta
functional and its derivatives are given by

%5(7141):(2'2)n~1’ 7121.
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If % belongs to D and if e 'k(#)e&’ for o>¢’, then the Laplace transform of
k(t) is given by

K(s)=Rk=Fle "k(t)}, o>d', s=a+id
K(s) is an analytic function in its region of convergence Res>¢’. The Laplace
transforms of the delta functional and its derivatives are given by

QWrb=g1 nx1, —oco<Res<co,

Let kx/ denote the convolution of distributions % and / whenever the convolution
is defined. Let # be a distribution with the representation

u(t)= Z 0WDxki(t), kRit)ELP . o 0<n<co
=
and let » be a distribution with the representation
v(t)= Z ODx[i(t), L(B)eLl o, 0<m<oo,
o

where (1/p)+(1/p’)—1>0. Then, it can be shown that the covolution u+v is well
defined and belongs to &’. Moreover, the Fourier transform of #*v is given by

(1) Fluewo] = FlulFo] = Z (2 K (i) Z (i2)/L(i0),

where K;(i2) and L,(i2) are the Fourier transform of functions k;(¢) and /;(#) re-
spectively. (SCHWARTZ, 1966, p. 270)

3. Existence of (+cg)* in Dip,

3-1. A Theorem Related to the Result of Paley and Wiener

Let 3/, be a class of distributions such that

o= 3 G O@) +al, O+ n@), (1<n<oo)
k=1

where

i) ¢.() is a real-valued function in Lig,,

ii) @ is a real constant and a,+0,

iii) 6®() is the k-th derivative of the delta functional,

iv) 1.(¢) is the Heaviside unit step function.

PaLey and WIENER (1934) first showed the existence of (5+cg¢)™! in Dy when
g)=g:(t). We shall show their result in a slightly generalized form.

Theorem 1. Let ¢(t) be in ﬂ LPq, where 1<m<co. If the Laplace transform

G(s) of ¢ satisfies {1+CG(S)|=#0 m Re s>0, then theve exists a function §{i) in
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Inversion of Convolution Operators

G(i2)

m » A . .
leLm) such that G(M)_%g——l—FCG(il)'

Proof. We may assume c¢=1 without any loss of generality. Define the func-
tion @4(2) by

1, [a<4;
pa=1 21, Acin<za;
0, |2>24;

and put
GG =g aNGCED)+ 1 —ga())G (@A)

=G0 +G.A).

We first show that there exists a function ¢,(¢) in N LP. ., such that GG =5

~ =1
Now, from the definitions of G,(i2) and ¢4(4), we hzfve

640G

A e A<2A;
Cuin= | dmmnrcam: S

0, |21 =2A.

Since ¢24(4) belongs to Li_.., the inverse Fourier transform exists and g '¢4(A)=

l{ C‘—’S“; A;OSAAt } =poa(t)eLt....,. From the assumptions, gsa(A)(1+G@ED) is
never zero for i1e[—2A, 2A]. Thus, there exists a function ¢ in L} ., such that

e

its Fourier transform Q(i2) has the property

1

Gaircay:  AelmeA Al

Qi) =

[WIENER, 1958, p. 91]. Therefore, we have él(i1)=%{q*p4*g} and gxpaxge N LYo, o,
=1

by the Hausdorff-Young inequality. ?
On the other hand G,(iA) can be written by

GUENL—¢4,2(2)]
~ 1"‘ ) ] N b
Guin= | 1IN — g ()
0, 4| < A.

A=A

Letting A sufficiently large, we have |GU)[1—¢.4.2(2)]| <1, for all 2e(—oo, 00), from
the Riemann-Lebesgue lemma. Hence, we get

Colid) =11— 64D,
where 602 i DG —gan)]". From the denitions of ¢, and G(id),

we have

P(1)= Z( DMF(—Pa)*= Z TlParh

n=1
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where %, =¢a%da,2 %, (a convolution of n distributions) and F{—a.}=

Flo—0xpa, o} =GNl — 6 4,2(D)]. Obviously, ¢, belongs to N LY ., Therefore, we
p=1 L.

