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ABSTRACT

In this paper a central limit theorem for a random noise process, which was intro-
duced by Rice (1944), is given.

Introduction

Suppose that certain events occur in accordance with a Poisson process with
stationary independent increments at the rate 1>0, and each event has a certain
intensity U and has an after-effect U®(#) after ¢ time units. Let the intensities
Uy, Us, -~ at occurences of events be mutually independent. The sum of after-
effects at time ¢ can be represented as

X(t)= S+°° (t—5)dy(s), w1

—o0

where y(#), —co<t<+oo, is a stochastic process whose sample functions are con-
stant between events and increase by the corresponding intensity U; at each event.
This is called the random noise process, since it is a model of the shot effect in a
thermionic vacuum tube. This kind of process was considered by Rice (1944) and
was formulated by DooB (1953). KawaTa (1955) proved some results, in connec-
tion with Rice theory, with X,(#) defined by (1.1) in a rigorous way from mathe-
matical view points. In this paper we shall prove a central limit theorem for the
random noise process.
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The random noise process

We give the mathematical definition of the random noise process following
DooB (1953). Also see KawaTa (1955).

We assume throughout this paper that @(#) is a real-valued function defined
on (—oo, +4o0) such that

0(5)>0 @1
Sw o(Hdt=a, 2.2)
Sm D )dt=b, @.3)

(0<b<4o0). @) is not necessarily zero on (— oo, 0). Let each intensity U;
have a common distribution function F(z) and E{Uj}=«, E{U%} =4, (B<o0). It is
easily shown that the process w(#), —oo<#<+oo, defined above has stationary
independent increments whose distribution function is given by,

Fy(x)=Pri{y(t+s)—y@) <z}

=0, <0,
2. 4)
=e ¥, £=0,
o k
=e ¥+ 3 e‘“—@F’C*(as), >0,
k=1 k!
k
where s>0 and F*¥x)=Fx---xF(x).
Put
Y@ =y()—y0)—m(f),  —oo<lt<o0, 2.5)

where m(f)=E{y({)—y(0)}=2iat. Then the process Y({), —oo<f<oo, also has sta-
tionary independent increments, which satisfy that

E{Y({t+s)—- Y1)} =0,

(2. 6)
E{|Y(t+s)— YOI =2ps.
Thus Y(#), —co<t<oco, has necessarily orthogonal increments. Let
Vi+s)—Vy=E{| Yt +s)— Y(#)|%}
Y, t+s)=Y{+s)— Y 2.7

Y(( t+sD=E{| Y t+sDI*,  (s>0).
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A Central Limit Theorem for the Random Noise Process

The random measure Y(-) and the set function V(-) can be extended to be defined
over any Borel set (c.f. Rozanov (1963)).
The stochastic integral

X(z‘)=S D(t—3)Y (ds) @.8)
is well-defined in mean square sense, since @(#)eLy(—co, o). As usual, we define
the stochastic integral (1. 1) as follows;

o0

Xl(t)=S O(t—5)du(s)

—c0

- Smw Dt —5)d[y(s)— m(s)]+ Sl Ot —5)dm(s)

=)

=S°° @(t—s)Y(ds)+,2aS D(s)ds

=X(8)+ Aaa. @.9)

Characteristic functions of the random noise process

When the process Y (f), —oo<t<co, has stationary independent increments,
LucannanNt and THoMAs (1967) have obtained the form of the characteristic func-
tion of a- random measure generated by Y (#). For a special case of random noise,
the formula takes the form

Efexp [iu Y(B)l} =exp [ZSB S: {exp [iu] — inz— l}dF(x)ds]

=exp [Ap(B){g(u) —iu—1}]. @1

where B is any Borel set and g¢(%) is the characteristic function of U; and p(-) is
the Lebesgue measure. The characteristic function of the random noise process
X(t) is given by

FElexp [ X(2)]} =exp [zgw S: {exp [iu®(t —s)z] — i d(t — )z — 1}dF(a:)ds].

—00d —

This formula was directly derived by KawaTa (1955). Actually this is a special
special case of Lemma 2 given later. It follows that the process X(#), —oo<t< oo,
is strictly stationary as well as weakly stationary. X(#) itself and its covariance
function have the following representations (see Kawata (1955));

x®=\" ez ), 6.2
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.

,o(r):EX(H—-r)X(t):ZﬁS ¢+ B(w) *de,

3.3)

where {(f) is a process of orthogonal increments defined by (3.5) below and ®(w)
is the Fourier transform of @(¢) in L,-sense. Define the process Y*(x), —co<z<oo,

by the stochastic integral

emisE_gmisy

Vo)~ ¥6)= o PR ()

It is easily seen that Y*(x), —co<x< oo, has orthogonal increments and
El| Y z+y)— Y*x)|*|=28y.

