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ABSTRACT 

In this paper are shown a general solution and a generalized transfer-function matrix 
to analyze dynamic responses of the pulse of pressure or volume flux in a small-diameter 
tapered transmission line and hydraulic transients for inviscid liquid initially not at rest. 

Nomenclature 

A(x), Ao=cross-sectional area of tube 
a=wave velocity 

B(x, s) =impedance-admittance matrix 
C(x, s) =integrated impedance-admittance matrix 

E=unit matrix 
F(x, s)=semi-transfer-function matrix 

G(x, x 11 s) =transfer-function matrix 
K=bulk compression modulus of liquid 
k=constant vector 
L=total length of conduit 

P,Po, p, P=pressure 
q, Qo, q, q=volume flux 
R(x), Ro=radius of tube 

R(x)=matrix defined by equation (25) 
r=radial coordinate 
s =Laplace variable 
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T AKAHIKO T ANAHASHI 

T(x, s)=matrix defined by equation (17) 
t=time 

u, Uo, u =velocity 

u=(:) 
0) (

p(x, 0)) . . . 1 u(x, = q(x, O) =mitla vector 

v=T- 1u 
w=velocity vector 
x =axial coordinate 

Y(x, s), Yc=characteristic admittance 
Z(x, s), Zc=characteristic impedance 

p, Po =density of liquid 
..{=eigenvalue 

A(s) =diagonal matrix 
r=duration of pulse 

Subscripts 

O=value at t=O or x=O 
-l=inverse matrix 

t =transposed matrix 
/'..=Laplace-transformed value 
c =characteristic 

........, =input pulse 
'=derivative with respect to x 

Introduction 

The purpose of early investigation on unsteady fluid flow was to examine the 
surging phenomena so called water-hammer in pumping plants employing large
diameter conduits and to determine the velocity of wave propagation in the 
ftuid. 9 ),lo).ll) But more recently, unsteady flow in small-diameter conduits plays a 
major role in liquid-propellant rocket systems, hydraulic and pneumatic control 
systems, the circulation system of the blood and elsewhere. If not properly 
accounted for, the fluid transients of small-diameter transmission lines may cause 
combustion instability in rockets or unsatisfactory performance elsewhere. The 
first analytically detailed paper concerned with these problems was issued by 
D'souzA, A. F. and 0LDENBURGER, R.3

) who showed the formula for Dynamic Res
ponse of fluid lines valid for an infinite or long line. Next, BROWN, F. T. and 
NELSON, S. E.1

) calculated pressure (flow) responses to step of flow (pressure) for 
semi-infinite liquid lines with frequency-dependent effects of viscosity respectively. 

While these methods are applicable to uniform pipes, RouLEAU, W.T. and 
YouNG, F. ].5

)· 
6

) applied similar techniques to non-uniform pipes, in which pres
sure pulses become distorted, dependent upon the geometry of the pipe and the 
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viscous shear forces. TARANTINE, F.]. and RouLEAU, W. T.7
), 

8
) presented and 

illustrated a method for the determination of the output for inviscid-liquid-filled 
tapered tubes terminated by a very long uniform line. However, this method 
gave no information concerning the distortion following the arrival of the wave 
front. 

Experiments, which showed the strong distortion of waves traveling through 
uniform fluid line, were made by HoLMBOE, F. L. and RouLEAU, W. T.4

). 

The above-mentioned methods for the linear transfer techniques had never 
taken into account so-called convective terms, which are non-linearities in the 
basic differential equations. Recently, ZIELKE, W.13

) has shown that the method 
of characteristics can be adapted to handle frequency-dependent wall shear, taking 
convective terms into consideration. And this quasi method of characteristics 
with application to fluid line with frequency-dependent wall shear has been 
developed by BROWN, F. T.2

). In most of these recent papers, the initial condi
tion has been carried as fluid is at rest. Because that, when initial fluid moves 
in steady state, initial discharge in tapered pipes and pressure in viscous liquid 
even in constant pipes are not constant or a function of location. This has made 
the problems difficult. In this paper is shown one generalization of analytical 
solutions for tapered transmission systems filled with liquid initially not at rest. 

