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ABSTRACT 

In this paper a new method is shown to derive the theoretical formula given by 
Stokes, which expresses the force acting on an oscillating cylinder in incompressible viscous 
fluid, making use of the Landau-Lifshitz method for a sphere. 

1. Introduction 

The problem of the calculation of the force acting on a cylinder is classical. 
When the flow is steady, Stokes' approximation (1851) 

has been proved to have no solution which satisfies the boundary conditions at 
the surface of a cylinder. On the other hand Oseen's equation (1910) 

1 
(uo•grad)v= -- gradP+vf7 2

V 
p 

gives the drag per unit length of the cylinder; 

F 4rrr;uo 
1 (uoa) --r-log-
2 4v 

In the case of unsteady flow, using the equation 
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STOKES (1851) gave the following drag on the oscillating cylinder in the fluid at 
rest; 

L'--. M'{1- 4Kt(Z) } iWt 
r- zwuo Kt(Z)+ZK/(Z) e 

where Z=(1+i)£_, o= /'2~ and M'=rrpa 2 

0 'Y (I) 

This formula has more recently been verified experimentally to have good agree­
ment between theory and experiment for large a/o by MARTIN (1925) and by STUART 
and WooDGATE (1955) but to have much difference for small ajo. RosEN HEAD 
(1963) says about the pressure gradient "STOKEs' work shows a small pressure 
variation due to the boundary layer; the consequent modification of the surface 
pressure can be shown to give a contribution to the damping force of the same 
order of magnitude as the contribution from the skin friction. It is important to 
note, therefore, that for a bluff body which oscillating at a high frequency with a 
small amplitude, the damping force, though small, is strongly dependant on the 
change of pressure due to viscosity." Thus we cannot neglect the change of pres­
sure change, viz. must consider the convective term (v·grad)v. Since the convec­
tive term is non-linear, taking it into consideration is too difficult to solve the 
problem analytically. So we also neglect the convective term. LANDAU and LIF­
SHITZ (1959), by the modern method, gave the following formula for the drag 
acting on the small oscillating sphere in incompressible fluid at rest; 

The author applies LANDAU-LIFSHITZ method to the cylinder and will have the 
formula 

L'-. M' { 1 4H?) (Z) } -iWt 
r-zwuo - 2lJill(Z)_:_ZlJ~O(Z). e 

It will be shown that this formula is equivalent to STOKEs' formula. 

2. N ornenclature 

a =radius of cylinder or sphere 
HW(Z), H~2l(Z)=Hankel function of the first or second kind, of order p. 

=v'-1 
=modified Bessel function of the second kind, order p 

k=(l+i) ~ =complex wave number 

m =unit vector parallel to Uo 

M' = rrpa 2 for cylinder or ( 4/3)rrpa:l for sphere 
n =unit vector normal to the surface 
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Force Acting on an Oscillating Cylinder in Incompressible Viscous Fluid 

=pressure 
=modulus of position vector 
=time 
=stress tensor 
=modulus of oscillating velocity or speed of uniform flow 

u =Uoe-iwt 

v=(Vr. Vo, O)=velocity of fluid 

Z=ka =(1+i) ~ 

r =Euler's constant 

o= /2.)) =depth of penetration 'V (I) 

o =density 
r; =dynamic viscosity 

))=.!}__ =kinematic viscosity 
p 

c =amplitude of oscillating cylinder or sphere 
oJ =frequency 
a~n a~o =components of deviatric stress tensor 

3. Fundamental Equations and Boundary Conditions 

The unsteady flow of an incompressible viscous liquid for the motion of an 
infinite cylinder oscillating (x=c cos wt) rectilinearly along its center is mathema­
tically expressed by the equation of continuity 

div v=O ( 1 ) 

and the equation of momentum 

( 2) 

There are two cases that the convective term (v · grad)v may be neglected 
(LANDAU and LIFSHITZ, 1959). One is in the case of (v•grad)v ~))p2v for iJ':} a; 

( 3) 

and the other is in the case of (v·grad)v~ovjot for r'5~a; 

( 4) 

In the latter the Reynolds number need not be small. Thus Eq. (2) becomes 

ov 1 . 2 -=--gradP+))P v 
()t p 

( 5) 

tal,dng curl of this equation as aJ=curl v gives the vorticity equation 
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( 6) 

div v=O means the existence of a vector potential A to be v=curl A. Linearity 
of the equation of motion and the boundary conditions written by v=u on r=a 
and v=O at r=oo requires that A must be a linear function of u. Since v is a 
polar vector, A must be an axial vector and depend only on the two dimensional 
radius vector r which is a polar vector. The only such axial vector which can be 
constructed for a two-dimensionally completely symmetrical body (the cylinder) 
from two polar vectors r and u is the vector product r xu. Hence A must be of 
the form (grad f) Xu, where f(r) is some scalar function of r. Since u=uoe-i"'t 
and uo is a constant vector, the vorticity m becomes 

m=curl curl[grad f Xu] 

=curl curl curl(fu) 

=(grad div-f7 2
) curl(fu) 

=- fl 2curl(fu) 

= - fl 2(grad fx u) 

= -(fl 2grad f) xu 

Substituting Eq. (7) into Eq. (6) yields 

( 8) 

It is easy to see that the constant must be zero, since velocity v must be vanish 
at infinity, viz. f7 2 f-)-O as r-)-oo. So we can divide Eq. (8) into two parts 

fl 2f=F or __!_ !!_(r df) =F 
r dr dr 

( 9) 

and 

or (10) 

where k=(1+i)1/a is the complex wave number and o= v(2v/w) is the depth of 
penetration. 

