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ABSTRACT

In this paper a new method is shown to derive the theoretical formula given by
Stokes, which expresses the force acting on an oscillating cylinder in incompressible viscous
fluid, making use of the Landau-Lifshitz method for a sphere.

1. Introduction

The problem of the calculation of the force acting on a cylinder is classical.
When the flow is steady, Stokes’ approximation (1851)

0= —% grad p+vptv

has been proved to have no solution which satisfies the boundary conditions at
the surface of a cylinder. On the other hand Oseen’s equation (1910)

(uo-grad)v= —% grad p+vptv

gives the drag per unit length of the cylinder;

47fﬂu0
1 0 (uoa>
B 7 g 1

In the case of unsteady flow, using the equation

F:

ov_ 1 2
o grad p+vpiv,
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StokEes (1851) gave the following drag on the oscillating cylinder in the fluid at
rest;
. e 4K\(Z) st
F= zwqu{l K2+ ZKZ) }e

where Z=(l+i)%, o= \/% and M’ =zpa*

This formula has more recently been verified experimentally to have good agree-
ment between theory and experiment for large ¢/d by MARTIN (1925) and by STUART
and WoobpcaTE (1955) but to have much difference for small @/o. ROSENHEAD
(1963) says about the pressure gradient “STokes’ work shows a small pressure
variation due to the boundary layer; the consequent modification of the surface
pressure can be shown to give a contribution to the damping force of the same
order of magnitude as the contribution from the skin friction. It is important to
note, therefore, that for a bluff body which oscillating at a high frequency with a
small amplitude, the damping force, though small, is strongly dependant on the
change of pressure due to viscosity.” Thus we cannot neglect the change of pres-
sure change, viz. must consider the convective term (v-grad)v. Since the convec-
tive term is non-linear, taking it into consideration is too difficult to solve the
problem analytically. So we also neglect the convective term. LanNDAU and Lir-
sHITZ (1959), by the modern method, gave the following formula for the drag
acting on the small oscillating sphere in incompressible fluid at rest;

F 6m]a<1+5>u+3za (142 42

The author applies LanNpAu-LirsHITZ method to the cylinder and will have the
formula

)
F:iwqu’ll—— AHD(Z) }e“i“"

2HO(Z)=ZHP(Z)

It will be shown that this formula is equivalent to STOKES’ formula.

2. Nomenclature

« =radius of cylinder or sphere

HW(Z), HP(Z)=Hankel function of the first or second kind, of order p.
i =4/=1

K, Z) =modified Bessel function of the second kind, order p

k=(1 +i)% =complex wave number
¢

m =unit vector parallel to u,
M’ =rpa® for cylinder or (4/3)zpa® for sphere
n =unit vector normal to the surface
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D bo =pressure
r=ir| =modulus of position vector
t =time
T =stress tensor :
#o=|u,] =modulus of oscillating velocity or speed of uniform flow
u =10 "t
v=(,, s, 0)=velocity of fluid
Z=ka =(1+i)%
¥ =Euler’s constant
o= %’:— =depth of penetration
’.
0 =density
7 =dynamic viscosity
u=% =kinematic viscosity
¢ =amplitude of oscillating cylinder or sphere
» =frequency
Grpy Ty =components of deviatric stress tensor

3. Fundamental Equations and Boundary Conditions

The unsteady flow of an incompressible viscous liquid for the motion of an
infinite cylinder oscillating (x=e cos wt) rectilinearly along its center is mathema-
tically expressed by the equation of continuity

div v=0 (1)
and the equation of momentum

%‘;—+(v-yrad)v:—%gradp+u;72v. (2)

There are two cases that the convective term (v-grad)v may be neglected
(LANDAU and LirsHITZ, 1959). One is in the case of (v-grad)v <vr?v for 6 a;

o<y and wealy (3)

and the other is in the case of (v-grad)v<av/ot for 6<a;
oYy and L« (4)
In the latter the Reynolds number need not be small. Thus Eq. (2) becomes

ov

_ 1 o
T pgradp+ul'v (5)

taking curl of this equation as w=curlv gives the vorticity equation

131



TAkAHIKO TANAHASII

0w .
O e 6)
> vl w (6)

div v=0 means the existence of a vector potential A to be v=curl A. Linearity
of the equation of motion and the boundary conditions written by v=u on r=gq
and v=0 at r=oo requires that A must be a linear function of u. Since v is a
polar vector, A must be an axial vector and depend only on the two dimensional
radius vector r which is a polar vector. The only such axial vector which can be
constructed for a two-dimensionally completely symmetrical body (the cylinder)
from two polar vectors r and u is the vector product rxu. Hence A must be of
the form (grad f) Xu, where f(») is some scalar function of r. Since u=uoe=*"
and wu, is a constant vector, the vorticity @ becomes

w=curl curllgrad f Xul

=curl curl curl(fu)

=(grad div—"7?) curl(fu)

=—V*curl( fu)

=—V*grad fXu)

=—(grad f)Xu
Substituting Eq. (7) into Eq. (6) yields

<l72+—iio—>V2f:constant(:0) (8)