have [|¢%5/1s <ll¢a2ll" and [|¢4ll,<Il¢3 " |lp Izl for 1<p<m. This implies that

&%, belongs to N LY., for any #>0. Moreover, after some calculations we have

p=1
lanllp<2lg—Fallp+llg—Fazllp,  1<p<m,
where F“‘(t)—ﬁgf g(t++< ){smé /2} dt. Since the Fejér integral Fu() con-

verges to ¢ in L? norm (1< p<m), we have |j¢al],<1 for sufficiently large A.
Thus the series ZUM converges in LP norm (1<p<m). Since L<_m « 18 com-

plete, there ex1sts a function ¢, in Lf. ., 1<p<m, such that lim ng:%, in
N oo n 1

L7 Next we shall show that there exists a common function ¢ in ﬂ LY. ., such

that l1m Zsl’w—‘/’ in L norm (1<p<m). This can be easily Shown since for

N- n=1
any compact set K in R', we have lxmg lZwaz o1 dt 0 and 11mS Zg)ﬁ/z—r/)p
N N Kin=
><dt<11mK“‘1“Z<,)A,z =0, where 1/p+1/q 1 with 1< p<m. Therefore =6

N—oo

=¢p a.e. in (—oo, co), Whére 1< p<m, and we have Fop=F me Z%g),m—@())
by interchanging the summation and the integral. Consequently, we lhave Tga=
[L—gu@1B() and gue N L.

Now, we shall ggcl)w that ¢(f)=0 for ¢t<0. Since gO)=¢,(t)+g.(t)el! .. .,
we have

. gt g\ gt g GUA
(2) S"Ng([)e dt+50_q(t)e di=-1 ] i

G(s)
On the other hand, 176G

Re s>0 by the assumption. Define L,(s) and L,(s) by

G(s)
1+G(s)

is analytic in Res>0, continuous and bounded in

Li(s)= — Swg(t)e"“ dt, Re s>0;
0

0
Ly(s)= S (e s dt, Re s<0.

Obviously, Li(s) is bounded and continuous in Res>0 and analytic in Res>0;
Ly(s) is bounded and continuous in Res<0 and analytic in Re s<0. Moreover,
from (2), we have L,(s)=Ls(s) on Res=0. Hence L,(s) and L,(s) are analytic con-
tinuations of each other and they reduce to a constant. Since lim|L,(s)]=0 by
the Riemann-Lebesgue lemma, this constant must be 0. This xmél‘les
%:S;’gmww, Re 530,

and
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0
S de*dt=0, Re s<0.
Thus, we have §(¢)=0, a.e. ¢, te(—oo, 0) and the theorem is established.

. 1 Gw
ReEMARK 1. Note that since 1+cG(i2)_1 1+¢GG)

Theorem 1 also states the existence of (3+cg)™! in Diy. Actually, if geLlp then
cG@iA) } .

for any 2€(—oo, oo),

(R)*

(6+cg)™! can be written by (6+c¢g)~'=0+¢ where g:_%_l{l+cG(z’A)

3-2. Extension of the Result to a General Case

Next we shall show the conditions for existence of (64+cg¢)"' in Dz when ¢
belongs to 2, and n>1.

Theorem 2. Let ¢ be in X,. Suppose that ¢ satisfies one of the following
two conditions for some nonzero constant c;

(3) |8{6+cg}#0, in Res=0 when a,=0,
(4) oD +coDxg}|#0, in Res=0 when ay+#0.
Then the following results hold.
(A) If n=1, ay#0, then there exists a function h in Lip such that

(64 cg)x(6 D *xh)=a.
(B) If n=1, ay=0, then there exist a function h in Lip and a nonzero num-

ber d such that
(04 cg)*x(do+h)=4.

(C) If n=2, then there exists a function h in Ly, such that
(6+cg)xh=06.

Proof of (A). From the assumption ii), |1+¢G(s)| is nonzero in Res>0. De-
fine Ky(s) by
1
Bi= 1 ¢ cantcajsreysy  Res>O

On the other hand we can define K,(s) and H(s) by

N

RS = s osGis)

=sH(s), Res=0,

where a,=ca,, a,=1+ca,. Moreover, we may assume «@;+0 without any loss of
generality. The assumption ii) of this lemma implies that H(s) and K,(s) are con-
tinuous in Re s>0 and regular in Re s>0.

