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ABSTRACT 

Let X(t) be a general linear process defined by T. KAWATA (1972). In this paper the 
law of large numbers for X(t)X(t+-r) is studied. 

1. Introduction 

Let m(S) be a real valued signed measure on Borel sets, generated from a 
function m(t) of bounded variation over every finite interval. Let ~(S) = ~(S, w) be 
a real valued random measure on Borel sets S with E[~(S)]2<oo for any bounded 
Borel set such that, 

( 1) E~(S)=O. 

Consider a set function F(S) with property that 

( 2) 

for any Borel sets S1, Sz. 
We define a nondecreasing function F(A.) by 

F([s, t))=F(t)-F(s), t>s. 

For convenience, we modify the function F(A) and m(A.) to be 

F(A)= ~ [F(A.+O)+F(A.-0)], 

1 
m(A.)=z-[m(A.+O)+m(A.-0)]. 
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lKUJI HoNDA 

Furthermore defint 

ri(S, w)=m(S)+~(S, w), 

for any Borel set S. 
Suppose that a(t) is a real valued function such that 

~: a2(t-J.)dF(J.)< co 

~: ja(t-J.)jjdm(J.)j < oc 

for any finite a, (3(a<p). 
Then the stochastic integral 

~: a(t-J.)r;(d).) 

can be defined in an ordinary way. (c.f. DooB (1953)). 
Now if a stochastic process X(t)=X(t, w), -co<t<co, of the second order is 

such that 

as a-+- co, (3 ----+co, for any finite interval I, then X(t) is called a general linear 
process. This defined by T. KAWATA (1972), (1973) who discussed mainly about 
weak and strong laws of large numbers. 

In this paper, we aim at studying the convergence properties of a sample 
covariance function of the general linear process. 

2. Preliminaries 

In order to treat the second order convergence properties of the sample 
covariance of a general linear process X(t), we restrict X(t) to the process of 
fourth order. Let us suppose X(t) is the fourth order general linear process such 
that 

a-+-co, (3-+co, in which the random measure ~(S) is E[~(S)J4<co for any bounded 
Borel set. Furthermore we suppose the following conditions: there is a set func
tion G(S) on Borel sets such that 

( 3) E~(Sl)~(S2)~(Ss)~(S4) 

= G(S1 n S2 n Sa n S4) + F(Sl n S2)F(Ss n S4) + F(S1 n Ss)F(S2 n S4) 

+ F(St n S4)F(S2 n Ss). 
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Then for a Borel set S we have 

( 3 )' E[~(S)] 4 =G(S) +3[F(S)] 2
• 

It can be shown that G(S) is a-additive, if E[~(S)] 4 <co, and ~(S) is a-additive 
in the fourth mean. We restrict ourselves to the case G(S) ;;:;O so that we can 
define the nondecreasing function G(J.): 

G([s, t))=G(t)-G(s), t>s. 

We modify the function G(J.) as 

G(J.)= ~ [G(J.+O)+G(J.-0)]. 

For finite a, j3(a< j3), suppose 

and EX4(t) <co. Moreover suppose that X(t) is fourth mean continuous. 

3. Convergence Properties of Sample Covariance Function (I) 

Convergence properties of sample covariance functions, which we are going to 
discuss, have close connections with the weak and strong laws of large numbers 
of the second moment of X(t). These properties play important roles in the com
munication theory. A special case of pulse train process was discussed by R. 
LUGANNANI (1971). 

Theorem 1. 

Let X(t) be a general linear process of fourth order defined in 2. Suppose 
that 

G(t + J.)- G(t) = O(J.) 

F(t+ J.)- F(t) =v0J. +0(1) 

(3-1) 

(3-2) 

for large IJ.I uniformly for -co<t<co, and that a(t) is bounded, squarely integr
able, (which implies that a(t)ELP, P?::.2), absolutely continuous with a'(t)EL2

( -co, co) 
and such that a(t)-+0 as ltl-+co. Then 

E{ 2~ ~:A X(t)X(t+r)-EX(t)X(t+r)]dtr -----+ 0 

as A-+co, uniformly for r. 

