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ABSTRACT

In this paper are shown a general solution and a generalized transfer-function matrix
to analyze dynamic responses of the pulse of pressure or volume flux in a small-diameter
tapered transmission line and hydraulic transients for inviscid liquid initially not at rest.

Nomenclature

Alx), Ay=cross-sectional area of tube
a=wave velocity
B(x, s) =impedance-admittance matrix
C(z, s)=integrated impedance-admittance matrix
E=unit matrix
F(x, s)=semi-transfer-function matrix
G(z, 21, s)=transfer-function matrix
K=bulk compression modulus of liquid
k=constant vector
L=total length of conduit
b, bo, P, P=pressure
4, qo, 4, §=volume flux
R(x), Ry=radius of tube
R(x)=matrix defined by equation (25)
r=radial coordinate
s=Laplace variable
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TAKAHIKO TANAHASHI

T(x, s)=matrix defined by equation (17)
t=time
u, uo, & =velocity

u(x, 0)= (p(i’ 9 > =initial vector

w=velocity vector
x=axial coordinate
Y(x,s), Y.=characteristic admittance
Z(x, s), Z.=characteristic impedance
p, po=density of liquid
A=eigenvalue
A(s)=diagonal matrix
r=duration of pulse

Subscripts

O=value at t=0 or z=0
—1=inverse matrix

t=transposed matrix
~=Laplace-transformed value

¢ =characteristic

~ =input pulse

’=derivative with respect to =

Introduction

The purpese of early investigation on unsteady fluid flow was to examine the
surging phenomena so called water-hammer in pumping plants employing large-
diameter conduits and to determine the velocity of wave propagation in the
fluid.»-1»-»  But more recently, unsteady flow in small-diameter conduits plays a
major role in liquid-propellant rocket systems, hydraulic and pneumatic control
systems, the circulation system of the blood and elsewhere. If not properly
accounted for, the fluid transients of small-diameter transmission lines may cause
combustion instability in rockets or unsatisfactory performance elsewhere. The
first analytically detailed paper concerned with these problems was issued by
D’souza, A.F. and OLDENBURGER, R.® who showed the formula for Dynamic Res-
ponse of fluid lines valid for an infinite or long line. Next, BrRown, F.T. and
NELsoN, S.E.» calculated pressure (flow) responses to step of flow (pressure) for
semi-infinite liquid lines with frequency-dependent effects of viscosity respectively.

While these methods are applicable to uniform pipes, RouLeau, W.T. and
Young, F.].»9 applied similar techniques to non-uniform pipes, in which pres-
sure pulses become distorted, dependent upon the geometry of the pipe and the
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Fluid Pressure Transients in a Tapered Transmission Line (Part I)

viscous shear forces. TARANTINE, F.]J. and RouLkau, W.T.”® presented and
illustrated a method for the determination of the output for inviscid-liquid-filled
tapered tubes terminated by a very long uniform line. However, this method
gave no information concerning the distortion following the arrival of the wave
front.

Experiments, which showed the strong distortion of waves traveling through
uniform fluid line, were made by HoLmBoE, F.L. and RouLeau, W.T.®.

The above-mentioned methods for the linear transfer techniques had never
taken into account so-called convective terms, which are non-linearities in the
basic differential equations. Recently, ZieLkg, W.'» has shown that the method
of characteristics can be adapted to handle frequency-dependent wall shear, taking
convective terms into consideration. And this quasi method of characteristics
with application to fluid line with frequency-dependent wall shear has been
developed by BrowN, F.T.». In most of these recent papers, the initial condi-
tion has been carried as fluid is at rest. Because that, when initial fluid moves
in steady state, initial discharge in tapered pipes and pressure in viscous liquid
even in constant pipes are not constant or a function of lccation. This has made
the problems difficult. In this paper is shown one generalization of analytical
solutions for tapered transmission systems filled with liquid initially not at rest.

This new method significantly extends the scope of the analysis of the
tapered transmission lines.