We shall show next that H(s)=H(s+i2) belongs to the Hardy class H? for
a>0. Since ¢,(¢) belongs to Lig, we see that for any >0, there exists a constant
M such that [G(s)|<e for any s with |s|>M. Setting ¢ safficiently small, we can
choose M which satisfies the following two conditions for any s with |s|>M;
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[sai+aq] =2e[c]]|s!
and

We, thus, have

| 1 1
e P
|(s)] lsa(+ag+cs(}l(s) |sali+al]—elcls]
L2 4
|3(li+ao} ‘(ll' Is]
(5) <NIT11 —]\L

Let /" be the bounded closed region defined by /I'={s; |s|<M, Res>0}, where M
is the constant defined previously. Then, from the continuity of H(s), we have
|H(s)I< N, in I". Therefore, in Res>0, we get

(6) |H(s)|< Ny,
where Ny=max {N,, N/M}. Now, from (5) and (6) we see

Sw |H(o+i1)|2d,lzg lH(o—f—i,%)PdHS \H{g+i)|? d2
oo | 12 .M

</

j < oo,

<2N§M+S dZ<2NZM+g

Z
KR 410 -I- aem A%

for any ¢>0. This implies that H(s) belongs to A* in Res>0. From the known
theorem (YosHipa 1965, p. 163) there exists a function H(i2) in L: ..., satisfying
the following condtions.

i) (z))—l i m H(o+12),

ii) the mverse Fourier transform A() of H(zl) is in L%, and Qh()= H(s) in
Re s>0,

ity H@)=lim H(o+i2), a.a.
o0 ~
Since H(s+i2) is continuous in ¢>0, we have H(i2)=H(i2), a.a. 2. Therefore, the

inverse Fourier transform 4(¢) of H(i2)= belongs to Lig and L4

ao—i—a’(u)Jrc(zl) 1(1/1)
=H(s) in Re s>0. Define &, by ki =0®*k. Then, k, belongs to ®/, and Laplace
transformable. We, thus, have

k) =sH(s), Re s>0.
Since K, (s)=Ky(s) in Re s>0, we obtain
{14+ cG(S)IKi(s)={1+cG()} K(s)=1, Re s>0.

This implies
Q6+ cg)xk,—a}=0, Re s>0,
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and by the uniqueness theorem of the Laplace transformation, we get

(64-cql*{6P*h} =0,

1
h ht» LZ d G/l =~ R e T
where hif)eLiw and 5k Q+alGid) +c(E)GL(ER)
(B) is a direct consequence of Theorem 1. See also Remark 1 of Theorem 1.

, and part (A) is proved.

Proof of (C). We only deal with the case in which @,#0. The case in which

a@,=0 can be treated in a similar way.
Define H,(s) by
1
[[0(‘5)—77174—7‘@(3")_ s Re 3>0,

and define H(s) by

(7) H(S): n s ) Res}O,

Do aist+esGy(s)
k=0

where a;=ca,, ¢i=1+ca,, a}=ca; for 2<i<n. Following the procedure given in
the proof of (A), we may show that there exists a constant M such that for any
s with |s|>M, the following inequality holds.
4 1 N

HS)|<-—+ —— <577

l (SN a/nl ‘S‘nﬂl Mu—l
Since H(s) is continuous in Res>0, we can verify that H(s) belongs to H* in
0>0. Therefore, the inverse Fourier transform /(¢) of H(iz) belongs to L, and
Lh=H(s)=H,(s) in Res>0. Consequently, we have

(0+cg)xh =0,

where heli, and Fh= , - @
20 @i+ c(iDGL(i2)
k=0

What we have shown in Theorem 2 is that if ¢ catisfies the condition of
Theorem 2 then an inverse convolution operator of (d+cg) exists and unique in
Dip. Furthermore, this inverse has one of the three forms indicated in Theorem
2. We shall write this inverse by (d+cg).

A direct consequence of Theorem 2 is

This completes the proof of part (C).

Covollary 2-1. Let ¢g be in T, and satisfy either (3) or (4) of Theorerem 2.
Then the following results hold.