This new method significantly extends the scope of the analysis of the 
tapered transmission lines. 

Basic Equations 

The unsteady flow of a slightly compressible inviscid liquid is expressed by 
the following equations: 

Momentum equations 

Continuity equation 

State equation 

ow 
p-- +p(w·y)w= -yp at 

op 
Y·(pw)+- =0 at 

dp 
dp 

K 
p 

( 1) 

( 2) 

( 3) 

where w is the fluid velocity, p is density, t is time, p is pressure, and K is the 
isothermal bulk compression modulus. The following assumptions will be made: 

( i ) Inviscid fluid. 
( ii) Variations in density are small. 
(iii) One-dimensional (plane) flow. 
(iv) Convective acceleration negligible compared to the local acceleration. 
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We shall deal only with tubes that are circular in cross section so that the 
flow will be axisymmetric. With these assumptions the axial component of the 
momentum equations (1) becomes 

iJu =-.1_ ap 
of Po ox 

( 4) 

where x is the axial coordinate, p0 is the mean density, and u is the fluid mean 
velocity. Since one-dimensional (plane) flow has been assumed, p and u are func
tions only of x and t. 

The one-dimensional continuity equation may be written from Eq. (2) as 
follows, 

op iJu 
--+Po- =0 at iJx 

( 5) 

For a liquid at steady state in a tapered line, the initial conditions may be 
stated as 

A(O) Ao 
u(x, 0) = A(x) u(O, 0) = A(x) Uo ( 6) 

P(x, O)=Po+ ~ PoU~{ 1- ( A1:) Y} ( 7) 

where Ao, uo, and Po are now defined as the area, mean velocity, and pressure at 
x=O and t=O respectively. 

Laplace-transforming Eq. (4) and using the initial conditions (6) gives 

su-u(x, 0)=- ~ dp 
Po dx 

A 1 { Ao 1 dp } 
U= s A(x) Uo- Po dx 

where u and p are the Laplace transforms of u(x, t) and p(x, t), respectively. 
The volume flux q is given by 

rR(X) 

q(x, f)= Jo 2nru(x, t)dr=A(x)u(x, t) 

q(x, s) =A(x)u(x, s), Qo=AoUo 

Eliminating u from Eq. (9) gives 

q= _!__ {Qo- A(~ dp } 
s Po dx 

(8) 

( 9) 

(10) 

(11) 

(12) 

Equation (3) may be used to eliminate density variations in Eq. (5), which is then 
averaged across the pipe to give 
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1 ap 1 ap au 
Po at K at ax 

so that 

ap K aq 
at - A(x) ax 

Laplace transform of Eq. (13), using the initial condition (7), gives 

~ K dq 
sp-p(x,O)=- A(x) dx 

or 

P=! {Po+~ Pou~[1-(A1;)rJ-A~) ~!} 
Equations (12) and (14) can be written in the form 

~ )(p(x,O)) 
0 

q(x, 0) 

and rewritten in the vector-matrix form 

where 

du(x, s) =-B(x, s)u(x, s) + C(x, s)u(x, 0) 
dx 

u=(~). 
q, 

~=( ~! ), 
dx dq 

dx 

(

p(x, 0)) 
u(x, 0) = , 

q(x, 0) 

Y= A(x)s 
K 

(13) 

(14) 

(15) 

(16) 

here Z and Y are called the characteristic impedance and the characteristic admit
tance. For fluid initially at rest, it is merely necessary to let Uo=O, i.e., q(x, 0) =0 

and p(x, O)=Po=constant. So that, if p(x, s) is regarded as p(x, s)- A we have 
s 

u(x, 0) =0. Hence the simple form of Eq. (16) is obtained as 

du(x, s) 
dx =-B(x, s)u(x, s) (16)' 
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Derivation of Solution in Transformed Space 

The general matrix is diagonalizable by operating some non-singular matrix. 