Basic Equations

The unsteady flow of a slightly compressible inviscid liquid is expressed by
the following equations:
Momentum equations

ow
Py TP pw=—pp (1)
Continuity equation
00
V-(pw)+7—0 (2)
State equation
dp K
e 3
7= (3)

where w is the fluid velocity, o is density, ¢ is time, p is pressure, and K is the
isothermal bulk compression modulus. The following assumptions will be made:
(1) Inviscid fluid.
(ii) Variations in density are small.
(iii) One-dimensional (plane) flow.
(iv) Convective acceleration negligible compared to the local acceleration.
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We shall deal only with tubes that are circular in cross section so that the
flow will be axisymmetric. With these assumptions the axial component of the
momentum equations (1) becomes

ou 1 ap

where z is the axial coordinate, p, is the mean density, and # is the fluid mean
velocity. Since one-dimensional (plane) flow has been assumed, p and # are func-
tions only of x and ¢

The one-dimensional continuity equation may be written from Eq. (2) as
follows,

Gp ou
o Teos =0 (5)
For a liquid at steady state in a tapered line, the initial conditions may be
stated as

A(0)

u(z, 0)= ——= )

w0, 0= (6)

Ap \?
1‘<A<x>> | D
where A, u,, and p, are now defined as the area, mean velocity, and pressure at

x=0 and #=0 respectively.
Laplace-transforming Eq. (4) and using the initial conditions (6) gives

1
Pz, 0)=po+ 5 01t}

., 1 dp

su——u(x,O)-——E dz (8)
o 1[ A1 dp

u_S{Amuo oy (9)

where # and p are the Laplace transforms of #(x,?) and p(z, t), respectively.
The volume flux ¢ is given by

o, = Sm v, dr=Alw )z, £) (10)

0

é(.l‘, s)=A(x)ﬁ(x, S), qo=A0Mo (11)
Eliminating # from Eq. (9) gives

= Lo A2 22

qg= o dn (12)

Equation (3) may be used to eliminate density variations in Eq. (5), which is then
averaged across the pipe to give
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Fluid Pressure Transients in a Tapered Transmission Line (Part I)

1 60 1 0p _ ou

0o ot K ot  ox
so that

»_ K ag
ot~ Alz) ox 13

Laplace transform of Eq. (13), using the initial condition (7), gives

- K dg
sh—pla, 0=~ 4= 14)
or
o1 1, A\ K di
b= ot g 1-(a) |- aw ) 15
Equations (12) and (14) can be written in the form
ap 0 Z
dx (0 Z)([J) s (p(x,O))
=— +
dq Y 0/\¢ Y 0 q(x, 0)
dx s

and rewritten in the vector-matrix form

where

a

ﬁ:( ), _d_u_: , Bz, s):( )’

af = \a 0

dx

’ —f— p(x, 0)

cm = =" ),z Sy ADs
(=, s) ¥ , u(z,0) (q(x, 0)) ER 2
s

here Z and Y are called the characteristic impedance and the characteristic admit-
tance. For fluid initially at rest, it is merely necessary to let #,=0, i.e., g(x, 0)=0

Do

and p(z, 0)=p,=constant. So that, if p(x, s) is regarded as p(z, s)— Y we have
u(z, 0)=0. Hence the simple form of Eq. (16) is obtained as

di(w, s) ., ,

i B(z, s)a(z, s) (16)
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Derivation of Solution in Transformed Space
The general matrix is diagonalizable by operating some non-singular matrix.
The impedance-admittance matrix B, together with the relations, a:x/ f ,
0

N

I=VZY = — =constant
1
VY VT 2\ 1 1 0 —2
NZ VY
can be placed in the form
T'BT=4 17

where 2 is the eigenvalue of the impedance-admittance matrix B and a is the
velecity of wave propagation.
If the vector # is transformed by the non-singular matrix T and becomes the
da do aT .

vector &, ie., @=Tb, Eq. (16), using —d?:T de +WU, can be rewritten in

the following form;

o g T Cu(o, 0)— T L
dx

dx 18)

Then we examine the third term on the right-hand side of Eq. (18). This term
can be written in the form

1 1 1 dz 1 4z
T-lﬂ__l v Z VNY\[2v7Z dx 2+ Z dx
dz 2 1 1 1 dy 1 4y

TNZ VY 2VY dx 2/Y dx
YI Z/ Y/ _ ZI
1Y "z Y Z
=7 19
Y’ zZ' Yy’ zZ'
Yz vtz

where prime means derivative with respect to x. Substituting the definitions of
Y and Z into Eq. (19), we obtain

., dT 1 dA®) (0 1) 20)

T 3w =%A@ “dr \1 o

One-dimensional flow of the assumption (iii)!» restricts the analysis to tapered
lines in which the changes in the lateral dimension are small compared to the
corresponding changes in length. This implies that
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dT
-1 Y2
HT do