Proof. 
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[ 
1 rA [A \'1 

lim (ZA) 2 J_A dt J-A ds .L a(t-A)a(t+r-A)a(s-).)a(s+r-J.)dG().) 

1 rA rA r~ r~ + (ZA) 2 J -A dt J -Ads Ja a(t-A)a(s-A) dF(A) Ja a(t+r- tt)a(s+ r- fl) dF(p) 

+ (2~/ ~~-1 dt ~~Ads~: a(t- ..i)a(s+ r- A) dF(A) ~: a(t+ r- ft)a(s- 11) dF(tt) J 
= lim [l+f+L]. 

Setting the function f(r, A)= ~-~A a(s+-r-..i)a(s-..i)ds and by changing the order of 

integration we have 

1 r-A-a rA-u 1 rA-r< rA-v 
+ (2A)2 JA-19 J -A-u+ (2A)2 J -A-a Jrr 

=!1+!2+!3. 

In !1 again changing the order of integration, we have 

and hence 

~~A-u /(r, A) dG(..i) 

=~~Ads ~~A-u a(s+r-A)a(s-..i)dG(A) 

=~~A-~ a(v+r)a(v)dv ~~A-l'dG(..i) 
rA-pr~ ru+2ArA-v 

+ Ju J-A-n+ JA-/1 J-A--u 

1 ~A--~ \A-~~~ 1 ~A-~ ~ u+2A ~A- v 
+--~ +----

(2A)2 -A-~. u -A-u (2A) 2 
-A-p LA-~ -A-u 

(3-4) 

(3-5) 

(3-6) 

Since we are supposing that G(t+..i)-G(t)=O(A) for large !AI, there exists a con
stant Kr. such that G(A-fl)~KI(A-p), A~fl· Hence the integral luis 
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JI11l .::£ (2~)2 ~~~~~j9[a(u+ r-)a(u)l du~:A-~ la(v +r)a(v)J(p+ A+v)dv. (3-7) 

Since 0<p+A+v<2A, -A-p<u<A-p, and a(t)EL2(-co, co) we have IIul~O as 
JS~co. In the similar way it can be shown that JI12l~O, IIIsi~O, as JS~co. So 
we have II~J~O as p~co and similarly, IIsl~O as a~-co. Now again using the 
assumption of G(J.), we obtain 

lim I= lim I2 
a--oo 

~- 00 ~-- 00 

= ( 2~) 2 ~:oo a(u+r)a(u)du ~:::u dG(J.) ~-:A a(s+r-J.)a(s-J.)ds 

= (2~)2 [~:=a(u+r)a(u) du J ·O(A) 

=O(A- 1). (3-8) 

Next we treat the integral }. F(J.) can be written by F(A)=voJ.+s(A) where s(}.) is 
bounded. By using integration by parts and the condition that a(t) ~ 0 boundedly 
as I tl ~co, we have 

v rA rA r~ r~ + (2~) 2 J--A dt J_A ds Jaa(t-J.)a(s-J.)dJ. Ja {a(t+r-p)a(s+r-p)}'s(p)dp 

v rA \A r~ e 
+ (2~) 2 j_A dt J_A ds Ja {a(t-J.)a(s-J.)}'s(J.)dJ. Ja a(t+r-p)a(s+r-p)dp 

1 rA \A r~ r~ 
+ (

2
A)2 j -A dt J_A ds Ja {a(t- J.)a(s- J.)}' s(J.) d). Ja {a(t+r- p)a(s+r- p.)}' s(p)dp+o(l) 

=!1 + !2+ ls+ ]4 +o(l), (3-9) 

where o(l) is a term which tends to zero as a~-co, JS~co. For !1 by changing 
variables we get 