The impedance-admittance matrix B, together with the relations, a= /K, 'Y Po 

/~ s 
A= v ZY=- =constant 

a 

(
..;z 

T= 
../Y 

-../Z) 
../Y 

can be placed in the form 

(17) 

where A is the eigenvalue of the impedance-admittance matrix B and a is the 
velocity of wave propagation. 

If the vector v is transformed by the non-singular matrix T and becomes the 

.. . .. T Eq (16) . du T dv dT A b . vector u, 1.e., u= v, . , usmg dx = dx + dx v, can e rewritten m 

the following form ; 

dv AA T-Ic ( O) r-1 dT A --=- v+ ux, - -v 
dx dx 

{18) 

Then we examine the third term on the right-hand side of Eq. (18). This term 
can be written in the form 

..;\T) (2 J Z ~: 
1 1 ~~~ dY 

.../ Y' 2.../-Y dx 

I__~) y z 

_K'__ + Z' 
y z 

(19) 

where prime means derivative with respect to x. Substituting the definitions of 
Y and Z into Eq. (19), we obtain 

_ 1 dT 1 dA(x) ( 0 
T dx = 2A(x) ([;;- 1 ~) (20) 

One-dimensional flow of the assumption (iii)12
) restricts the analysis to tapered 

lines in which the changes in the lateral dimension ·are small compared to the 
corresponding changes in length. This implies that 
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II 
r-1 dT II dx _ .__!______ __.!:___ dA(x) 

1 IIAII - T A(x) dx ~ 

Hence neglecting this term in Eq. (18), we have 

~: =-Av + T- 1Cu(x, 0) 

The adjoint differential equation of Eq. (22) is 

dr tAA AA -- = r= r 
dx 

(21) 

(22) 

(23) 

where t means the transposed matrix and in this case tA=A since A is diagonal. 
This equation is equivalent to the following matrix equation: 

R(O)=E (24) 

where E is the unit matrix of the second order and R is the characteristic 
matrix, i.e., 

(25) 

Since in general 

d (Rt A) dRt A Rt dv 
~ v=--v+ -
dx dx dx 

(26) 

substituting Eqs. (24) and (22) into Eq. (26) gives 

_!!_ (Rtv)=(AtRYv+Rt{ -Av+ T- 1Cu(x, O)}=RtT- 1 Cu(x, 0) (27) 
dx 

Integrating Eq. (27), we have 

v=R-t{~x RtT-1 Cu(~, O)d~+k} (28) 

where k is an arbitrary integration constant vector and determined by the 
boundary conditions. Therefore we obtain as a general solution 

u= Tv= T R-t{ r RtT-1 Cu(~, O)d~+k} 

where R is calculated from Eq. (25), namely 
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so we have 

( 

e-J.x 

R-t= 
0 

And also the solution of the fluid initially at rest is given by 

=TR- 1k 

where we term F=RT- 1 the semi-transfer-function matrix, 

Transfer-function Matrix 

From Eq. (22), we have for static fluid 

dv =-Av 
dx 

(30) 

(31) 

Integrating Eq. (31) with respect to x from x1 on the boundary condition v(x~o s) 
gives 

-sx AM 
V(X, S) =e X! V(XI, S) (32) 

Multiplying Eq. (32) by T yields 

-sx Ad~ 
T(x, s)v(x, s) = T(x, s)e x 1 v(x~, s) (33) 

If noting u(x, s) = T(x, s)V(x, s) and R(x, s) =ef~A1~, we have, since A is diagonal, 

u(x, s) = T(x, s)R-1(x, s)R(x~, s) T- 1 (x~, s)u(x~, s) 

= F-1(x, s)F(x1, s)u(x~, s) 
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. . F(x, s)u(x, s) =F(x1, s)u(x1, s) 

=F(O, s)u(O, s) 

As a result, 

u(x, s) = G(x, XI, s)u(xl, s) (34) 

where G(x, xi, s) =F-I(x, s)F(x1, s) is usually called the transfer-function matrix. 