_ 7 L dA@)
N4~ T Alz) d=x

«1 21

Hence neglecting this term in Eq. (18), we have

D _ _ Ao+ T-'Cula, 0) (22)
dz
The adjoint differential equation of Eq. (22) is
A ='Af = A} (23)
dx

where ¢ means the transposed matrix and in this case ‘A=A since 4 is diagonal.
This equation is equivalent to the following matrix equation:
dR
—— =A'R, RO)=FE (24)
dx
where E is the unit matrix of the second order and R is the characteristic
matrix, i.e.,

z rré
R<x>=E+S A(sl>dsl+g S AE) AE)derdss+ - (25)
0 0 JO
Since in general
d ... dR _ . do
S (RO)=—— 0+ R (26)

substituting Eqs. (24) and (22) into Eq. (26) gives
d;i (R'0)=(A'R)0+ R{— Ao+ T~*Cu(z, 0)} = R*T ' Cu(x, 0) 27)
Integrating Eq. (27), we have
a:R—t{ [ rr-rcute, 0z +k} (28)

where k is an arbitrary integration constant vector and determined by the
boundary conditions. Therefore we obtain as a general solution

4=To=TR

SIR‘ T-1Culc, 0)d5+k} ' (29)

where R is calculated from Eq. (25), namely

1 0 z[A 0 zpef 2 0 A 0
R= + )ds,+S | ) )d&d&z+~-
0o 1) do\o - odolo —2/lo -2

22
14z 57 22+ 0
_ 2! _(exx 0 )Zefg/:de
2 0 —iz
0 1-2z+ ;—!xz— ¢
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so we have

And also the solution of the fluid initially at rest is given by
ia=TR'k
=TR 'k (30)
=F-'k

where we term F=RT ' the semi-transfer-function matrix,

1 1
1 et 0 N Y
F(x,s)=—
2 0 e—lx 1 1
TVZ VY
elw eLt
| vz VY
- _2~ e*l.ivi e—lw
T VZ VY
Transfer-function Matrix
From Eq. (22), we have for static fluid
do
= — Ab 31
e A (31)

Integrating Eq. (31) with respect to x from z, on the boundary condition o(ry, s)
gives

oz, s)=e I 5™ 8(ay, 5) (32)
Multiplying Eq. (32) by T yields
T, $)(z, )= T(z, ) 54" o(w, 5) (33)
If noting d(x, )= Tz, s)o(x, ) and R(z, s)=¢}0"", we have, since 4 is diagonal,

i(z, 5)=T(x, s)R(x, $)R(ws, $) T~ (a1, $)d(w1, 5)
=F~\(x, $)F(x,, )i(x,, 5)
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F(z, s)i(x, s)=F(xi, s)i(zi, 5)
=F(0, s)a(0, s)
As a result,
i(z, s)=G(x, x1, s)i(zy, S) (34)

where G(z, x1, s)=F(z, s)F(x,, s) is usually called the transfer-function matrix.

G(.Z‘, &1, S) = T(J,‘, S)R_I(JL‘, S)R(xb S) T_l(mly S) (35)
- fg’zd.r \ J.g Lidz 1 _]_‘
. (fz‘ -¢7) ‘ Ve 0 VZ VT
BEAWA 2 VY fZiaz g Jimas [\ 1 1
0 e 0 V7 VT,

N ;cosh<gz sz) -JZ smh(S 2d$>

E31

= (36)
,\/ 2 mnh(lezdS) \/ -—cosh<Sz 2dE>
where Zi=Z(z,,s) and Y= Y(z;, 9).
From Eq. (35) we have the following formula;
Gz, x1,8)=G(x1, x, S) (37)
As examples, for inviscid liquid, 2= %,
Z ... S
,\/—COSh—(x £1) —\/’171 Slnh;(w—xl)
G(x, x5, 5)= o (38)
Y .. s Y
_ J;l smh; (x—x1) \/?cosh (x—xy)
and for inviscid liquid and the constant radius pipe, 1= %,
Z("E) S)——_-Z(Jfl, S)ZZ(O, S)= ZC(b) } (39)
Y(z, s)=Y(x, $)=Y(0, s)=Y.(s)
we obtain
s [Ze sinn S (-
cosh " (x—z1) - V Y, sinh p (x—x1)
G(z, 21, 8)= (40)

«/77 smh—(x 1) cosh%(x—xl)
and also, we have for x;=0 at the inlet
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cosh s T — \/ Ze sinh S x
a Y. a
G 0,9=| (1)
— o/ esinn > x cosh >z
Ze a a

In this case the inverse matrix will become

G (x,0,5)=6G0, z, s)
s Z. ., S
coshgx \/’ﬁ sinh P
= (42)
N/K“ sinhix coshix
Z, a a

Eq. (42) is equal to the transfer matrix which was given by IcHikKAwA, T. and
YamacucHi, U..