] 1 = (2VA~) 2 (A dt rA-t du rt-a a(v)a(v+u) dv c-a a(w)a(w+u) dw, 
J_A J-A-t Jt-~ Jt-~ 

from which we have, using Parseval relation, 

=--0 
-
2 

du dt la(x)l 2e-~xu dx V2 ~2A ~A-n [~oo . ]2 
(2A) o -A -oo 

19 



lKUJI HoNDA 

where a(.x) is the Fourier transform of a(f)El .. }( -CXJ, CXJ). fn can be written 

(2~)2 ~:A[1- 2~ J[~:=la(x)l 2eixudxJdu 

Since ~:=la(x)l 2e-ixudx converges to zero as lui---+CXJ, we obtain the result that 

lful---+0 as A---+ CXJ. In the similar way it is shown that lfd ---+0 as A---+ CXJ. Hence 
we have 

as A --+ CXJ. 
j3~ = 

For ]z, ]3 and ]4 we can apply the same argument. Since a(t) is absolutely con
tinuous, a'(t)EL2

( -CXJ, CXJ), and c(A) is bounded, we have fz=o(1), ]3=o(1), ]4=o(1), 
as, a---+- CXJ, p ---+CXJ, Putting the above altogether, we have 

lim Ill --+ 0, as A --+ CXJ. 
f3~ CXJ 

L has the similar form which f so we can apply the same argument to obtain 

lim ILl --+ 0, as A --+ CXJ. 

f3-+ = 

This complets the proof. 

4. Convergence Properties of Sample Covariance Function (II) 

1 
In this section we discuss about the almost sure convergence of 

2
A x 

~~}X(t)X(t+r)-EX(t)X(t+r)]dt. This property corresponds to the strong law of 

large numbers of the product moment. The idea of the proof of it is to regard 
the process of product moments of a general linear process X(t) as another second 
order process and appeal to the strong law of large numbers for a second order 
process, which was by T. KAWATA (1972), (1973), generalizing the way of I. N. 
VERBITSKA Y A (1964), (1966). 

Lemma (Thm. 6.1, 6.2, 6.3, of T. KAWATA (1972)) 

Let Y(t) be a real valued stochastic process of the second order with conti
nuous covariance function p(s, f)=EY(s) Y(t), where EY(t)=O, -CXJ<t< CXJ, is assum
ed. Suppose 

( i ) (4-1) 

for all -CXJ<n<CXJ, K being a constant, independent of n, and 
(ii) there is a nonnegative even function g(u), -CXJ<u<CXJ, and a function 

h(u), -CXJ<u<CXJ such that 
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~
""log2 x 
--

2 
-g(x) dx< co, 

1 X 

(4-2) 

(4-3) 

and h(u) is the Fourier Stieltjes transform ~:""eiu.< dH(J.) of 

creasing function H(J.), with the property that 

some bounded nonde-

\""log: X dx lx h(u)du 
J1 X Jo 

converges. Then we obtain 

~ ~: Y(t) dt -----+ 0. as A -----+ co. (almost surely) 

Theorem 2. 

Let X(t) be the general linear process defined in 2. Suppose that 

G(t + J..)- G(t) = poJ. + 0(1), 

F(t+J.)- F(t)=voJ.+0(1), 

for large IJ..I uniformly for -co< t< co, where flo and Vo are constants, and that a(t) 
is of L 2

( -co, co), bounded and absolutely continuous with a'(t)EL2
( -co, co), and 

a(t)--+0 as ltl--+co. 
Furthermore, suppose that 

\oolog2x rx \"" \"" 
( 1) J

1 
---;;z- dx Jo dv J_"" a(u+v+r)a(u) du J_= a(w+v+r)a(w)dw 

(""log2x rx r= \"" 
( 2) J

1 
---;;z-dxJ

0 
dv J_""l{a(u+v+r)a(u)}'ldu J_""la(w+v+r)a(w)ldw 

\""log2x rx \"" \"" 
( 3) J

1 
---;;z- dx Jo dv J_=l{a(u+v+r)a(u)}'ldu J_""l{a(w+v-r)a(w)}'ldw 

converge for -co<r<co. 
Then we obtain 

~ ~: [X(t)X(t+r)-EX(t)X(t+r)]dt -----+ 0 

as A--+co. (almost surely) 