The general solution of Eq. (10) can be written as 

(11) 

where A and C are two arbitrary constants determined by the boundary conditions, 
and lfo0 l(kr) and lfo12J(kr) are the Hankel functions of the first and second kinds, 
respectively, and they have the asymptotic behavior for large values of kr, since 
k = (1 + i)1/o, 

lfo(l) =fo(kr) +iYo(kr),...__, "-/-~-= eickr-"14
) ---+0 as 

"rrkr 
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Ho(kr)Jo(kr)-iYo(kr)~ /~k·~ e ickr rr:.JJ~oo as 
~" r 

r 
-~00 

,) 

Therefore H 0<2l(kr) does not satisfy the condition that 17 2/~0 as r~oo. Hence C 

must be zero. This means physically that Ifo< 0 (kr)e-i"'t""' ~~%;ei<kr-wt-"14 ) is the out-

going wave from the cylinder and Ifo<zl(kr)e-iwt~ ~-~ e-i<kr+wt-"' 4l is the incoming 
~ rrkr 

wave towards the cylinder reflected by some obstacle. Now we have no obstacle 
in this infinite region except for the cylinder, so we have no reflected wave. Thus 
Eq. (9) becomes 

(12) 

The solution of this equation is given by 

df =2 H<o(kr)+!!_ 
dr k 1 r 

in the first derivative of f with respect to r because we do not need f(r) on the 
calculation of velocities. 

4. Velocity and Stress Components, Pressure 

The boundary conditions on the cylinder is given by v=u. This means that 
the normal and tangential components of velocities are the same on r= a, that is, 
Vo·n=uo·n and nX(voXn)=nX(uoXn) in the expression of v=voe-i'"t due to the 
linearity of equations and boundary conditions. Since div r=2 for the two-dimen­
sional vector r, 

Vo = curl[grad /X Uo] 

=curl[! dr rXuo] 

( 
1 df) 1 dj = grad r dr X[rXuo]+rdrcurl[rXuo] 

=r!!_(l. df) nX [nXuo] _1_ df Uo 
dr r dr r dr 

=r.!!_(l. df)(n·uo)n-[r_!!_ (!!L) +1_ dfJ uo 
dr r dr dr dr r dr 

Hence we obtain the two components 

Vr = _1_ df Uo COS Oe-i"'t 
r dr 
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and 

-(PI . -i"'t. Vo--d ., UosmOe . r 

The boundary conditions on r=a can be written as 

and, using Eq. (17), 

d2
/ 

-
1 2 = -1 for nX(voXn)=nX(uoXn). 
cr 

Substituting Eq. (13) into Eqs. (17) and (18) gives 

- a2 J-L_Ol(ka) B- ------------ -- ------
- l-fz0 l(ka)- k

2
a H1<1J(ka) 

The deviatric stress components are calculated from 

1 2 UVr 2 d ( 1 df) _ ·wr rJrr= r;-- =- r;- --- Uo COS Oe t 
or dr r dr 

and 

, _ (__!_ ovr ovo _ .!!.!._) _ ( d 3
/ _ __!_ d

2
f __!_ df) . O -i"'t 

aro-r; :l() + :l -r; d 3 d 2 + 2 d Uo Sin e r u ur r r r r r r 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

The pressure p is given by the following: From the equation of motion, as p= 
canst., Uo=const., and v=v 0e-i"'t, we obtain 

p_ =..h._+ (iw + vli' 2)div(fuo)e·-i"'L 
p p 

or 

P=Po+ [ioJp Uo· grad/ +r;uo· grad(fi 2f)]e-iwt 

(23) 
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5. Drag 

The drag acting on the cylinder per unit length is given by 

C2" 
F= Jo {m · T· n}r=aadO 

(24) 

where m=(cos 0, -sin 0, 0) is the unit vector parallel to uo, and T is the stress 
tensor; 

(

p 0 0) (a~r a~0 a:z) 
T = - 0 P 0 + a:r a~o a oz 

0 0 P a zr a~e a~~ 

(25) 

Since ~:"Po cos OdO=O, substituting Eqs. (21), (22) and (23) into (24) gives 

[ 
. ( dj) 2 ( d

3
/ 1 d

2

/ 1 dj) J ·wt F=- rrauoz(J)p - + rrr;uoa --3 +---2 --- e-t 
dr r=a dr r dr r dr r=a 

(26) 

(27) 

where u=uoe-i"'t,uo=luol,ka=Z=(1+i)a/o,M'=rrpa2 is the mass of fluid equivalent 
to the volume of the cylinder per unit length. The following expression for F 
is useful; 

F=i(J)uoM'{q+iq'}e-i'"t (28) 