It is easy to see that the constant must be zero, since velocity v must be vanish
at infinity, viz. F?f—0 as r—oo. So we can divide Eq. (8) into two parts

1d /[ df
72 f — - — - =
Fif=F or rdr<rdr) F (9)
and
2F
(F*+E)F=0 or fl§+%—‘fi—f+k2F:0 (10)

where k=(1+4i)1/5 is the complex wave number and 6= +/(2v/w) is the depth of
penetration.
The general solution of Eq. (10) can be written as

F=AH® (k) +CH® (kr) o an

where A and C are two arbitrary constants determined by the boundary conditions,
and H®(kr) and H,”(kr) are the Hankel functions of.the first and second kinds,
respectively, and they have the asymptotic behavior for large values of k7, since
k=(1+1)1/s,

Ho“’=fo(kr)+iYo(kr)~N/;£—r-e“"“”“”———»O as % — o0
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[’Iu(ki’)fo(kr)—iYu(kV)N\/:}?r"' e TR T 00 a8 L — 00

0

Therefore H®(ky) does not satisfy the condition that F?f—0 as r—oco. Hence C
must be zero. This means physically that H®(kr)e "~ \/ n%e““‘”"””") is the out-

going wave from the cylinder and H)‘”(kr)e‘i“"~x/rifre‘“"“‘“‘*””’ is the incoming
T

wave towards the cylinder reflected by some obstacle. Now we have no obstacle
in this infinite region except for the cylinder, so we have no reflected wave. Thus
Eq. (9) becomes

. dr( ZJ; ) AH® (k). (12)

The solution of this equation is given by

Y _A o 2
= HV(kn) +

in the first derivative of f with respect to » because we do not need f(r) on the
calculation of velocities.

4. Velocity and Stress Components, Pressure

The boundary conditions on the cylinder is given by v=wu. This means that
the normal and tangential components of velocities are the same on r=a, that is,
vo-n=uo-n and nX(voXn)=nXx(u,xn) in the expression of v=wvee ** due to the
linearity of equations and boundary conditions. Since div r=2 for the two-dimen-
sional vector r,

vo=curl[grad f X u)

el L
—curl[7 I rXuo]

(prag LY 14
—<grad " dr)x[rXu0]+ o curl[r xu,]

_ 14df _1dr
’dr( dr)nx[ Xtto] =2 e

s T M

Hence we obtain the two components

Vp=—— 4

= ~iwt
S gy YOS e (15)
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and

2

i . . .
Vo= % u, Sin e, (16)

The boundary conditions on r=a can be written as

—lfzzl for wve-n=u.-n (17)
v dr
and, using Eq. (17),
2
Z'r]: =—1 for nx(vexXn)=nXxu,xn). (18)

Substituting Eq. (13) into Egs. (17) and (18) gives

A= 2
B 2 19)
()] PR [¢)]
H"(ka) a H"(ka)
o —CHYE)
111'2(1)<ka)__E H’l(l)(ka) (20)
The deviatric stress components are calculated from
ov, d (1 df ot
! =9y T =9, T (2 i 21
=27 p 2y 7 <r e >u0 cos fle 21
and
L R A A A W
0”—_7]<r W T T >_7}( T dr a’;’)u0 sin Oe 22)

The pressure p is given by the following: From the equation of motion, as p=
const., u,=const., and v=wv.e"*", we obtain

grad % =(iw+vF%ve "

=(iw+vF 2 curl curl( fuo)e "
=(io+vP*)(grad div—F?)(fu.)e "
= +vl?)grad div( fu,)e "

2 _D + G+l B)div( fuy)e "
o 14
or
p=po+liwp uo- grad f+yuo- grad(F>f )]e- it

& 1df 1 g)}_m

ar® v dr* v dr

= p0+[imp %{7 %y COS )+ 72ty COS ()( (23)
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5. Drag
The drag acting on the cylinder per unit length is given by

Fe SZR {m-T-n)r—oadl

0

= Szx{(— p+ay,)cos 0—ay, sin 0},_qadf (24)

0

where m=(cos ), —sin 0,0) is the unit vector parallel to u,, and T is the stress
tensor;

D 00 0';'7' 0';'0 0‘;,,
T=—|0 p O|+|af o) ol (25)
0 0 P Uér 620 U;z

2r
Since S Pocos 0df=0, substituting Eqgs. (21), (22) and (23) into (24) gives
0

. d? a d o
F=— [7‘: auozwp<—g§)r=a +2nnuoa<d—r”:~+%—d7—‘z—%d—£>rzn]e‘l t

—s 711 — 4131(1)(2) } —jwt

=tonl] ‘1 HYZ)+ZHZ) |© (26)
. 4H™(Z) } e

— 7 i it

=iouoll {1 2HO(Z)—ZH(Z)|¢ (@)

where w=u.e" ", uo=|uo|, ka=Z=1+1i)a/s, M' =rpa® is the mass of fluid equivalent
to the volume of the cylinder per unit length. The following expression for F'
is useful;

F=iouM{q+iq }e ™" (28)
The real part of this expression gives
F=Mu,w!{q sin ot —q’ cos ot} (29)

where ¢ and ¢’ are the real and imaginary parts of { }, respectively. The asymp-
totic expansion of the Hankel function of the first kind (WATsoN, 1958 is given
by

1 oo
H9(Z)= <7LZ) 2 i(Z-@/DHT-U/HT) Z_o (—(g,z—gl))m (30)

where

{4’ —1}{4p*—3} ... 4p*—2m—1)}
28" m!