Corollary 

Let X(t) be a general linear process defined in 2. Suppose G(J..) and F(J..) are 
the same as in Theorem 2, and a(t) is of L(- co, co), bounded, absolutely conti-

21 
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nuous and is such that a'(t)EL1 nL2(-CXJ,CXJ) and a(t)-+0 as [t[-+CXJ. Then the 
result of Theorem 2, holds. 

Proof of Theorem 2. 

Take Y(t)=X(t+r)X(t)-EX(t+r)X(t), ' being a fixed constant. Then Y(t) 
becomes a second order process. Consider 

rn+l 
S= Jn E[ Y(t)]Zdt 

rn+l 
= Jn E[X(t+r)X(t)-EX(t+r)X(t)]Zdt 

rn+l { r,B }2J + Jn dt Ja a(t+r-J.)a(t-J.)dF(J.) 

(4-5) 
p~ co 

Putting t-A.=u, interchanging the order of integration and again changing the 
variable, we easily see, as we did before, that 

S= cn+l-,9 a2(u+r)~2(u)du rp dG(J.)+ r.l-a rn+l-u + rn+l-·arn+!-U. 
Jn-,9 Jn-u Jn+J-,9 Jn-a Jn-a Ja 

It is easily verified that [S~l<CXJ, owing to the assumption a(t)EL4(-CXJ, CXJ), G(J..-p) 
~K1(J.-p) and the fact [,3-n+u[~l, [n+l-u-a[~l. IS2l and [531 can be also 
verified easily to be finite by integration by parts. The conditions that a(t) is 
absolutely continuous, a(t)-+0 as [t[-+(X) and a'(t)EL2(-CXJ,CXJ), and F(J.)=voJ.+c:(J.) 
where c:(J.) is bounded, are used (c.f. (3-3), (3-9)). Hence S satisfies the condition 
(i) of Lemma (4-1). 

Now taking p(u+r, v+r) for the covariance of Y(u+r) and Y(v+r), we have 

~: ~:p(u+r, v+r)dudv 

= ~: ~:E[X(u+t+T)X(u+t)-EX(u+t+T)X(u+t)] 
[X( v + t +')X( v +f)- EX( v + t + r )X( v +f)] du dv 

=a~~[~:~: dudv ~: a(u+t+r-J.)a(u+t-J.)a(v+t+r-J.)a(v+t-J.)dG(J.) 
,9-+ co 

+ ~: ~: dudv ~: a(u+t+ r-A.)a(v+t-J.)dF(J.) ~: a(u+t- p)a(v+t+ r- p) dF(p) 
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+ ~: ~: du dv ~~ a(u+ t+ ,_ J.)a(o+ t+ -r- J.) dF("A) ~~ a(u+t- p)a(v +t- ft)dF(p)] 

Because of the assumption G(A) = ,uo"A +0(1), we can verify that lim L1 exists, 

by using the same manner in Thm. 1 (3-5),-.....,(3-8). And we obtain 
/3---+ (X) 

= "~~ ~~ dG("A) ~~;l~: a(v+t+-r- "A)a(v+t-"A) dv Ja(u+t+r)a(u+t) du 
(3---+ = 

= ~:= a(u +t+r)a(u+t) du ~~x+n a(v +t+-r)a(v+t) dv ~~~udG("A) 

+ ~:= a(u +t+-r)a(u+t) du ~: tn a(v +t+-r)a(v+t) dv ~~~t
1

,dG("A) 

Again, by using the assumption G(A)=f1o"A+0(1), we have 

Lu= ~:= a(u+t+-r)a(u+t) du ~~x a(w+u+t+-r)a(w+u+t)[G(x-u+t)-G(v-u+t)] du 

;;;_,uo ~: (x-v) dv ~:=a(u +-r)a(u)a(u-v+r)a(u -v) du 

+0(1) ~: dv ~:=!a(u+-r)a(u)a(u-v+-r)a(u-v)! du 

= po ~: dw ~~ dv ~:oo a(u+ r)a(u)a(u-v+-r)a(u -v) du 

+0(1) ~: dv ~:oo!a(u+-r)a(u)a(u-v+-r)a(u-v)! du. 

