Title	A central limit theorem for the random noise process
Sub Title	
Author	遠藤,靖(Endo, Yasushi)
Publisher	慶応義塾大学工学部
Publication year	1972
Jtitle	Keio engineering reports Vol.25, No.3 (1972.),p.19-26
JaLC DOI	
Abstract	In this paper a central limit theorem for a random noise process, which was introduced by RICE (1944), is given.
Notes	
Genre	Departmental Bulletin Paper
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00250003- 0019

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

KEIO ENGINEERING REPORTS VOL. 25 No. 3

A CENTRAL LIMIT THEOREM FOR THE RANDOM NOISE PROCESS

BY

YASUSHI ENDOW

FACULTY OF ENGINEERING KEIO UNIVERSITY YOKOHAMA 1972

A CENTRAL LIMIT THEOREM FOR THE RANDOM NOISE PROCESS

YASUSHI ENDOW

Dept. of Administration Engineering, Keio University, Yokohama 223, Japan

(Received July 3, 1973)

ABSTRACT

In this paper a central limit theorem for a random noise process, which was introduced by R_{ICE} (1944), is given.

Introduction

Suppose that certain events occur in accordance with a Poisson process with stationary independent increments at the rate $\lambda > 0$, and each event has a certain intensity U and has an after-effect $U\Phi(t)$ after t time units. Let the intensities U_1, U_2, \cdots at occurences of events be mutually independent. The sum of after-effects at time t can be represented as

$$X_1(t) = \int_{-\infty}^{+\infty} \Phi(t-s) dy(s), \qquad (1.1)$$

where y(t), $-\infty < t < +\infty$, is a stochastic process whose sample functions are constant between events and increase by the corresponding intensity U_i at each event. This is called the *random noise process*, since it is a model of the shot effect in a thermionic vacuum tube. This kind of process was considered by RICE (1944) and was formulated by DOOB (1953). KAWATA (1955) proved some results, in connection with Rice theory, with $X_1(t)$ defined by (1.1) in a rigorous way from mathematical view points. In this paper we shall prove a central limit theorem for the random noise process.

Yasushi Endow

The random noise process

We give the mathematical definition of the random noise process following DOOB (1953). Also see KAWATA (1955).

We assume throughout this paper that $\Phi(t)$ is a real-valued function defined on $(-\infty, +\infty)$ such that

$$\Phi(t) \ge 0 \tag{2.1}$$

$$\int_{-\infty}^{\infty} \Phi(t) dt = a, \qquad (2.2)$$

$$\int_{-\infty}^{\infty} \Phi^2(t) dt = b, \qquad (2.3)$$

 $(0 < b < +\infty)$. $\Phi(t)$ is not necessarily zero on $(-\infty, 0)$. Let each intensity U_i have a common distribution function F(x) and $E\{U_i\}=\alpha$, $E\{U_i^2\}=\beta$, $(\beta < \infty)$. It is easily shown that the process y(t), $-\infty < t < +\infty$, defined above has stationary independent increments whose distribution function is given by,

where s > 0 and $F^{k}(x) = F * \cdots * F(x)$. Put

$$Y(t) = y(t) - y(0) - m(t), \qquad -\infty < t < \infty, \qquad (2.5)$$

where $m(t) = E\{y(t) - y(0)\} = \lambda \alpha t$. Then the process Y(t), $-\infty < t < \infty$, also has stationary independent increments, which satisfy that

$$E\{Y(t+s) - Y(t)\} = 0,$$

$$E\{|Y(t+s) - Y(t)|^{2}\} = \lambda\beta s.$$
(2.6)

Thus Y(t), $-\infty < t < \infty$, has necessarily orthogonal increments. Let

$$V(t+s) - V(t) = E\{|Y(t+s) - Y(t)|^2\}$$

$$Y((t, t+s]) = Y(t+s) - Y(t)$$

$$Y((t, t+s]) = E\{|Y((t, t+s])|^2\}, \quad (s>0).$$
(2.7)

A Central Limit Theorem for the Random Noise Process

The random measure $Y(\cdot)$ and the set function $V(\cdot)$ can be extended to be defined over any Borel set (c.f. ROZANOV (1963)).

