慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Note on a generalization of a law of large numbers
Sub Title	
Author	遠藤，靖（Endo，Yasushi）
Publisher	慶応義塾大学工学部
Publication year	1972
Jtitle	Keio engineering reports Vol．25，No．2（1972．），p．13－17
JaLC DOI	
Abstract	A sequence of probability distribution functions controling behavior of a sequence of mutually independent random variables is given as an outcome of a＂generator＂stochastic process．Even if the law of large numbers holds for each outcome of the generator process，the limit may depend on the outcome．In this paper a sufficient condition where the limits in the law of large numbers are constant for almost all outcomes of the generator process is given．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00250002－ 0013

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

KEIO ENGINEERING REPORTS

VOL. 25 No. 2

NOTE ON A GENERALIZATION
 OF A LAW OF LARGE NUMBERS

BY
YASUSHI ENDOW

NOTE ON A GENERALIZATION OF A LAW OF LARGE NUMBERS

Yasushi Endow
Dept. of Administration Engineering, Keio University, Yokohama 223.

(Received May 15, 1972)

Abstract

A sequence of probability distribution functions controling behavior of a sequence of mutually independent random variables is given as an outcome of a "generator" stochastic process. Even if the law of large numbers holds for each outcome of the generator process, the limit may depend on the outcome. In this paper a sufficient condition where the limits in the law of large numbers are constant for almost all outcomes of the generator process is given.

§ 1. Introduction

Let us consider Bernoulli trials, i.e., repeated independent trials such that there are only two possible outcomes for each trial, say, "success" and " failure", and their probabilities remain the same throughout the trials. It is usual to denote the two probabilities by p and $q(=1-p)$. If S_{n} is the number of successes in n trials, then S_{n} / n is the frequency of successes and assymptotically tends to p as n increases. Accurately, as n increases, the probability that the frequency of successes deviates from p by more than any preassigned $\varepsilon>0$ tends to zero, i.e.

$$
P\left\{\left|\frac{S_{n}}{n}-p\right|<\varepsilon\right\} \longrightarrow i \text {, as } n \longrightarrow \infty .
$$

This is the weak law of large numbers due to J. Bernoulli (1713). E. Borel (1909) made a statement much stronger than the Bernoulli's, which has been known as the strong law of large numbers: For almost every sequence of trials the frequency of successes tends to p, as n increases, i.e.

$$
P\left\{\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=p\right\}=1 .
$$

A. N. Kolmogorov (1928. 1929) obtained a generalization of these two theorems. If the variances of the random variables X_{k} are bounded by one and the same constant, or more generally if $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}\right) / n^{2}<\infty$, then the sequence of mutually independent random variables X_{1}, X_{2}, \cdots obeys the strong law of large numbers, i.e.

$$
\frac{1}{n} \sum_{k=1}^{n} X_{k}-\frac{1}{n} \sum_{k=1}^{n} E X_{k} \longrightarrow 0, \text { as } n \longrightarrow \infty
$$

holds with probability one.
In this paper we consider one generalization of Kolmogorov's theorem stated above. Suppose that a sequence of probability distribution functions, which governs behavior of a sequence of mutually independent random variables (abbreviatied a seq. of mirv.'s) is not given a priori but is determined by an outcome of a stochastic process called, a generator process. Even if the law of large numbers holds for each outcome of the generator process, the limit generally depends on the outcome. In this paper a sufficient condition imposed on the generator process is derived so that the limits are the same for almost all outcomes of the generator process.

§ 2. The main theorem.

Let us introduce some notations and definitions.
Let $I=\{1,2,3, \cdots\}, I_{0}=\{0,1,2, \cdots\}, R=(-\infty, \infty)$ and $S=\left\{F_{i}, i \in I\right\}$, where F_{i} 's are probability distribution functions. Put $W_{1}=(I)^{I_{0}}$ and $W_{2}=(R)^{W_{1}}$. Simbols $B W_{1}$ and $B W_{2}$ denote the smallest σ-algebras containing cylinder subsets of W_{1} and Borel cylinder subsets of W_{2} respectively. Here we define two shift-transformations $T_{1}: W_{1} \rightarrow W_{1}$ and $T_{2}: W_{2} \rightarrow W_{2}$ by

$$
W_{1} \ni w_{1}=\left(i_{0}, i_{1}, i_{2}, \cdots\right) \longrightarrow T_{1} w_{1}=\left(i_{1}, i_{2}, i_{3}, \cdots\right) \in W_{1},
$$

and

$$
\begin{aligned}
& W_{2} \ni w_{2}=\left(\left(x_{1}^{(0)}, x_{2}^{(0)}, \cdots\right),\left(x_{1}^{(1)}, x_{2}^{(1)}, \cdots\right), \cdots\right) \longrightarrow \\
& T_{2} w_{2}=\left(\left(x_{1}^{(1)}, x_{2}^{(1)}, \cdots\right),\left(x_{1}^{(2)}, x_{2}^{(2)}, \cdots\right), \cdots\right) \in W_{2}
\end{aligned}
$$