G(x, XI, s) = T(x, s)R-I(x, s)R(x1, s) T-I(xi, s) 

= _!_(y' z 
2 y'y 

( 
J ffi cosh(~:/d~) 

= - .j I sinh(~:. J.d;) 

-J ~I sinh(~:1 Ad~))' 
~ ~ cosh(~:1 Ad~) 

where Z1 =Z(x1, s) and YI = Y(xi, s). 
From Eq. (35) we have the following formula; 

As examples, for in viscid liquid, A= !____, 
a 

s 
and for in viscid liquid and the constant radius pipe, A= -, 

a 

we obtain 

G(x, x1, s)= 

Z(x, s)=Z(xi, s)=Z(O, s)= Zc(s) } 

Y(x, s) = Y(xi, s) = Y(O, s) = Yc(s) 

s 

( 

cosh-(x-xi) 
a 

- J _K;: sinh!____ (x-xi) 
'\/ Zc a 

!Zc . h s ( )) -A/-Slil -X-XI 
V Yc a 

s 
cosh-(x-xi) 

a 

and also. we have for xi =0 at the inlet 
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a 
- ---sm -x 

Yc a 
G(x, 0, s)= 

( 

cosh .!_x 

Yc · S - ~--smh-x 'V Zc a 

~-Ze.hs) 

cosh.!_x 
a 

In this case the inverse matrix will become 

G-1(.r, 0, s)=G(O, x, s) 

( 

cosh.!_x 
a 

Yc . S !_---' smh-x 'V Zc a 

~Zc · h S ) -sm -x 
Yc a 

cosh.!_x 
a 

(41) 

(42) 

Eq. (42) is equal to the transfer matrix which was given by IcHIKAWA, T. and 
YAMAGUCHI, U .. 

Inverse Laplace-Transformation 

We now consider dynamic response for static fluid and water-hammer initially 
not at rest. 

A. Dynamic response of pressure pulse 

ExAMPLE 1: Travelling wave for pressure pulse input. 

In a semi-infinite tube exists only travelling wave. From Eq. (30), 

=(vz 
VY 

(43) 

Here k2=0 because of no existence of reflected wave. Therefore, we obtain the 
following equations: 

f 
(44) 

The boundary condition for pressure pulse input is 
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p(O, t)-Po={: 
t<O 

(45) 

where p is the magnitude of pressure pulse. Laplace-transforming Eq. (45) and 
using Eq. (44) gives 

Eliminating k1 from Eq. (44) and dividing it by p, 

~ Po 
P(x,s)-s _ 1 ~A~{ _..£s -(..£+,).~} - ~-- e 11. -e 11. p - s A(x) 

Inverse Laplace-transforming Eq. (48) gives 

p(x, t)-Po 
p 

This is illustrated in Fig. 2. 

0 O<t< !!__ 
a 

X X 
-<t<-<r a a 

0 !!__ +r<t 
a 

Fig. 1 Tapered transmission line 

P(x,t )-Po 

p 

~ ~ 
~ 

() 

0 i t+• 

Fig. 2 Travelling pulse in a semi-infinite tube 
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Figure 2 shows that the height of output pulse is inversely proportional to 
the square root of the ratio of A(x) to Ao in a tapered transmission line. Here 

a. ~?c;) =1 for R(x)=Ro constant radius 

b. ~:C;) =e_ax R(x)=Roeax exponential radius 

c. ~ ~;) =(l+~x)- 1 R(x) =Ro(l + ~x) linear radius 

ExAMPLE 2: Travelling wave and reflected wave at the closed end. 