Inverse Laplace-Transformation

We now consider dynamic response for static fluid and water-hammer initially
not at rest.

A. Dynamic response of pressure pulse
ExampLE 1: Travelling wave for pressure pulse input.
In a semi-infinite tube exists only travelling wave. From Eq. (30),
u=F"'k=TR 'k
NZ —~NZ\[e* 0 \[k
=<\/7 \/7>( 0 e”)( kz)
ki Z e —ko Z
L

kl \/717 e—“"-i‘kz ‘\/? e'®

Here k,=0 because of no existence of reflected wave. Therefore, we obtain the
following equations:
s — DY g [ S0
P(x, S) S —kl A(x e
I (44)
ODEING
The boundary condition for pressure pulse input is
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0 <0
PO, H—po=1p 0<t<z 45)
0 <t

where p is the magnitude of pressure pulse. Laplace-transforming Eq. (45) and

using Eq. (44) gives
5, s)— 2 =(1- e—s’) @ (46)

~

_ Ay P
k,_\/spoa e (47)

Eliminating %, from Eq. (44) and dividing it by $,

o9 s L[l s

Inverse Laplace-transforming Eq. (48) gives

0 o<t< ™
a
P, t)=po ) [Ay z z
5 =Wy ~ << <x (49)
0 T oye<t
a

This is illustrated in Fig. 2.

Uo —| Ao _ Alx) A(L_) )

Fig. 1 Tapered transmission line

P(x,t)-F

Ao
A(x)

3?

[¢] X —2-1-1- t

Fig. 2 Travelling pulse in a semi-infinite tube
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Figure 2 shows that the height of output pulse is inversely proportional to
the square root of the ratio of A(x) to A, in a tapered transmission line. Here

Aoy for R(x)=R, constant radius
A(x)
b. «/ A(xj—e— R(z)=Rqe exponential radius
i =14 px)? R(z)=R(1+ px) linear radius
Ax)
ExampLe 2: Travelling wave and reflected wave at the closed end.
From Eq. (43),
St gy [SP0 o
p(-l' s)— =k A(x) ke A(:c)e (50)
q(z, s):klx/é%fe"7”+k2«/A(Tx)se%x (51)

The boundary conditions with a dead end (Fig. 3) are

OPEN END
DEAD END
S — X

PL,t)= Py L !
P A '
o [Ro
AL) 3L
. a —_— }-
0 L ’ 2L aL 5L 6L t
a a a a a
Lie %

Fig. 3 Travelling and reflected pulse at the dead end

0 1<0
. L
PO —po=1 f  0<i<z <r<< 7) (52)
0 <t
gL, =0 (63)

Laplace-transforming Eqs. (52) and (53) gives
P, S)— = =(1- e‘s’)— (54)
4(L,s)=0 (55)
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Fluid Pressure Transients in a Tapered Transmission Line (Part I)
Using these boundary conditions, we uniquely specify two arbitrary constants of
Eqgs. (50) and (51)

1 —87 g
k1—4/A°7( D (56)
SpPo (1 te ) S
1 —S8T £ ~
hy = g AT e led (57)
Spo (1+e 271:8) S
Eliminating %; and k&, from Eq. (50), we have
X
cosh ——s v
N _ Ao ( a ) _ 8T g
cosh(—s
a
for z=L,
R A, (A=e*) p
(L, S)— = < (59)
A(L)cosh<— s) s
a
Inverse Laplace-transforming Eq. (59) gives
0 0<t<—l—'—
@
A L, L
AL @ SISt
L 3L (©0)

— F << —

3L

DL, ) —po .
?
0
_o [ Ao i 3L
2 AL <t< +7z
Obviously, this Fig. 3 means that Eq. (59) is a periodic function with a period

d the magnitude of measured pulse is proportional to 2\/ ALy’

This is illustrated in Fig. 3

L
RESERVOIR

4

— an
a

o _ =
L— L —
Fig. 4 Reservoir
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Exampri 3: Travelling wave and reflected wave at the open end.