For L1z, we have a similar inequality in the same manner. Therefore we obtain 

a--oo 
j3---+ 00 

;;;_2po ~: dw ~~ dv ~:oo a(u+-r)a(u)a(u+v+-r)a(u+v) du 

+0(1) ~: dv ~:=a(u+-r)a(u)a(u+v+-r)a(u+v)! du, 

and from the fact that a(t)EL2 nL4(-oo, oo), the condition (ii) of Lemma is satis
fied, where h(v) and g(v) in Lemma are 
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h(v)= ~~oo a(u+-r:)a(u)a(u+v+-r:)a(u+v)du 

and g(v)= ~~oofa(u+-r:)a(u)a(u+v+-r:)a(u+v)f du 

in which 

roo log: X dx rx h(v) dv 
J1 X Jo 
roolog2x roo roo 

~ J
1 
~ dx J_oofa(u+v+-r:)a(u+v)f dv J_oofa(u+-r:)a(u)f du 

~
00 10g2 x 

~Kz --
2
-dx<CX), 

1 X 

aud fg(v)f<CX). 

In the case of L 2 • we see that a(t) is absolutely continuous and a(t)-+ 0 as 
ft[-+CX) which can be follows from the assumption on F(J...). 

For L2 we use the assumption F(J...)=voJ...+s(J...) where s(J...) is bounded. Then 
integration by parts shows that 

lim Lz 
a--+-co 
,8--+ 00 

=v~ ~: ~: du dv ~~ooa(u+-r:+ J...)a(v+ J...) dJ... ~~= a(u+ p)a(v+-r:+ p) dp 

+vo ~: ~: du dv ~~= {a(u+-r:+J...)a(v+J...)}'s(t-J...) dJ... ~~= a(u+ p)a(v+-r:+ p) dp 

+vo ~: ~: du dv ~~= a(u+ -r:+ J...)a(v+.{) d.{ ~~oo {a(u+ p)a(v+-r:+ p)}' s(t- p) dp 

+ ~: ~: du dv ~~= {a(u+-r:+J...)a(v+J...)}' s(t- J...) dJ... ~~= {a(u+ p)a(v+ -r:+ p)}' s(t- p) dp 

We here consider Lzz. We have 

Lzz=Vo ~: ~~~v dw ~~= {a(w+-r:+.{)a(J...)}'s(t+v- J...) dJ... ~~= a(w--r:+ p)a(p) dp. 

Since s(p) is bounded, 

[Lzzl ~Vo ~: dv ~~:vdw ~~oo {a(w+-r+J...)a(J...)}'ffs(t+v-J...)f dJ... 

~~=fa(w--r:+ p)a(p)f dp 
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2Ks ~: du ~~ dw~:ool{a(w+r+A)a(A)}'I dA 

~ :
00 

la(w- r + p)a(p) I dp, 

where Ks is a constant. Similar inequalities are obtained for other L's. These 
inequalities we see that satisfy the condition (ii) of Lemma, where for example, 
in handling Lzs, 

Also for La the condition (ii) of Lemma is satisfied true. Hence putting the above 
considerations, we see that the conditions of Lemma are satisfied for the process 
Y(t). Moreover in view of Lemma, we reach the conclusion of Theorem 2. 

The Corollary is easily proved since we see that the conditions on a(t) show 
the validity of the condition (l)r-...(3) of Theorem 2. 
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