The stochastic integral

$$X(t) = \int_{-\infty}^{\infty} \Phi(t-s) Y(ds)$$
(2.8)

is well-defined in mean square sense, since $\Phi(t) \in L_2(-\infty, \infty)$. As usual, we define the stochastic integral (1.1) as follows;

$$X_{1}(t) = \int_{-\infty}^{\infty} \Phi(t-s)dy(s)$$

= $\int_{-\infty}^{\infty} \Phi(t-s)d[y(s) - m(s)] + \int_{-\infty}^{\infty} \Phi(t-s)dm(s)$
= $\int_{-\infty}^{\infty} \Phi(t-s)Y(ds) + \lambda \alpha \int_{-\infty}^{\infty} \Phi(s)ds$
= $X(t) + \lambda \alpha a.$ (2.9)

Characteristic functions of the random noise process

When the process Y(t), $-\infty < t < \infty$, has stationary independent increments, LUGANNANI and THOMAS (1967) have obtained the form of the characteristic function of a random measure generated by Y(t). For a special case of random noise, the formula takes the form

$$E\{\exp[iuY(B)]\} = \exp\left[\lambda \int_{B} \int_{-\infty}^{\infty} \{\exp[iux] - iux - 1\} dF(x) ds\right]$$
$$= \exp[\lambda \mu(B)\{g(u) - iu - 1\}].$$
(3.1)

where B is any Borel set and g(u) is the characteristic function of U_i and $\mu(\cdot)$ is the Lebesgue measure. The characteristic function of the random noise process X(t) is given by

$$E\{\exp\left[iuX(t)\right]\} = \exp\left[\lambda \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{\exp\left[iu\Phi(t-s)x\right] - iu\Phi(t-s)x - 1\} dF(x) ds\right].$$

This formula was directly derived by KAWATA (1955). Actually this is a special special case of Lemma 2 given later. It follows that the process X(t), $-\infty < t < \infty$, is strictly stationary as well as weakly stationary. X(t) itself and its covariance function have the following representations (see KAWATA (1955));

$$X(t) = \int_{-\infty}^{\infty} e^{i\omega t} d\zeta(\omega), \qquad (3.2)$$

YASUSHI ENDOW

$$\rho(\tau) = EX(t+\tau)X(t) = \lambda\beta \int_{-\infty}^{\infty} e^{i\tau\omega} |\hat{\varPhi}(\omega)|^2 d\omega, \qquad (3.3)$$

where $\zeta(t)$ is a process of orthogonal increments defined by (3.5) below and $\hat{\Psi}(\omega)$ is the Fourier transform of $\Phi(t)$ in L_2 -sense. Define the process $Y^*(x)$, $-\infty < x < \infty$, by the stochastic integral

$$Y^{*}(\mu) - Y^{*}(\nu) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{-is\mu} - e^{-is\nu}}{is} Y(ds).$$
(3.4)

It is easily seen that $Y^*(x)$, $-\infty < x < \infty$, has orthogonal increments and

$$E[|Y^{*}(x+y) - Y^{*}(x)|^{2}] = \lambda \beta y.$$

We define the process $\zeta(\omega)$, $-\infty < \omega < \infty$, by

$$\zeta(\omega) = \int_{-\infty}^{\omega} \hat{\varPhi}(x) dY^*(x), \qquad (3.5)$$

which is shown to be $\zeta(\omega)$ in (3.3). We easily see that

$$E[|\zeta(\omega_2) - \zeta(\omega_1)|^2] = \lambda \beta \int_{\omega_1}^{\omega_2} |\hat{\varPhi}(x)|^2 dx.$$
(3. 6)

Consider the stochastic integral

$$\int_{-T}^{T} X(t) dt$$

which is shown to exist in mean square sense, since the integral

$$\int_{-T}^{T} \Phi(t-s) dt,$$

as a function of s, belongs to $L_2(-\infty, \infty)$. Put

$$Z(T) = C(T) \int_{-T}^{T} X(t) dt, \qquad (3.7)$$

where

$$C(T) = \left[E \left| \int_{-T}^{T} X(t) dt \right|^{2} \right]^{-\frac{1}{2}}$$

We give some lemmas.