D) If n=1, ay#0, then there exist a nonzero number d and a function h in
L, such that

(64 cg) txg=ds+oD .

i) If n=1, av=0, @,=0, then there exist a nonzero number d and a function
hoin Ly, such that

(64cq) *g=di+h.
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i) If n=1, ay=0, a,=0, then there exists a function h in L'y, such that
(64cq) xg=h.

V) If w22, then there exist a nonzero number d ard a function b in Lty
such that

(3+cq) xg=do+h.

Proof. If n=2 and «,=0, then we rewrite §{(@+cg) g} in the following
form and apply Theorem 2 (C).
TR £ 2NN ) PR §
So+cn) =1 m =T [1" 1 eGl }
When n=1 and «,=0, «¢,#0, we may assume 1-+«;c#0, without any loss of gene-
rality. Hence, we have

R U R Guiz)
Flo+cy) '*gl= Thea ~ cldea) 146,
where G~1(i2):(c/1+ca1)G1(iZ). By Theorem 1, we see that there exists a function
o __ 1 Gia) _ _ _
i in Lig such that §h= cAtea) 1+51(i2)' When n=1, ,=0, @,=0, then the
corollary obviously holds from Theorem 2(B). Now, when #>2 and a@,+0, the

relation (7) of Lemma 2 (C) states that the Fourier transform of 72 is given by

1

%/z:(in{é AL NGt .

Therefore, if ¢ is defined as in the case (i) or (iv) with «,#0, then we may as-
sume that (5+cg)~' has the representation (d+cg)'=0"xg, where ¢(¢)eL}, and

Fg="

w , n=1. Since the convolution 0% g1, is associative and
25 ar(iAe+c(i2)Gi(iz)
k=0

commutative operation in @, we have
(0+cg) txg= 2 ad®xqg+aDxgxg; (nz=1).
k=0

Noting that g(¢)elL?,, and ¢,(¢)eL},, from (1) we have

(8) Fo+cq) xgh= 0 :
2 ar(G0)F + ()G (i)
k=0
Recalling the definitions of @}, 0<i<n, (8 can be rewritten by
i

5 a;<iz)k+c(iz)cl<iz>J’

k=0

Bl(0+co) rgl= | 1— n>1.
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If we deﬁne ljl by h:_l’% 1 T "*'Z/\ e e When n>2, (lu—’rl—‘o and ;l:
¢ S QLA+ (GG (R)
k=0
1. 1 : '
‘?ﬁ"lbﬁ‘zzm;?@mf] when 7=1, @0, then we obtain the statement of

this corollary.
The proof of Corollary 2-1 shows that the corollary can be restated as in

the following.

Corollary 2-2. Let ¢ be in I and satisfy either (3) or (4) of Theorem 2.
Then ¢ is given by

0:%{5—(64—6{1) -1,

4. Integrability

The functions that belong to the class Ll N L%, are easy to handle. This
is because; i) the Fourier transform of a function in L!p N L%, is continuous,
bounded and satisfies the Parceval relation, ii) the Laplace transform exists in
Re s>0. Since ¢ and F(+cg)~* are bounded, continuous and both § and (6+cg)!
are Laplace transformable, it is natural to study the conditions which assure the
existence of 4 and % in Ll N L.

First we shall show

Theorem 3. Let g be in X and satisfy either (3) or (4) of Theorem 2. If g.(l)
ca,
1+Cal
tion heLlgp N L, and a constant d+0 such that

>0 when a.+0, then there exist a func-

belongs to Ll N Lig and satisfies

(B+cg)'=dé+h.

Proof. If a,=0, then Theorem 3 is a special case of Theorem 1. Therefore,
we only deal with the case in which «,#0.

. _ ca

From the assumption b= Trea, >0, we have

s
H(s)=

(s) cao+(1+cai)s+csGi(s)

A S

T s+b 78Gu(s)

14 2T/

+ s+b

7=cy. The inverse Laplace transform of ;_—T_—I; is given by

where 5= Trea

-1

¢ {515 —3()— by (e "M =a(t)+ kt).