Let us take a reservoir as an open end.
The boundary conditions with a reservoir (Fig. 4) are

0 t<0
o L
PO, )—po=1 D 0<t<z <f<< —a—) (61)
0 <t
ML, t)=po (62)

In the same way, we have as a solution

smh( L — f—)
Po _ Ao a s

~ a _st ;5
px, s)— . A(x)——.<L—*(1—e )? (63)
sinh —a—s>

B. Dynamic response of volume flux
ExampLe 4: Travelling wave for pulse input of volume flux.

We consider only travelling wave in a semi-infinite tube. From Eq. (44)
iz, 5) =k \/ As e (64)

The boundary condition for volume flux pulse is

0 <0
~ L

aW0n=q o<t<e (<) (65)
0 <t

where § is the magnitude of volume flux pulse. Laplace-transforming Eq. (65)
and using Eq. (64) gives

(K i
ks _\/Aos(l e s (66)
Eliminating k; from Eq. (64) and dividing by g,

q(x’ S) 1 x/ji((g; ’ e—(% +t)s (67)

Equation (67) is different from Eq. (48) for pressure pulse in the coefficient, viz,
the height of output pulse for volume flux is proportional to the square root of
the ratio of A(x) to A, in a tapered transmission line.
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C. Water-hammer

Next we consider hydraulic transients accompanied by a rapid value closure
for fluid initially not at rest. Complexity in this case exists in p(x, 0) generally
depending on «, ie.,

(=, 0)

) X constant vector
q(x, 0)

u(z, 0)= (

ExampLE 5: R(x)=R,, constant radius

From Eq. (29),

D e Al=)
Alz) Ax \[© T O \[ep 0 so0 N Alz)s
O\ mer aws )2 Aw) [K_
z)s x)s - -\ _ x
\/ K K 0 e 0 e soo N Ax)s
o
dz+ (68)
A, \d@0) s
K
therefore
S0 gE [0 s
A(x) A(x)
i(x, s)=
A(.’C)S -——‘sl—a: A(.T)S %z
\/ K ¢ \/ K ¢
E -‘—sz—x A(I)S %x
oy | Ve 0e e 0 3
S = - dz+ (69)
S0 -t )s -z k,
3 o, 00 A5, 0
Integrating Eq. (69) with A(x)=A,, p(x, 0)=p, and ¢(x, 0)=g, for R(x)=R,,
Blo, )= 2oy f550 (kle‘%”—kze%”) (70)
i, s>——+¢A°s(k,e T ke ® ) 1)
The boundary conditions (Fig. 5(a)) are
do t<0
q(L, l‘)={ (72)
0 0<¢
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I
P(L,t)~Ps
E——— poleoa
RESERVOIR RAPID CLOSURE 20 AL 5L t
— o @ T
(0] B SN ‘
RN
L "+
Fig. 5(a) R(x)=R,, constant radius Fig. 5(b) Water-hammer with a
rapid closure
p0,)=p, >0 (73)

Substituting Egs. (72) and (73) in Eqgs. (71) and (70) respectively,

p_ B 1
ky=k,= 2s \/Aos @4

cosh —I—'— )
a
n( X
. b pottet sin <a )
bz, S)——'—S = T, (75)
cosh(— s)
a
for x=L
AL - Lo = 8 (L) (76)

Inverse Laplace-transforming Eq. (76) gives (see Fig. 5(b))

1 0<t< EL—
2L 4L
L, )—po |1 == (77
Polho
1 ——4L << —6L

where pou,@ means the maximum pressure rise in rigid water column theory.

ExamMpPLE 6: R(x)=R.e*®, exponential radius
For R(x)=R.e*",
A(x)= Aje>® (78)
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Fluid Pressure Transients in a Tapered Transmission Line (Part I)

P, 0)=pot 5 a1 —e77) 19)
q(x, 0)=qo (80)

Substitution of these equations in Eq. (69) gives

—_— 2
R B 1 1 . 22 pothod adeHT 2 Oolhs  s2p—taz
Pz, s)= ?(pri' 3 pouo) P—o® + p T—a s 2—0q?