respectively.
Now let us introduce a probability measure P_{1} on a measurable space ($W_{1}, B W_{1}$) and define $X_{n}(\cdot)$ on W_{1} as a coordinate function, i.e. $X_{n}\left(w_{1}\right)=i_{n}$ for $w_{1}=\left(i_{0}, i_{1}, \cdots\right.$, $\left.i_{n}, \cdots\right)$. Let us call the sequence of random variables $\left\{X_{n}(\cdot): n \geqslant 0\right\}$ a generator process. Note that if T_{1} is measure-preserving, then for every $i \in I$,

$$
P_{1}\left\{w_{1}: X_{n}\left(w_{1}\right)=i\right\}=P_{1}\left\{w_{1}: X_{0}\left(w_{1}\right)=i\right\}, \text { for } n \geqslant 0 .
$$

Let P_{2} be a probability measure on ($W_{2}, B W_{2}$) satisfying the condition that for every integers $k, n_{1}<n_{2}<\cdots<n_{k}, i_{1}<i_{2}<\cdots<i_{k}$ and reals $x_{1}, x_{2}, \cdots, x_{k}$,

$$
\begin{aligned}
& P_{2}\left\{w_{2}: Y_{n_{1}}\left(i_{1}, w_{2}\right) \leqslant x_{1}, Y_{n_{2}}\left(i_{2}, w_{2}\right) \leqslant x_{2}, \cdots, Y_{n_{k}}\left(i_{k}, w_{2}\right) \leqslant x_{k}\right\} \\
& \quad=F_{i_{1}}\left(x_{1}\right) F_{i_{2}}\left(x_{2}\right) \cdots F_{i_{k}}\left(x_{k}\right),
\end{aligned}
$$

where $F_{i_{j}} \epsilon S$ and $Y_{n_{j}}\left(i_{j}, \cdot\right)$ is a coordinate function on W_{2} such that

$$
Y_{n_{j}}\left(i_{j}, w_{2}\right)=x_{i j}^{\left(n_{j}\right)}
$$

for $w_{2}=\left(\left(x_{1}^{(0)}, x_{2}^{(0)}, \cdots\right), \cdots,\left(x_{1}^{\left(n_{j}\right)}, x_{2}^{\left(n_{j}\right)}, \cdots\right), \cdots\right) \in W_{2}$. Thus $\left\{Y_{n}(i, \cdot): n \geqslant 0, i \geqslant 1\right\}$ is a seq. of mirv.'s on ($W_{2}, B W_{2}, P_{2}$). Note that the shift-transformation T_{2} is measurepreserving and mixing. Let ($W, B W, P$) be a product probability space of (W_{1}, $B W_{1}, P_{1}$) and ($W_{2}, B W_{2}, P_{2}$). We define a seq. of r.v.'s $\left\{Z_{n}(\cdot): n \geqslant 0\right\}$ on ($W, B W, P$) and a transformation $T: W \rightarrow W$ such that

$$
Z_{n}(w)=Z_{n}\left(w_{1}, w_{2}\right)=Y_{n}\left(X_{n}\left(w_{1}\right), w_{2}\right)
$$

and

$$
T w=T\left(w_{1}, w_{2}\right)=\left(T_{1} w_{1}, T_{2} w_{2}\right)
$$

respectively.
Under the assumptions stated above, we have the following theorem.
Theorem. If T_{1} is measure-preserving and ergodic, and if $\sum_{i \in I}\left|m_{i}\right| p_{i}<\infty$, then for a.a. w (almost all w),

$$
\frac{1}{n} \sum_{k=0}^{n-1} Z_{k}(w) \longrightarrow E Z_{0}=\int_{W} Z_{0}(w) P(d w), \text { as } n \longrightarrow \infty,
$$

where

$$
m_{i}=\int_{-\infty}^{\infty} x d F_{i}(x) \text { and } p_{i}=P_{1}\left\{w_{1}: X_{0}\left(w_{1}\right)=i\right\} \text { for } i \in I .
$$

Proof. From measure-preservation of T_{1} and T_{2} it follows that for every $n \geqslant 0$, $E\left|Z_{n}\right|=\sum_{i \in I} E\left|Y_{n}\left(i, w_{2}\right)\right| P_{1}\left\{w_{1}: X_{n}\left(w_{1}\right)=i\right\}=\sum_{i \in I}\left|m_{i}\right| p_{i}<\infty$. Thus by Birkhoff's individual ergodic theorem (c.f. [3]) there exists a T-invariant and integrable function $\hat{Z}(w)$ such that, for a.a. w

$$
\frac{1}{n} \sum_{k=0}^{n-1} Z_{k}(w) \longrightarrow \hat{Z}(w), \quad \text { as } \quad n \longrightarrow \infty,
$$

and $E Z_{k}=E \hat{Z}$ for $k \geqslant 0$. Since T_{1} is ergodic and T_{2} is mixing, T is ergodic. This can be proved in the same way as the mixing theorem (c.f. [3]).