From Eq. (43), 

The boundary conditions with a dead end (Fig. 3) are 

0 6L t a 

Fig. 3 Travelling and reflected pulse at the dead end 

p(O, t)-Po=l: 
t<O 

O<t<r (r~ ~) 
r<t 

q(L, t)=O 

Laplace-transforming Eqs. (52) and (53) gives 

p(O, s)- A =(1-e-sr) p 
s s 

q(L, s)=O 
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Using these boundary conditions, we uniquely specify two arbitrary constants of 
Eqs. (50) and (51): 

(56) 

(57) 

Eliminating k1 and k2 from Eq. (50), we have 

(58) 

for x=L, 

(59) 

Inverse Laplace-transforming Eq. (59) gives 

0 O<t< _!:_ 
a 

2~ A1L) 
L L 
-<t<~+r 

p(L, t)-Po a a 

p L 3L 
0 -+r<t<-

(60) 

a a 

-2~ fc£) 3L 3L 
~<t<-+r 

a a 

This is illustrated in Fig. 3. 
Obviously, this Fig. 3 means that Eq. (59) is a periodic function with a period 

~L and the magnitude of measured pulse is proportional to 2~ A1L)" 

RESERVOIR 

Fig. 4 Reservoir 

39 



T AKAH!KO T ANAHASHI 

ExAMPLE 3: Travelling wave and reflected wave at the open end. 

Let us take a reservoir as an open end. 
The boundary conditions with a reservoir (Fig. 4) are 

p(O, t)-Po=1: 
t<O 

(61) 

p(L, t)=Po (62) 

In the same way, we have as a solution 

fi(x s)- P_o__ = (flo sin{~ - ~) s (1- e-") p 
' s 'V A(x) . h( L ) s sm -s 

a 

(63) 

B. Dynamic response of volume flux 

ExAMPLE 4: Travelling wave for pulse input of volume flux. 

We consider only travelling wave in a semi-infinite tube. From Eq. (44) 

(64) 

The boundary condition for volume flux pulse is 

~0, t)=j: (65) 

where ij is the magnitude of volume flux pulse. Laplace-transforming Eq. (65) 
and using Eq. (64) gives 

(66) 

Eliminating k1 from Eq. (64) and dividing by ij, 

----- -- e a -e a 
q(x, s) _ 1 ~A(x) { _ _:x:_s -(~+r)s} 

ij s A(O) 
(67) 

Equation (67) is different from Eq. (48) for pressure pulse in the coefficient, viz, 
the height of output pulse for volume flux is proportional to the square root of 
the ratio of A(x) to Ao in a tapered transmission line. 
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C. Water-hammer 

Next we consider hydraulic transients accompanied by a rapid value closure 
for fluid initially not at rest. Complexity in this case exists in p(x, 0) generally 
depending on x, i.e., 

u(x, 0)= ~constant vector (

p(x, 0)) 
q(x, 0) 

ExAMPLE 5: R(x)=Ro, constant radius 

From Eq. (29), 

therefore 

Integrating Eq. (69) with A(x)=Ao, p(x, O)=Po and q(x, O)=qo for R(x)=R0 , 

The boundary conditions (Fig. 5(a)) are 

{ 

qo 
q(L, t)= O 

41 
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I 

P(L,tl-Po 
poUoO 

RESERVOIR 
2L 4L 6L 
a a a 

I 

RAPID CLOSURE 

o: - ~ 
~----!~L~~ 

Fig. 5(a) R(x)=R0 , constant radius Fig. 5(b) Water-hammer with a 
rapid closure 

p(O, t)=Po t>O 

Substituting Eqs. (72) and (73) in Eqs. (71) and (70) respectively, 

sinh(!!____s) 
PA(x s) _ .J!y_ = PoUoa a 

' s s (L) cosh as 
for x=L 

A Po PoUoa ( L ) p(L, s)- s = -s-tanh as 

Inverse Laplace-transforming Eq. (76) gives (see Fig. 5(b)) 

1 0 <t< 2L 
a 

p(L, t)-Po -1 2L t 4L -<<-a a 
PoUoa 

1 4L <t< 6L 
a a 

where PoUoa means the maximum pressure rise in rigid water column theory. 

