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ABSTRACT

Let X(¢) be a general linear process defined by T. Kawata (1972). In this paper the
law of large numbers for X(#)X(¢++) is studied.

1. Introduction

Let m(S) be a real valued signed measure on Borel sets, generated from a
function m(¢) of bounded variation over every finite interval. Let &(S)=&(S, ») be
a real valued random measure on Borel sets S with E[£(S)]?<oo for any bounded
Borel set such that,

(1) E£(S)=0.
Consider a set function F(S) with property that

(2) EE(S1)E(S)=F(S1NSy),

for any Borel sets Si, S..
We define a nondecreasing function F(2) by

F(s, )=Ft)—F(s), t>s.
For convenience, we modify the function F(1) and m(2) to be

FQ2) =%[F(2+0)+F(2—0)],

m(l):-*%[nz(l+0)+m(2—0)].
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Furthermore define

for any Borel set S.
Suppose that a(#) is a reai valued function such that

SﬁaZ(t—Z)dF(x) <o

Sﬂla<t~z>||dm<z>[<oo.

for any finite a, fla<p).
Then the stochastic integral

Sﬁa(t—l)ry(d,i )

can be defined in an ordinary way. (c.f. DooB (1953)).
Now if a stochastic process X(#)=X(t, w), —co<t<co, of the second order is
such that
S E
I

as a——oo, f—oco, for any finite interval I, then X(#) is called a general linear
process. This defined by T. Kawara (1972), (1973) who discussed mainly about
weak and strong laws of large numbers.

In this paper, we aim at studying the convergence properties of a sample
covariance function of the general linear process.

Sﬁa(t—z)r;(dz)—X(t)lzdt — 0,

2. Preliminaries

In order to treat the second order convergence properties of the sample
covariance of a general linear process X(#), we restrict X(#) to the process of
fourth order. Let us suppose X{(¢) is the fourth order general linear process such

a——co, B—oo, in which the random measure &(S) is E[£(S)]*<co for any bounded
Borel set. Furthermore we suppose the following conditions: there is a set func-
tion G(S) on Borel sets such that

(3) FE(S1)E(S2)E(S5)6(S,)
=G(SiNS:NS:;NSYH+ F(S1NS)F(SsNS)+F(SiNS)F(S:NSy)
+ F(S1NS)F(S: N Ss).

Sﬁa(t—z)f(d,l)—X(t) dt — 0,
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Then for a Borel set S we have
(3y ELESN =G(S)+3F(S)].

It can be shown that G(S) is s-additive, if E[&(S)]*<co, and &(S) is ¢-additive
in the fourth mean. We restrict ourselves to the case G(S)=0 so that we can
define the nondecreasing function G(1):

G([s, ) =G#)—G(s), t>s.
We modify the function G(2) as

G(Z)Z%[G(2+O)+G<X—O)].
For finite a, pla< f), suppose

Sﬁ a(t—NdG(2)< oo

a

and EX*(t)<co. Moreover suppose that X(#) is fourth mean continuous.

3. Convergence Properties of Sample Covariance Function (I)

Convergence properties of sample covariance functions, which we are going to
discuss, have close connections with the weak and strong laws of large numbers
of the second moment of X(#). These properties play important roles in the com-
munication theory. A special case of pulse train process was discussed by R.
Lucannang (1971).

Theorem 1.

Let X(¢#) be a general linear process of fourth order defined in 2. Suppose
that

Gt +2)—G(tH)=0(2) (3-1)
F(t+2)—F(t) =0 +0(1) (3-2)

for large |2| uniformly for —oo<t< oo, and that a(t) is bounded, squarely integr-
able, (which implies that a(¢#)eL?, p>2), absolutely continuous with a’(t)eL*(—oo, co)
and such that a(t)—0 as |t|—>oo. Then

1 (4 2
E{?A_S_AX("‘)X(HT)—EX(t)X(tJrr)]dt} — 50

as A— oo, uniformly for <.
Proof.