We define the process {(w), —oo<w<oo, by
tw=\"_dwarHe),

which is shown to be {{w) in (3.3). We easily see that
@y a
E[IC(wz)-—C(wl)IZ]ﬂﬁS |P(x)|*dx.
Consider the stochastic integral
T
S Xt
-7
which is shown to exist in mean square sense, since the integral
T
S O(t—s)dt,
-7
as a function of s, belongs to Ly(—o0, c0). Put
T
Z(T):C(T)S X,
-T

where

C(T)= [E‘ S:X(t)dtiz]

We give some lemmas.

LemMA 1. For sufficiently large T>0,
CT)=00/v/T).

Proof.
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A Central Limit Theorem for the Random Noise Process

= % Sir SiTp(t—t’)dtdt’
-4 S:S:dtdt’ |" ec-onppan
—us(” ST 0w da. 6.9)

which, by the property of Fejér integral, converges to

4zzﬁ|@(0)12=4ﬂzﬁ[ﬁ S“ q)(t)dtT

=248,

as T—oo.

LeMMA 2. Let ¢(s)€Ly(—co, o) and define

Z=S°_° os) Y(ds). (3.10)

Then the characteristic function of Z is given by

oo

E{exp [iuZ]}=exp [2 S S

oo
—00 J —0c0

{exp [inp(s)z] —iu(p(s)x—l}dF(x)ds]. (3. 11)

For the proof, see LUGANNANI et al. (1967).

A central limit theorem

We now give the following central limit theorem.

THEOREM. Let Y(-) be a random measure defined in 2 and X(t) be the random
noise process defined by

X(t)= S: O(t—s5) Y (ds),

where O(t) satisfies (2.1)—(2.3). Let Z(T) be defined by (3.7). Then for every
real x, the distribution function Fr(x) of Z(T) converges to the normal distribution

3

32(.1})2“\712‘7—;817 e 2 dt, as T—oo. (4. ].)
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Proof. Since

Z(T):C(T)S [S:@(t—s)dt]Y(ds),

[se)
- 00
and

ST O(t—s)dte Lo( — oo, o),

applying Lemma 2, we have
Elexp [iuZ( T)]} =exp [z 81 Sl {exp [iuxc(T) S:(D(t—s)dt:l
— iuaC(T) S:@(l—s)dt— 1 \dF(x)ds]
Write

EluZ(T)*=uwCXT)E

S:X(t)dtr

=u’.

This is also described by

2

E]uZ(T)P:E‘MC(T) S:[S:@a—s)dt]y*(ds)
=zﬁS:[uC(T>S:q)(t-s)dt]zds,

which is, using the fact f=E{Ul)= Sw #dF(),

-

=zS: Sw [uxC(T) S:(b(t—s)dt]zdF(x)ds.

—00

Since the convergence of Fr(z) to J1(x) implies and implied by

Eexp [iuZ(T)]} — — —;—uz, as T'—— oo,

it is sufficient to prove, putting (4. 3), (4. 4) and (4. 5) together, that
) ) T
](T)=ZS S {exp[iuxC(T)S (D(t—s)dt]
- —o0 -7

oo

— iuaC(T) ST ([)(t—s)dt—l}dF(x)ds+ %u

—2 S: Sm {exp[iu:cC(T) S:@(t—s)dt]

-
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__;_[iuxC(T)S:q)(t-—s)dt] —zuxC(T)S O(t—s)dt

—1}dF(x)ds—>0, as T—— oo, 4. 6)

From the obvious inequality,

3

Iexp(zx)————(zx)z—(zx) 11<K T

(—OO<.I,'<OO),
K being a positive constant, we have for every >0,

J(T) | <Ku' S S \2C(TY o(s)[*dF(w)ds

|20 ()| <e

+ Ku2 SS |2C(TY 2(5) [*dF(z)ds

20T ()| >

=Ku*e]\(T)+ Ku*2Jo(T), say, 4.7
T
where qfﬂs):S O(t—s)dt.
-T
Let us evaluate J(T) and Jx(T) as follows.
D<A " erwsorarws

=E|Z(T)|
=1. 4.8)
Since C(T)=0(1/~/T), by Lemma 1, we have {z: |zC(T)Fr(s)|=elc{z: |z| =MV T}

for some positive constant M. It follows that

J(T)SCYT) Sio [T r(s))%ds Slzl>eMﬁ'x2dF(x)'
Noting that
)™ waorae= }—ﬁ

we have

1
J{T) < /3 S 2| > My

Thus we have by (4.7), (4.8) and (4. 9), for any >0,

2*dF (z). 4.9

lim sup |J(T)| < Ku?e. (4. 10)
T'—00
This completes the proof.
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