+/\/szpz e—nx{kle—zx_kzelx} (81)

. q A A 1\ ae*® Ay (1 3ae 2"
d(z, s)= %——_T — Ko (Po+ —Z—Pouo)w - _KL<-2_‘0°“3)W

+ \/ AT? e {kie™*" + kye'”} (82)

where 2=%. Equations (81) and (82) for a=0 are equal to Egs. (70) and (71)

respectively.
The unknown coefficients k; and k. are specified by the boundary conditions
(72) and (73);

PL)—Ps
Polel

N

& RESERVOIR RAPID CLOSURE
@ Ro
4] 12 _ [Rx)
11712
V \_/
1 ! ——x 4!
oL
o t
! 2L 3L aL 5L 6L
a a a a a
L =10 ft

a = 4,800 ft/sec
Po = 2,000 Ib/ft?

- L po=1.94 slug/ft?
N uo= 7.0 ft/sec

Fig. 6 Time history history in an exponential line, R(z)=Re"*
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ki=k—A (83)
B+Aet
ks =5 cosh 2D) (84)
Here
A b a® Pouﬁi r2 2 potted @l
Spo[s Poa T s | Tear A0 [T s Az—az] (89)

22 Ao 1 aez"L Ao 30(6‘2“1'
—aL 2
= “/Aasl: = <p°+ pou) - T K (2 Puté °> —9a? (86)

Substituting Eqgs. (83) and (84) in Eq. (81), after some calculations, we get the
following inverse Laplace-transformed equations at x=L (see Fig. 6)

i. For 0<t<—Ii-
a
pL, )= (po+ %pouﬁ)e““‘— L oaereloes )

L
+ pouoaea"(t_ZT) 87)

ii. For li<l‘<—2£

L L
ML, B)= %pouﬁe—““(“_ZT) - (1)0+ % pou?,) ool )

+p0uoae““‘+2poe‘”‘ (88)

iii. For i <t 3—L~

I L
p(L t)— 2 ‘Uoug a«(&t 10 ) <p0+ %pou§>e—a«(ﬁ~2 T)
L
+2poe—E — pouoae™ (e-4) (89)

iv. For i << —4L

1 —aal3(— L
(L t)-(ﬁo+2,00u> ( )——2—p0; (lsa)
— pottoae” ™" (t2%) (90)
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v. For 4—L<t<£

L L
P(L, t) = (po + %P(ﬂﬁ) e_M (t_47) — —%—‘oougeaa(“_w 7)

+ pouogeaa (l_ﬁ I; ) (91)

vi. For £ <t<£

o= o O (o a0 )

L
+ pouoae—a“(k4 <) +2poe=L (92)

ExampLE 7: R(z)=R.(1+ px), linear radius
For R(x)=R.(1+ fx),

A(x)=Ao(14px)? 93)
£, 0)=po+ 5 pad(L—(L-+ ) (94)
q(x, 0)=¢o (95)

Substitution of these equations yields as an approximation

pwuna IL+Pa) " pod B(14352) (14 )t

bz, s)=— <1>o+ ; Pou>+

s - g 2s =
N e (%)
iy A 1\ ELEE) Ao (1N B3R N1+ )
W S)="5 7 p (p°+ ) K <2””°> r—p
Aos — z
+ (1+ﬁx){k1e = baer®) 97)

The unknown coefficients %, and k, are specified by the boundary conditions (72)
and (73):

kl = kz—A (98)
_ BtAe
k= cosh (AL) (%9)

Here
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— El:_ 100%5 (92 Loltho 182 ] 100
"N spo 2s 12— g s I3 (100)
G 1(1+.3L) ! ( 1 ) B i(_ >.@(1+3l3L)‘ ] 1
B= \/Aos[ s —p Dotk |5+ \ g Pt 8 (10D)
21’ RW) .9 o
Ro 12
W RESERVOIR RAPID CLOSURE
==
i T ———
J N
a L
8 o .
: i 3 % %
-1
—//"—/\\
-2

Fig. 7 Time history in a linear line, R(x)=R,(1+px)