ExAMPLE 6: R(x)=Roeax, exponential radius 

42 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 



Fluid Pressure Transients in a Tapered Transmission Line (Part I) 

1 
p(x, 0) =Po+ 2 PoU~(l- e-2"X) (79) 

q(x, O)=qo (80) 

Substitution of these equations in Eq. (69) gives 

1 
- puz 

~ - 1 ( 1 z) ,{2 PoUoa a.Ae-2ax 2 o o ,A2e-4ax 
P(x, s)-- Po+ -2·PoUo ~ + --- ----;-22- --- ,A2-9a2 s A -a s A -a s 

(81) 

(82) 

where .A=!__, Equations (81) and (82) for a=O are equal to Eqs. (70) and (71) 
a 

respectively. 
The unknown coefficients k1 and kz are specified by the boundary conditions 

(72) and (73) ; 

0~-------~---------1----------~ 

-I 

-2 

2L 
a 

3L 
0 

4L 
a 5L 

a 

L = 10 ft 
a = 4,800 ft /sec 
Po = 2,000 lb/ft 2 

po= 1.94 slug/ft3 

Uo = 7.0 ft/sec 

Fig. 6 Time history history in an exponential line, R(x)=R0e"x 
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B+Ae-n 
k2=----

2 cosh (J.L) 

(83) 

(84) 

(85) 

(86) 

Substituting Eqs. (83) and (84) in Eq. (81), after some calculations, we get the 
following inverse Laplace-transformed equations at x=L (see Fig. 6) 

i. For O<t< !:.__ 
a 

( 
1 ) 1 aa(at-4 _f_) 

p(L, t) = Po+ 2 PoU~ e-aat- 2 PoU~e a 

L 2L 
ii. For - <t< -

a a 

1 -aa (at-2 _f_) ( 1 ) aa (t-2 _f_) 
P(L, t)= 2 Po'U~e a - Po+ 2 PoU~ e a 

2L 3L 
iii. For -- <t< --

a a 

P(L t) _ _!__ 2 aa(at-lo4-) -(p +_!__ 2) -aa(t-24-) 
' - 2 PoUoe 0 2 PoUo e 

3L 4L 
iv. For --<t<--

a a 

P(L t) - (P + _!__ 2) aa(t-4~) _ _!__ 2 -aa(at-sf) 
' - 0 2 PoUo e 2 PoUoe 

( L) -aa t-2--poUoae a 
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4L 5L 
v. For - <t< --

a a 

P(L t) _ (P + _!_ 2) -aa(t-44-) _ _!_ 2 aa( 3t-16 +) 
' - 0 2 PoUo e 2 PoUoe 

( L) aa t-6 
+PoUoae a 

5£ 6L 
vi. For -- <t< -

a a 

1 -aa (at-14 £) ( 1 ) aa(t-6 ~) 
P(L, t) = 2 PoU~e a - Po+ 2 PoU~ e a 

ExAMPLE 7: R(x)=Ro(1+(3x), linear radius 

For R(x)=Ro(1+(3x), 

A(x)=Ao(1+(3x)2 

P(x, O)=Po+ ~ PoU~{1-(1+(3x)-4 } 

q(x, O)=qo 

Substitution of these equations yields as an approximation 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

The unknown coefficients k1 and k2 are specified by the boundary conditions (72) 
and (73): 

k1 = k2-A (98) 

B+Ae-n 
(99) k2 = 2 cosh ().L) 