The real part of this expression gives 

F=M'uo(J){q sin (J)t-q' cos (J)t} (29) 

where q and q' are the real and imaginary parts of { }, respectively. The asymp­
totic expansion of the Hankel function of the first kind (WATSON, 1958 is given 
by . 

where 

H~ll(Z) = (-2-)! eicz-cP/2)"-Cl/4)") ~ (P,_ m) 
rrZ m=o ( -2zZ)m 

(p, m) 
{4P2 -1}{4p2 -3} ... {4P2 -(2m-1)} 

22mm! 
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(p,0)=1 

(32) 

For large values of Z, viz. small values of (oja), 

(33) 

q=1 
4(~-~) 0 

(~- ~r +(~r 
1+2- (34) 

a 

'- 4 (~) 0 ( 1 0) (35) 

q G-~)' +(~)' 
2- 1+--

a 2 a 

Eqs. (34) and (35) are identically equal to ones given by STOKES. On the other 
hand, for small values of Z, viz. small values of a/o, the behaviors of the Hankel 
function of the first kind (HILDEBRAND, 1962) are 

(36) 

where 

( 
z )2k+n 

- co (-1)k 2 
fn(Z)- k~o k! (k+n)! (37) 

(38) 

and the abbreviation cp(k) is 

k 1 1 1 1 
cp(k)= L: -= 1+-+-+···+-

m=l m 2 3 k 
(39) 

cp(O)=:O. 

r is Euler's constant, defined by the relation 

r=lim [cp(k)-log k]=0.5772157 (40) 
k-+oo 

In particular, for n = 1 and 2, we have 
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z2 
J2(Z),__,-

8 

Jh0
)(Z) 2 { Z

2 
( Z ) } 

JL<O(Z) ,__,z 1+--z log-z+r 

For small values of Z, viz. small values of (afo), 

q+iq'=l+ ( 4 z ) 
Z 2 log-z+r 

q=1 4 

q'= 

a 
log v2a+r 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

But these q and q' are not valid for small (a/o) because both q and q' become in­
finite as (a/a) goes to zero. So we should use the Oseen''s formula in this region. 
We can only use Eqs. (34) and (35) for small (ofa), which covers almost all of 
actual engineering problems. 

6. Comparison with Sphere 

We now discuss the difference between the forces acting on an oscillating 
cylinder and an oscillating sphere in incompressible fluid. We will find much 
similarity. Dash means the corresponding equations in the cas~ of a cylinder. Eqs. 
(1) through (8) are valid for the sphere, but Eq. (9) becomes 

( 9 )' 
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Hence 

df _ 1 [A 'kr ( 1 ) B J --- et r-- + 
dr r2 ik _ 

where 

A 3a -·ka =--- e t 

2ik 

Because the space is three-dimensional; div r=3, so we have 

Vo=r _.!!.__(1_ df)n X (nXuo) -~ df Uo 
dr r dr r dr 

=r.!!_(l_ df) (n·uo)n-(r.!!_(l_ df)+~)uo 
dr r dr dr r dr r 

and 

V - 2 df u cos 0 -i"'t r---- 0 e 
r dr 

Vo= ( ~~ +; )uo sin oe-i"'t 

with the boundary conditions 

-~ df =1 for Vo·n=uo·n 
r dr 

d 2f 1 
drz = -2 for nX(voXn)=nX(u0 Xn) 

The deviatric stress components and the pressure are 

' -2 avr - 4 d ( 1 df) -i"'t f1rr- 1) ay-- 1) dr y dr Uo COS (}e 

' ( 1 avr avo Vo ) d
3
/ • 0 - 'Wt f1ro=r; ---+---- =r;-- Uo Sin e t ' 

r ()(} ar r dr3 

[
. df o( d 3

/ 2 d 2
/ 2 df)J '"'t P=Po+ zwp-UoCOsO+'YlUoCOS --+------ e-t dr ., dr3 r dr2 r2 dr 

Finally the drag is expressed by the following formula : 

F -4rra
2 
[· ( df) 3 ( d

3

/ 2 d
2

f 2 df) J -irut =--- zwpuo- + 'Yl --+----- Uo e 3 dr ., dr3 r dr2 Y2 dr r=n 
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where M 1 =(4/3)rrpa3
• 

Since 

Therefore we have 

• I 1 9 1 (1 "Z) q+zq =z--2 z2 -z 

1 9 iJ 
q=-+--

2 4 a 

I_ 9 { 0 ( U )z } q -- -+-
4 a a 

(33)1 

(34) 1 

(35)1 

And we can easily show that this formula is equivalent to the Landau-Lifshitz's 
expression 

F=6rrr;a(1+~)u+3rra2 /2r;P(1+1_~) du 
0 'V (1) 9 0 dt 

where u=uoe-i"'t. 
For w=O this becomes Stokes' formula F=6rrr;auo, while for large frequencies 

we have 

2 du --
F=3 rrpa 3 (jf+3rra2 v' 2r;pw u. 

The first term in this expression corresponds to Lut ~nertial force in potential flow 
past a sphere, while the second gives limit of the dissipative force. 
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