LEMMA 1. For sufficiently large T>0,

$$C(T) = O(1/\sqrt{T}).$$
 (3.8)

Proof.

A Central Limit Theorem for the Random Noise Process

$$\frac{1}{T[C(T)]^{2}} = \frac{1}{T} E \left| \int_{-T}^{T} X(t) dt \right|^{2}$$

$$= \frac{1}{T} \int_{-T}^{T} \int_{-T}^{T} \rho(t-t') dt dt'$$

$$= \frac{\lambda \beta}{T} \int_{-T}^{T} \int_{-T}^{T} dt dt' \int_{-\infty}^{\infty} e^{i(t-t')x} |\hat{\Phi}(x)|^{2} dx$$

$$= 4\lambda \beta \int_{-\infty}^{\infty} \frac{\sin^{2} Tx}{Tx^{2}} |\hat{\Phi}(x)|^{2} dx. \qquad (3.9)$$

which, by the property of Fejér integral, converges to

$$\begin{aligned} 4\pi\lambda\beta|\hat{\boldsymbol{\Phi}}(0)|^2 = &4\pi\lambda\beta\left[\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\boldsymbol{\Phi}(t)dt\right]^2 \\ = &2a^2\lambda\beta, \end{aligned}$$

as $T \rightarrow \infty$.

LEMMA 2. Let $\varphi(s) \in L_2(-\infty, \infty)$ and define

$$Z = \int_{-\infty}^{\infty} \varphi(s) Y(ds). \tag{3.10}$$

Then the characteristic function of Z is given by

$$E\{\exp[iuZ]\} = \exp\left[\lambda \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{\exp[iu\varphi(s)x] - iu\varphi(s)x - 1\} dF(x) ds\right].$$
(3.11)

For the proof, see LUGANNANI et al. (1967).

A central limit theorem

We now give the following central limit theorem.

THEOREM. Let $Y(\cdot)$ be a random measure defined in 2 and X(t) be the random noise process defined by

$$X(t) = \int_{-\infty}^{\infty} \Phi(t-s) Y(ds),$$

where $\Phi(t)$ satisfies (2.1)-(2.3). Let Z(T) be defined by (3.7). Then for every real x, the distribution function $F_T(x)$ of Z(T) converges to the normal distribution

$$\mathcal{R}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt, \qquad as \ T \to \infty.$$
(4.1)

YASUSHI ENDOW

Proof. Since

$$Z(T) = C(T) \int_{-\infty}^{\infty} \left[\int_{-T}^{T} \Phi(t-s) dt \right] Y(ds), \qquad (4.2)$$

and

$$\int_{-T}^{T} \Phi(t-s) dt \in L_2(-\infty, \infty),$$

applying Lemma 2, we have

$$E\{\exp\left[iuZ(T)\right]\} = \exp\left[\lambda \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{\exp\left[iuxC(T)\int_{-T}^{T} \varphi(t-s)dt\right] - iuxC(T)\int_{-T}^{T} \varphi(t-s)dt - 1\right]dF(x)ds\right]$$
(4.3)

Write

$$E|uZ(T)|^{2} = u^{2}C^{2}(T)E\left|\int_{-T}^{T}X(t)dt\right|^{2}$$

= u^{2}. (4.4)

This is also described by

$$E|uZ(T)|^{2} = E\left|uC(T)\int_{-\infty}^{\infty}\left[\int_{-T}^{T}\Phi(t-s)dt\right]Y(ds)\right|^{2}$$
$$=\lambda\beta\int_{-\infty}^{\infty}\left[uC(T)\int_{-T}^{T}\Phi(t-s)dt\right]^{2}ds,$$

which is, using the fact $\beta = E\{U_i^2\} = \int_{-\infty}^{\infty} x^2 dF(x)$,

$$=\lambda \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[uxC(T) \int_{-T}^{T} \Phi(t-s) dt \right]^2 dF(x) ds.$$
(4.5)