Thus, we have
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o 1 [ 78Gis)

¥ 1{ s+b J:Tf/1+;'/%*yx:/3

and £ belongs to Liz N L. From Theorem 1, there exist a nonzero constant d 0
and a function A in Ll N L%, such that

Consequently, we obtain
L NH(s)) =o(di-+h+d R+ kxh)
so that the proof of the theorem is complete.

Remark 2. Note that the assumption ¢,€Ll, NL% can not be replaced by
the condition g,€L!, in Theorem 3.

When #>2, we already know from Theorem 2 that /2 belongs to L?z. There-
fore, the problem is reduced to the following; given a function % in L}z whose
Fourier transform is bounded and continuous, find the condition for % to be in
L'p. The known results to this problem have difficulties in applying to our cases
unless ¢,(¢) is restricted to a special class of functions. (HiLL, TAMARKIN, 1933)
Instead, we shall show

Theorem 4. Let g be in I, and n>2. Suppose that ¢ satisfies one of the
following two conditions for some nonzevo constant c

(9) 185 +cgll#0 and IS{ ia,@ﬁ(’c‘l)}lq&O,
' =1 I
in Re s=0 when a,=0,

(10) |6V +coD*g}l 0 and
in Res>0 when a,+0,

s{ 5 afp® ‘, |10,
k=0 !

where ay=cao, a/=1+ca,, a;,=ca; (1=2,3, -, n). Then, there exists a function h in
N LYy such that
p=1
O+cg) '=h.
Proof. We only show the result when «,#0. Define H(s) by

Hs)=-, . Res>0.

2 aist+csGy(s)
k=0

Obviously, H(s) is continuous in Res>0, analytic in Res>0 and satisfies H(s)=

1 n
S S s rskl£0 s=0, '
N in Res>0. Since L};}ap #0 in Res>0, we have
1
A= osa s
where

18
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Q)=
Z as®

Noting that #>2 and by the partial fraction expansion, we get

no omy 1 r
=4 B A e (Zme=n)

and
=3, a1 e

Since Re b;<0 for i=1, 2, ---, 7, q(¢) belongs to L?,, where 1<p<oo. This implies

that cg*g, belongs to L%, 1< p<co, by Hausdorff-Young inequality and L{cgxg:}=
csGl(s)

Z @s*
1
1< h —.
p< oo, such that Qo+k) = 17 Q6IG0)
Re s=0. This completes the proof of Theorem 4.

Since |1+¢Q(s)Gi(s)|=#0 in Res>0, there exists a function £ in L%,

Hence, we have H(s)=L{gx(5+£)} in

REMARK 3. We note that condition 1—T-dcoa >0 in Theorem 2 is equivalent to
1
Za 5“"1 +0, in Res>0 and 1+ca,#0. (See also Corollary 2-2 of KAWASHIMA,
19’73—a)

5. Differentiability and Support of the Operator

In this section we shall mainly examine the problem of the differentiability
of the operator (6+cg¢)~'. For this aim we introduce some notations and concepts
related to the Sobolev Space D7..

Let 7. denote the set of distribution % such that all derivatives in the sense
of distributions of order <m of k belong to L. ... ", is normed by

m 1/2
Hka,LzE(ZE) ||5<i>*kuz> :

where ||-|| denotes the L? norm. With this norm ®7. becomes a Hilbert space.
Let B™ be the class of functions £ such that all derivatives (in the ordinary

sense) of order <m of k exist and are bounded and continuous. The Space

B™ is equipped with the norm

dh(z) |

k(@)= 2, SUD | —5 \

1=0 T€ER!

Obviously, B™ becomes a Banach space with this norm.
The following lemma is well known.

Lemma 5. Let k be in ®%.. Then k belongs to B™ ' and its norm satisfies
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[k(w)‘m—1<(3“k”m,,‘z.

Proof. See Treves 1967, p. 331.

Lemma 5 tells us that a distribution in ©7. can be identified with the func-
tion having bounded and continuous derivatives up to the order m—1.
By a direct application of Lemma 5, we have

Theorem 5. Suppose g in T}, n=2. satisfies either (9) or (10) of Theovem 4.
And suppose —1—1%‘10—1>0 when n=1, ay#+0 and 1+ca,+0 when n=1, a,=0. If
g:1(t)e Lz, has derivatives q,(t) up to the ovder m and ¢, #)e€Liyn, 1<j<m, then
the following results hold.