Substituting Egs. (98) and (99) in Eq. (96), after some calculations, we get the
following inverse Laplace-transformed equations at x=L (see Fig. 7)

i. For 0<i< L
a
1 1
DL, )= po -+ 5 i+ potia(1+ BL) e — - puei( 1+ L) (L+36L) o
—0,3<1'>o+ Po“o)(l +8L)'t (102)
ii. For i <t< 2
1 . L
DL, )= po + 5 pott3 + portoa(1+ SL) %€ — 2p4u0a(1+ L)~ sinh ap (t— 7)
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1 2 -1 —1,a8t 2 -1 L
— §p0u0(1+,BL) (143B8L) ™" + pui(1+ BL) ' cosh aB | t— o
1
— a1+ BL)" —ap( puet 5 0a) L+ L)' (103)
iii. For 2L << 3L
a a
1 2 —2_apt 1Al L
P, H=po + > oo+ poteoa(1+ BL) 2 —20,00a(1+ BL)! sinh af| t— v
L 1 _ _
— 2p00a(1+ BL) 2 cosh afp <t— 2 7) — 5 poud(L+ BL) Y1+ 3BL) e
L . L
+ pd(1+ BL)* cosh aﬁ(t— —a—) + o631+ BL)~*(1+3BL)~* sinh a‘@(t—.?,?)
2 -1 1 -1 L
— o1+ BL) +ap| pot 5 pos )1+ BLY (-4~ (104)
iv. For 3L << AL
a @
1 2 -2 14 ~1 a3 L
L, D= po + > 00+ pottoa(1 + BL) %€ — 200uea(1+ SL)* sinh aB| t— -
L . L
— 2poroa(1+ BL)~? cosh aﬁ(t—Z 7) +205u0a(1+ L)~ sinh ap (t— 37
1 L
- o031+ BLY'(1+3BL) e + pui(1+ SL)~* cosh af (t— 7)
. L - L
+ p2d(1+ AL)'(14-38L)* sinh a[i(z‘—27f> — py(1+ BL)~* cosh a,@(t—S—‘-l—)
1 L
+ ap( ot o0 L1 (-4 ) (105)
v. For AL <t< SL
@ a
1 2 —2,a8t -1gi L
L, H=po+ 5 003+ pottea(14 FL) %% —2p4u0a(1+ BL)~* sinh apl t— -
_ L s L
— 2pottoa(1l+ BL)~% cosh aﬁ(t— 2 7) +2p0200(1+ L)~ sinh af <t— 3 -

+ 2pauua(1+ SL)* cosh ap (t—4-§—> — % pi(1+ BL)-1(14+3pL)- e
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, - L . L
+ poui 1+ BL)~" cosh aﬂ(z‘— 5—) + o1+ BLY (1 +35L) ! sinh aﬁ(z‘—Z——a—‘
L ., ) L
— paii(1+ L) cosh a/3<t—37> — pedi(1+ L) 1(1+3BL) sinh aﬁ(t—4 7)

— ap( put o o) 141 (-4 (106)

vi. For £<t<£
a a

ML, 5)=po+ %pauH pottoa(1+4 L) e —2pouoa(1+ BL)~" sinh af <t— %)
L . L
— 200t0a(1+ BL)"* cosh aﬂ(t— 2 7) +2pottoa(l+ L) sinh aﬁ(t— 3 7)
r . L
+ 200u0a(1+ L)% cosh af (t—4 7) —2pou0a(1+ BL)~" sinh aﬁ(t— 57)
1 L
— 5 o1+ BLY 1+ 3BL) e + pai(1+ L) cosh ap <t— 7)
. L ) L
+ pot(1+ L)' (1+38L)~* sinh aﬂ(t—Z 7) —pgud(1+ pL)~* cosh aﬁ(t—37)
. L ) L
— owid(14BL)-*(14-36L)~" sinh aﬁ(t—47> 4 owd(1+BL)* cosh a[;’(t—S 7)

~ a4 L ~ap( put  o0t) L+ (142 ) (107)

Conclusions

1. All we have to do is to find the inverse Laplace-transformation of the Eq.
(29) for many problems different from boundary and initial conditions.

2. The transfer-function matrix expressed in the general form of the Eq.
(36) will play an important role in the analysis of the frequency response in a
small-diameter tapered transmission line.

3. The distortion is not caused in the output pulse for inviscid fluid if
r L dA)
T M dzx
we must treat the motion of fluid as two or three-dimensional flow.

4. Tt is confirmed in another way that

«1. In large tapered lines where this assumption is not valid,

DL, ) —po Ao
T 5 “Aag d g A,

aL,b—q _ AL
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5. A concave on the pressure head of water-hammer is found to be formed

in a tapered tube.

1)

2)

3)
4

5)

6)

7
8)
9

10)

11)
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