SA [X(OX(t+7)— EX(O)X(+7)] dt}z

1
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A A 8
= lim [(ZA)Z S‘Adz‘gﬂdsg at—)at +-—Da(s—Da(s+7—2)dG(2)

a

s S[i dt Si a’SSfj alt—a(s—A) dF(Z)Sﬂ a(t+z—pma(s+z—p)dF(u)

e S: dt S: ds Sﬁ at—-Da(s+z—)dFQ) Si alt+z—pa(s—y) dF(/:)]

@

= lim [[+]+L].

a——
B— oo

A
Setting the function f(z, Z):S a(s+r—A)a(s—2A)ds and by changing the order of
A

integration we have

r= i { @t au—pawre—nre nacw
1 A-d B
) e e 0d6w
1 —A—a PA-u 1 A—a A—v
+W8A*ﬂ S—A‘1L+Wgn4-agn
=hL+L+1; (3_4)

In 7, again changing the order of integration, we have

Sﬂ e DGR

4 8
= S ds S a(s+r—Da(s—2A)dG(2)

S" aw+2)a) de dG()
—A-p A—v

I

A-8r8 u+24 P A—v
+S S +S S (3-5)
u —A-u A—-8 —A-u
and hence
1 A4-8 u 3
Li=—5>r S a(u-+7)a(un)du S a(v+7)a(v)dy S dG(2)
(ZA) —-4-38 A-3 —A--p
1 A-B pA—B(8 —177— SA~§ §u+2ASA~v
Ay Sﬁ S S+ AR Y asdas Vo
=In+he+1s. (3-6)

Since we are supposing that G(#+2)—G({#)=0(2) for large ||, there exists a con-
stant K, such that GQA—p)=Ki(2—p), 2=p. Hence the integral I, is
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A-3 u

|In\§._£1—28 / |a(u+r)a(u)ldu8 la(v+7)a()|(f+ A+v)do. (3-7)
CA® Yoas s

Since 0< 8+ A+v<24, —A—p<u<A—-p, and a(t)eL¥ —oo, o0) we have |[1|—>0 as

p—co. In the similar way it can be shown that |[,|—0, |I15]—0, as g—oo. So

we have |,|—>0 as g—oo and similarly, {l5|]—>0 as « —»—co. Now again using the

assumption of G(1), we obtain

lim 7= lim I,
s w0 e w

= (2114__>2 Sm a(u+7)a(u)du S - dG(a) SA a(s+r—2a(s—2A)ds
= | | _ow+atwdu| -0
=0(A™). 3-8)

Next we treat the integral J. F(1) can be written by F(1)=wv.i+e(l) where &) is
bounded. By using integration by parts and the condition that a(#)—0 boundedly
as |¢[-»o0, we have

v

=Gy

S dtS dsgﬂa(t Da(s— x)sz alt+o—pas+e—p)dy

o £ ( ’
+ (21;1)28 S ds\ alt—a(s— z)dzg {alt+o—pals+r—m)e(p) dp

)
4 (2’2)2 S S dsgﬁ (at—Dals— D)’ ewdzg alt+o—pals+1—pmdp
)t

(22)28 S ds ﬁ{at Na(s— )} e(l)sz fat+7—pals+o— Y e(p)dp+o(1)
=/i++1s+ i+ o), (3-9)

where o(1) is a term which tends to zero as a-—»—oco, f—oo. For J; by changing
variables we get

t—a

S a’tg ; tdugi::a(v)a(m—u)dvg a(w)a(w+u) dw,

1)2

Ji= (24

from which we have, using Parseval relation,

.,I_HP Ji= (2A) S dtS [S a(v)a(v+u)dv]
fooo
(2;)2 S duS_;ndt[gojwlé(x)lze‘”“ de

o SO a\" | (" ja@ypemdn |
2A ) s of ]\ e ””]
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=]11 +f12’

where é@(x) is the Fourier transform of a(f)eL*(—oo, co). Ji; can be written

LT [T oo

Since S la(x)|?e~*** dx converges to zero as |u|—>oco, we obtain the result that

—o0

[J1l—0 as A—oo. In the similar way it is shown that [[i,|]—0 as A—cc. Hence
we have

lim |/;] — 0, as A — oo.

a——o00
p— o

For J: Js and J, we can apply the same argument. Since a(f) is absolutely con-
tinuous, @’(#)eL*(—oo, o0), and ¢(2) is bounded, we have Jo=o0(1), i=0(1), J,=o0(1),
as, a——co, §—oo, Putting the above altogether, we have

lim {J] —> 0, as A — oo,

a—»—0o
B— o™

L has the similar form which J so we can apply the same argument to obtain

lim [L| — 0, as A — oo
e

This complets the proof.

4. Convergence Properties of Sample Covariance Function (II)

. . . 1
In this section we discuss about the almost sure convergence of —ﬂ—x

A

S [ X)Xt +7)— EX()X(t+7)]dt. This property corresponds to the strong law of
lar?ge numbers of the product moment. The idea of the proof of it is to regard
the process of product moments of a general linear process X(¢#) as another second
order process and appeal to the strong law of large numbers for a second order
process, which was by T. KawaTa (1972), (1973), generalizing the way of I. N.
VERBITSKAYA (1964), (1966).