(A) If n=1, then there exist a real number d and a function h in B

such that
(O+cg) =di+h.

(B) If n=2, then there exists a function h in B> " such that
(6+co)'=h.

Proof of (A). If a,=0, then from Theorem 2-B, we have

1 [ eG1(i2)

1+ca, 1+eG, (A)J Bldo+1l,

Flo+eg) =

provided that 1+ca,#0. Since ¢f(t)eL!n, 1<j<m, the Fourier

where e= !

1+ca,
transform of ¢, satlsﬁeq the inequality

. fm

[Gl(zx)|<M‘7

for all 2. Therefore, for any j we obtain

| (127G (i)
15eG.Ga)

m—j

IF 6D x| =

l 1+ca,

<M, 7

This shows that 6+ can be identified with a function in L%, for 1<j<m—1.
Thus, we have 2e®7s,.
Now if @,#0, then we define two auxiliary functions defined by

S

S . \ > ’
Lo (I+cays+cat+esGs)’ Res>0
and
s 1 b
= == e — >
K(s> (1+Cal)s—|—ca0 1+Ca1 <1 S‘l’b)’ Res 0,

where b:% >0 by the assumption. Then we have, in Re s>0, the equality
1
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1
TreGe 1O and
1 N
L<S)=K(S)m :K(S)[l—K(S)], Re 320,
cK(5)G\(s)

where K(s)= By Theorem 3, we see that the Laplace transform

1+cK(s)Gals)
H(s) of & is given by

a1 H(s)—4 K(s)— fL —K(s), Res>0.

cK(id)

Now, from the definitions of K(i2) and G,(i2), we have |K(s)|= m <
1

M, for all 2. Therefore, for any j

m-j

(12) IF{0D xE} < My [(G2)IG1(i2)| < M| %

»

where % is the inverse Fourier transform of K (62). If j<m—1 then 6% xk can be
identified with a function in L%,. Thus, we see that % belongs to ®jzi,. Define
k() by E)=5" [mK(zz)} Then, we have

(13) IO E (1) <b|(i2) R (i2)| <bMy %

lm——jl

From (11), (12) and (13) we see that A(f) belongs to D7sk,.

Proof of (B). We only deal with the case in which @,#0. The proof for the
case in which «,=0 follows in a similar fashion. Define L(s) by

S

L(s)=-————, in Res>0,
Z arst+csGy(s)
and define K(s) by
K(s)=A,i~fo', in Resz0.
>0 st
k=1
Then we have —LzL(s), in Re s>0 and

1+c¢G(s)

K(s )[ cK(s)G(s)

T3 cKG)G6) ], in Resz=0.

Lis)=Kls) 1+cK(s)G(s)
From the definitions of K(i1) we get

(G2 1K) G(iA)
1+cK(i2)G(iA)

1 \27. 3+m—j .
]\Ml , 2<isn, 1<j<m.

Noting that K(:2) is the Fourier transform of an infinitely differentiable function,

above inequalities imply that A=F H{L3E)}=F" 1{ } belongs to @4%:%™, as

1
1+¢GGA)
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was asserted.
Combining the results of Corollary 2-2 and Theorem 5 we have

Lemma 6. If g in T, satisfies the conditions of Theorem 5 and gi(t)eLg has
derivatives ¢’(t) up to the ovder m and ¢ @)eLly, 1<j<m, then the following
results hold.

(A) If n=1, then there exist a real number d and a function h in B2 such
that

(6+cg)‘*xg=do+h.

(B) If n=2, then there exist a nonzero number d and a function h in BEe-»im
such that

(6+cq)'xg=di+h.

It is well known that if H(s) is an entire function and of exponential type,
then its boundary function H(i2) is the Fourier transform of a function with
bounded support. The converse is also true. According to the representation in
Corollary 2-1 it is natural to study the condition which assures boundedness of
the support of 4(¢). Howeverr, we do not have an affirmative or even a negative
answer to this problem.
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