(p,m)= (31)
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(1, 0)=1
For large values of Z, viz. small values of (d/a),
‘1+"‘1'=1—’2:.'4—*3— (33)
zZ<1—§i-Z->
(32
g=1 (l_gz)z j(i)z =142 (34)
2 0 0
4 (’Z‘) o (13
7 —22(14+52) (35)

Eqs. (34) and (35) are identically equal to ones given by STOkES. On the other
hand, for small values of Z, viz. small values of /5, the behaviors of the Hankel
function of the first kind (HiLDEBRAND, 1962) are

HZ)=]Z)+iYu(Z) (36)
where
7 \ 2k+™
. ()
P e N (= G0
Z 2k—n
Yn(Z)=—T;|:(10gE-i-r)fn(Z)—Ek:O k<! )
<£>2k+n
12 1 2 38
+y B (-1 “"‘k)*‘”(“”)]mJ 8)
and the abbreviation ¢(k) is
k1 1,1 1
¢(k)=1’§1-”7ﬂ1+3+§+~ +o (39)
(0)=0.

7 is Euler’s constant, defined by the relation

7=lim [p(k)—log k] =0.5772157 (40)
k—oo
In particular, for =1 and 2, we have
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2i Z 1 Z
W ~ e I .=
HZ)~ 12+ (1og 547 )12) -5~ | an
A
fx(Z)’”‘z_
and
2i zZ 2 3
1 ~ _ i - —— A 2
BOZ)~HZ)+—| (log 5-+7)42) - 5 4= 55 Z°] 42)
Zz
fz(Z)’”?
Hence
H‘z(l)(Z) Ni Z_z -g— >}
oz ~Z {1+ 5 (log 5 +7 (43)
For small values of Z, viz. small values of (a/s),
q+iq’:1+——izi
z+(log -+ r) 4
E
4
q:l-— az 1 y; 2 pn 3 (45)
(25| (o T +7) +(3)' |
a
log —7=+7
g=— 256 (46)

a® a 2 7 \2
()] (o2 T57) +(5) |
But these ¢ and ¢’ are not valid for small (@/d) because both ¢ and ¢’ become in-
finite as (@/0) goes to zero. So we should use the Oseen’s formula in this region.

We can only use Egs. (34) and (35) for small (§/a), which covers almost all of
actual engineering problems.

6. Comparison with Sphere

We now discuss the difference between the forces acting on an oscillating
cylinder and an oscillating sphere in incompressible fluid. We will find much
similarity. Dash means the corresponding equations in the case of a cylinder. Egs.
(1) through (8) are valid for the sphere, but Eq. (9) becomes

1 d df
2 ___’; 2 _.1;‘ ’
Vy=F or 72 dr(r dr) (9)
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Hence

4t () or]
where

- _% gike

Because the space is three-dimensional; div r=3, so we have

_, 4 (1df 2 df
vo=7 dr<r = )nx( Xuo)—rE;uo

=) wwom=(r g (G 50) o

and
Vr= _Eﬁ o COS fle~ it
v dr
2
Vo= ( Z{ + 1)u0 sin fet

with the boundary conditions

—gﬁ—l for wvon=u.-n
v dr
axf 1
iy for nX@WeXn)=nX U, Xn)

The deviatric stress components and the pressure are

— 0Vr — 1 f —iwt
ar=2y = —4y dr( )uocosﬂe

1 ov,  ovs v a’f . )
L il = —iwt
0“'_7]<r a0 ' or  r ) T gy Mo SN be

2
p= Po+[lmpd uocosf)—i—r;uocosﬂ( S 24r 2 df)]e‘“"‘

Ty T dr

Finally the drag is expressed by the following formula:

_ —dzna® ar af 2df 2 df ] —
F=—73 [pru‘)(d >+3 (71;?+r art 1 ﬂ)u .

=imu0M'[%_.£21 i_ (1_12)] —qot
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where M’ =(4/3)zpa’.

Since
gtig =g~ (1-i2) (33)"
B

Therefore we have

2
F=inluo{< +—9——6—>+ig<é—+(z> )]eﬁimz
4 a 4\a \a
And we can easily show that this formula is equivalent to the Landau-Lifshitz’s
expression

F=6ﬂva(1+%>u+3na2 \/2(2‘0(14—2—_"—)%.

where u=wu,e~"".
For =0 this becomes Stokes’ formula F'=6zxyau,, while for large frequencies
we have

___& 3 du 2. /o
F= 5 0= +3ra*/ 2n00 %.

The first term in this expression corresponds to wuc .nertial force in potential flow
past a sphere, while the second gives limit of the dissipative force.
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