Lemma (Thm. 6.1, 6.2, 6.3, of T. KawaTa (1972))

Let Y(#) be a real valued stochastic process of the second order with conti-
nuous covariance function o(s, #)=FEY(s)Y(#), where EY(¢)=0, —co<t{< oo, is assum-
ed. Suppose

(1) =K, (4-1)

n+1
S EIY®)Pdt

n

for all —co<m< oo, K being a constant, independent of #, and

(ii) there is a nonnegative even function ¢(#), —co<u<oo, and a function
h(u), —oco<u<co such that
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SI Sr,o(u-i—r, v+7)dudy

0 Jo

xr x t
= S o) du +}S dtS h(u)du’, (4-2)
0 0 0
= log®x
where S —r—9(z)dw<oo, (4-3)
1

and Z(u) is the Fourier Stieltjes transform Sw e dH(2) of some bounded nonde-

creasing function H(Z), with the property that

Sw—l9g— dz th(u)du
V]

tx
1 x?

converges. Then we obtain

A
—I]i—S Y@t)ydt — 0, as A —— oo. (almost surely)
0

Theorem 2.

Let X(¢) be the general linear process defined in 2. Suppose that
G+ ) —G(t)=pna+0(1),
F+2)—F@)=0,2+0Q),

for large |2| uniformly for —co<#< oo, where y, and v, are constants, and that a(¢)
is of L*(—oo, 00), bounded and absolutely continuous with a'(t)eL*(—co, o), and
a(t)—0 as |t|—oo.

Furthermore, suppose that

(1) S;” 10§:w de:deio d(u+7)+f)d(u)dugoj a(w+v+7)a(w)dw
(2) S;” loi:x de:dei |{a(u+v+r)a(u)}/|duSo‘o |@(w+v+7)a(w)|dw
(3) Sm 1052 T S:dv S " latwto+oat)|du Si" a0+ — )al)) | duw

converge for —co<r< oo,
Then we obtain

2 {roxero - Bxoxe+ 91 — 0

as A—oo. (almost surely)

Corollary

Let X{(#) be a general linear process defined in 2. Suppose G(1) and F(1) are
the same as in Theorem 2, and a(#) is of L(—oo, 0o0), bounded, absolutely conti-
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nuous and is such that a'(t)eL'NL¥—oo, 00) and a(t)—0 as |t|—>oo. Then the
result of Theorem 2, holds.

Proof of Theorem 2.

Take Y()=X(¢t+0)X(t)—EX({t+7)X(t), « being a fixed constant. Then Y(#)
becomes a second order process. Consider

n+1
S=S ELY(OFdt

n

Il

Sn+1E[X(t+r)X(t)-EX(t+r)X(t)]2dt

= lim [S"HdtSiaZ(t+f—z)a2(t-—z)dG(x>

a——oo n

B— oo
ntl P8 ]
+S dtS a?(t—{-r—l)dF(x)S @t — ) dF (1)
+Snﬂdt Sﬂa(t-kr—l)a(t—z)dF(})F]
8— oo

Putting #—2=u, interchanging the order of integration and again changing the
variable, we easily see, as we did before, that

*n+1-4 ! B8 A—a n+l-u n+l-—afn+l-u
S=S a2<u+r>a2(u)dug dG(x)+S S +S S .

n—4g n+1-gJn—a n—a «

It is easily verified that |S;|<co, owing to the assumption a(¢)e L(— oo, 00), G(A— )
=K,(A—p) and the fact [f—n+u|=1, |n+l—u—a|=1. |S:| and |Ss| can be also
verified easily to be finite by integration by parts. The conditions that a(#) is
absolutely continuous, a() —»0 as |¢{{—oo0 and @’(¢)eL*¥—oo, c0), and F'(1)=wved+e(d)
where (1) is bounded, are used (c.f. (3-3), (3-9)). Hence S satisfies the condition
(i) of Lemma (4-1).

Now taking p(u-++<, v+7) for the covariance of Y(#+) and Y(v+17), we have

SJS o(u+7, v+o)dudy

- SISIE[X(zH-H-r)X(u+t)—EX(u+t+r)X(u+t)]
0 J0
[X(o-+£+2) X0 +8)— EX(0-+t+2) X0+ 8} du do

= lim [SI Szdudv Sﬁa(u+z‘+r—2)a(u+t—2)a(v+t+f—Z)a(v+t—2)dG(2)

a—>—oo 0
B oo

+ Sx Sxdudv Sﬂa(u+z‘+r——l)a(v-H—Z)dF(Z) Sﬂam i palo+t+7— 1) dF ()
0 J0 ;4

@
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xrr Kl
+S S dudvg
0 Jo .