Here 
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2 

0~--------~--------~--------~----------~--

-I 

-2 

L 
a 

2L 
a 3L 

a 

Fig. 7 Time history in a linear line, R(x)=R0 (l+j3x) 

4L 
a 

(100) 

(101) 

Substituting Eqs. (98) and (99) in Eq. (96), after some calculations, we get the 
following inverse Laplace-transformed equations at x=L (see Fig. 7) 

i. For O<t< _f_ 
a 

-ap(Po+ ~ Pou~)(1+pL)- 1t 

L 2L 
ii. For - <t< ---

a a 

(102) 
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- PoU~(1+f9L)- 1 -ats(Po+ ~ Pou~)(1+f9L)- 1t (103) 

2L 3L 
iii. For -- <t<-

a a 

+PoU~(1+f9L)- 1 coshaf9(t- ~ )+p0u~(1+f9L)- 1(1+3f9L)-1 sinhaf9(t-2 ~) 

- PoU~(1+f9L)- 1 +ats(Po+ ~ Pou~)(1+f9L)- 1 (t-4 ~) (104) 

3L 4L 
iv. For - <t<-

a a 

+ p0u~(1+~L)- 1(1+3f9L)- 1 sinh ats(t-2 ~) -p0u~(l+f9L)- 1 cosh ats(t-3 ~) 

+ ats(Po+ ~ Po~~)(1+f9L)- 1 (t-4 ~) (105) 

4L 5L 
v. For -<t<-

a a 
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+ p0u~:l + pL)- 1 cosh ap(t- --~ ) + p01f~(1 + pL)- 1(1 +3pL)- 1 sinh ap(t-2 -~) 

- p0u~(1 + pL)-1 cosh ap(t-3 ~ ) - p0u~(1 + pL)-1(1+3(3£)- 1 sinh ap(t-4 ~ ) 

- ap(Po+ ~ p0u~)(1+pL)- 1 (t-4 ~) 

5£ 6L 
vi. For --<t<-

a a 

p(L, t) =Po+ ~ PoU~+ PoUoa(1 + (3L)- 2ea~t-2pouoa(1 + pL)-- 1 sinh ap(t- ~) 

- 2p0u0a(1+ pL)-2 cosh ap(t-2 ~) +2p0u0a(1+ pL)- 1 sinh ap(t-3 ~) 

+ 2p0u0a(1 + pL)-2 cosh ap(t-4 ~ ) -2pau0a(1 + pL)-1 sinh ap(t-5 ~ ) 

- ~ p0u~(1 + (3L)- 1(1+3pL)- 1eaet + p0u~(1 + pL)-1 cosh ap (t- ~ ) 

(106) 

+ p0u~(1+pL)- 1 (1+3(3L)- 1 sinh ap(t-2 ~) -p0u~(1+pL)- 1 cosh ap(t-3 ~) 

- p0u~(1+pL)- 1(1+3(3L)- 1 sinh ap(t-4 ~) +PoU~(1+pL)- 1 cosh ap(t-5 ~) 

- p"u~(l+ pL)- 1 -ap(Po+ ~ Pou~)(l+ pL)-1 (t-4 ~) (107) 

Conclusions 

1. All we have to do is to find the inverse Laplace-transformation of the Eq. 
(29) for many problems different from boundary and initial conditions. 

2. The transfer-function matrix expressed in the general form of the Eq. 
(36) will play an important role in the analysis of the frequency response in a 
small-diameter tapered transmission line. 

3. The distortion is not caused in the output pulse for inviscid fluid if 

; A~x) d~~x) ~1. In large tapered lines where this assumption is not valid, 

we must treat the motion of fluid as two or three-dimensional flow. 
4. It is confirmed in another way that 

P(L, t)-Po ____, / 4o_ 
p 'Y A(L) 

and q(L, t)-qo _ ____, /:1_CL) 
ij 'Y Ao 
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5. A concave on the pressure head of water-hammer is found to be formed 
in a tapered tube. 
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