Since the convergence of $F_T(x)$ to $\mathcal{N}(x)$ implies and implied by

$$E\{\exp [iuZ(T)]\} \longrightarrow -\frac{1}{2}u^2, \text{ as } T \longrightarrow \infty,$$

it is sufficient to prove, putting (4.3), (4.4) and (4.5) together, that

$$J(T) = \lambda \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ \exp\left[iuxC(T)\int_{-T}^{T} \Phi(t-s)dt\right] - iuxC(T)\int_{-T}^{T} \Phi(t-s)dt - 1 \right\} dF(x)ds + \frac{1}{2}u^{2}$$
$$= \lambda \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ \exp\left[iuxC(T)\int_{-T}^{T} \Phi(t-s)dt\right] \right\}$$

A Central Limit Theorem for the Random Noise Process

$$-\frac{1}{2}\left[iuxC(T)\int_{-T}^{T}\Phi(t-s)dt\right]^{2}-iuxC(T)\int_{-T}^{T}\Phi(t-s)dt$$

$$-1\left]dF(x)ds\longrightarrow 0, \text{ as } T\longrightarrow \infty.$$
(4. 6)

From the obvious inequality,

$$\left| \exp(ix) - \frac{1}{2}(ix)^2 - (ix) - 1 \right| \leq K \frac{x^3}{1 + |x|}, \quad (-\infty < x < \infty),$$

K being a positive constant, we have for every $\varepsilon > 0$,

$$|J(T)| \leq Ku^{3} \lambda \iint_{|xC(T)\Psi_{T}(s)| < \epsilon} |xC(T)\Psi_{T}(s)|^{2} dF(x) ds$$

$$+ Ku^{2} \lambda \iint_{|xC(T)\Psi_{T}(s)| > \epsilon} |xC(T)\Psi_{T}(s)|^{2} dF(x) ds$$

$$= Ku^{3} \varepsilon J_{1}(T) + Ku^{2} \lambda J_{2}(T), \text{ say,} \qquad (4.7)$$

where $\Psi_T(s) = \int_{-T}^{T} \Phi(t-s) dt$.

Let us evaluate $J_1(T)$ and $J_2(T)$ as follows.

$$J_{1}(T) \leq \lambda \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |xC(T)\Psi_{T}(s)|^{2} dF(x) ds$$

= $E|Z(T)|^{2}$
= 1. (4.8)

Since $C(T) = O(1/\sqrt{T})$, by Lemma 1, we have $\{x: |xC(T)\Psi_T(s)| \ge \varepsilon\} \subset \{x: |x| \ge \varepsilon M\sqrt{T}\}$ for some positive constant M. It follows that

$$J_2(T) \leqslant C^2(T) \int_{-\infty}^{\infty} [\Psi_T(s)]^2 ds \int_{|x| > \epsilon M \sqrt{T}} x^2 dF(x).$$

Noting that

$$C^2(T) \int_{-\infty}^{\infty} [\Psi_T(s)]^2 ds = \frac{1}{\lambda \beta},$$

$$J_2(T) \leqslant \frac{1}{\lambda\beta} \int_{|x| > \epsilon M \sqrt{T}} x^2 dF(x).$$
(4.9)

Thus we have by (4.7), (4.8) and (4.9), for any $\varepsilon > 0$,

$$\lim_{T \to \infty} \sup |J(T)| \leq K u^2 \varepsilon. \tag{4.10}$$

This completes the proof.

YASUSHI ENDOW

Acknowledgents

The auther wishes to express his gratitude for the guidance of Prof. Tatsuo KAWATA at Keio University.

REFERENCES

DOOB, J. L. (1953): Stochastic Processes, John Wiley, 426-436.

- KAWATA, T. (1955): On the stochastic Process of random noise, Kōdai Math. Sem. Rep. 7, 2, 33-42.
- LUGANNANI, R. and THOMAS, J. B. (1967): On a Class of Stochastic Processes which Are Closed under Linear Transformations, Information and Control, 10, 1–21.

LUGANNANI, R. and THOMAS, J. B. (1968): The Central Limit Theorem for a Class of Stochastic Processes, J. Math. Anal. Appl., 24, 25-38.

RICE, S. O. (1944): Mathematical Analysis of Random Noise, Bell System Tech. J. 23, 24, 1-62.

ROZANOV, YU. A. (1963): Stationary random processes, Holden-Day (Engl. trans.), 4-14.