5 .
a(zt-l—l‘+r—2)(l(v+l‘+r—2)dF(2)S a(u«l—t—ﬂ)a(v+t—/z)dF(;,z):|
= lim [L+ L.+ Ls].

a——co
o

Because of the assumption G(2)=pA+0(1), we can verify that lim L, exists,

. e

by using the same manner in Thm. 1 (3-5)~(3-8). And we obtain
lim L,

o e

3 xr—2 x

= lim ( dG(Z)S [S alv+t+c—Dalv+t-2) dvla(u+t+r)a(u+t)du
a——o0 Ja -2 0 _
8= oo

= Sojma(u +t+o)a(u+t)du S

un

aw+t+aw+1) do SMde

o« XU X —-v
+S a(u+t+r)a(u+t)dug a(v+t+r)a(v+t)dvg dG(2)

:L11+L12~
Again, by using the assumption G(2)=uod+0(1), we have

L= Sw a(w+t+7)a(u+t)du SO aw+utt+o)aw+u+H)Ge—ut+t)—Go—u+t)]du

<0 Sx(x—m dv Sw @+ ) au)alu—v-+)alu—v) du
+0Q1) Stdv Sw la(u+ )a(w)a(u—v+1)alu—v)| du
= S xdw Swdv Sw a(u+t)a(u)a(u—v+)a(u—v)du

+0(1) Szdv Sw |a(u+)alu)a(u—v+r)a(u—v)| du.

For L,,, we have a similar inequality in the same manner. Therefore we obtain
lim L,
a0

fm o

§2;,eogxdwgwdvgw a(u+)a(u)alu+v+7)a(u+v) du
0 0 —o0
+o) Sudv Sm a(u+D)a(@)au+v+)a(u+v)| du,
0 —o0
and from the fact that a(¢)eL*N L* —oo, co), the condition (ii) of Lemma is satis-

fied, where 4(v) and ¢(v) in Lemma are
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h(v)= Swwa(u +o)e(w)a(u+v+7)a(u+v)du

and g)= Sw la(u+)a(u)a(u+v+)alu+v)| du

—o0

in which

oo 2 x
S log’z de h(v) dv
1 X 0

ggm logzxdxgw la(u+v+T)a(u+v)|aVvSio la(u+t)a(u)| du

xz

) 2
éKzS logzx dx < oo,
z

1

and |g(v)| <o,
In the case of L. we see that a(#) is absolutely continuous and a(¢)—0 as

|t|—>co which can be follows from the assumption on F(A).
For L, we use the assumption F(2)=wvoi+¢(1) where 1) is bounded. Then
integration by parts shows that

lim L,

o
=02 Sx Sxdu dv Sw a(u+c+Da(v+2)da Sw a(u+pa(v+c+p)dy
0 oo e

0

x o0

Sxdu dv Sm {a(u+c+2Dav+ )V e(t—2)da S a(u+pa+c+p)dp

+UoS

0

x o oo

+ v S Sxdu dZ) 87 a(u+ T+/{)a(v+l) d]S {Cl(u—}-#)a(v_{,_z-_‘_ﬂ)}/s(t_#) dFl

1]

{a(u+ma+c+p) et —p) dp

oo
—o0

+ S’” S:du dv So;{a(u—i-r+2)a(y+,z)}/e(t_2) da S

0

=Ls1+ Las+ Los+ Loy say.

We here consider L,,. We have

Poo

Sxﬁ”dwsw {a(w+r+l)a(1)}’e(t+v—l)dls a(w—=+ paly) dp.

x

oo

Lyy=v, S

0
Since &(y) is bounded,
ILzzigvoSrder_waSm (@ +Da@Y ||t +v—2)] d2
0 — —co

v

{7 latw—c+ agol s
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x u oo
ngS duS de Ha(w+r+Da)Y | da
0 0 — 0

Sim{a(w—r-}-ﬂ)a(;zﬂ dy,

where K is a constant. Similar inequalities are obtained for other L’s. These
inequalities we see that satisfy the condition (ii) of Lemma, where for example,
in handling L,s,

i) = S:\ @+ +Da)| 2 Slla(w—f+ wal)| dp.

Also for Ls the condition (ii) of Lemma is satisfied true. Hence putting the above
considerations, we see that the conditions of Lemma are satisfied for the process
Y(t). Moreover in view of Lemma, we reach the conclusion of Theorem 2.

The Corollary is easily proved since we see that the conditions on a(f) show
the validity of the condition (1)~(3) of Theorem 2.
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