It follows from this that $\hat{Z}(w)=$ const. for a.a. w. Therefore $E Z_{0}=E \hat{Z}=$ const. $=\hat{Z}(w)$ for a.a. w and this completes the proof.

Corollary. If the same assumptions as in the theorem are satisfied and if also $E\left|Z_{0}\right|^{2}<\infty$, then

$$
E\left|\frac{1}{n} \sum_{k=0}^{n-1} Z_{k}(w)-E Z_{0}\right|^{2} \longrightarrow 0, \text { as } n \longrightarrow \infty
$$

Proof. Since T is measure-preserving, we have $E\left|Z_{n}\right|^{2}=E\left|Z_{0}\right|^{2}<\infty$ for $n \geqslant 0$. It follows from this by the mean ergodic theorem due to J. von Neumann (1932) that there exists a T-invariant random variable $Z^{*}(w)$ such that

$$
E\left|\frac{1}{n} \sum_{k=0}^{n-1} Z_{k}(w)-Z^{*}(w)\right|^{2} \longrightarrow 0, \quad \text { as } \quad n \longrightarrow \infty
$$

This implies that as $n \rightarrow \infty$,

$$
\frac{1}{n} \sum_{k=0}^{n-1} Z_{k}(w) \longrightarrow Z^{*}(w)
$$

in probability. Choosing a subsequence $\left\{n^{*}\right\} \subset\{n\}$, we have that for a.a. w

$$
\frac{1}{n^{*}} \sum_{k=0}^{n^{*}-1} Z_{k}(w) \longrightarrow Z^{*}(w), \text { as } \quad n^{*} \longrightarrow \infty
$$

Hence by the theorem stated above, we must have $Z^{*}(w)=\hat{Z}(w)$ a.e. This completes the proof.

§ 3. Example

Consider a Markov chain as a generator process. Let $I=\{0,1,2, \cdots, N\}, I_{0}=$ $\{0,1,2, \cdots\}, R=\{0,1\}$ and $S=\left\{F_{i}=\left(\frac{i}{N}, 1-\frac{i}{N}\right), i \in I\right\}$. We interpret $\left(W_{1}, B W_{1}\right)$ and ($W_{2}, B W_{2}$) as the same sense in $\S 2$. Let also
where $0<c<1$.
A normalized non-negative solution of the system of equations

$$
\begin{equation*}
v M=v \tag{15}
\end{equation*}
$$

is $p=\left(p_{i}: 0 \leqslant i \leqslant N\right)$, where

$$
\begin{align*}
p_{i} & =\frac{1+r}{1-r^{N+1}} r^{i}, \quad \text { when } \quad r \neq 1 \\
& =\frac{1}{N+1}, \quad \text { when } r=1, \tag{16}
\end{align*}
$$

and

$$
r=\frac{c}{1-c} .
$$

Let $\left\{X_{n}(\cdot): h \geqslant 0\right\}$ be a Markov chain, which is defined by the initial distribution p and the transition matrix M, on ($W, B W, P_{1}$) with the state space S. It follows from $p M=p$ that a shift-transformation $T_{1}: W_{1} \rightarrow W_{1}$ defined by

$$
X_{n}\left(T_{1} w_{1}\right)=X_{n+1}\left(w_{1}\right) \quad(n \geqslant 0)
$$

is measure-preserving and ergodic. Let P_{2} be a probability measure on ($W_{2}, B W_{2}$) satisfying the condition that for every integers $k, n_{1}<n_{2}<\cdots<n_{k}, i_{1}<i_{2}<\cdots<i_{k}$ and e_{1}, e_{2}, \ldots, e_{k}

$$
P_{2}\left\{w_{2}: Y_{n_{j}}\left(i_{j}, w_{2}\right)=e_{j}, 1 \leqslant j \leqslant k\right\}=\prod_{j=1}^{k} X\left(i_{j}, e_{j}\right),
$$

where $X\left(i_{j}, e_{j}\right)=i_{j} / N$, if $e_{j}=1$ and $1-i_{j} / N$, if $e_{j}=0$, and $Y_{n_{j}}\left(i_{j}, \cdot\right)$ is a coordinate function on W_{2}. Transformations T_{2} and T, a probability space ($W, B W, P$) and a seq. of r.v.'s $\left\{Z_{n}(\cdot): n \geqslant 0\right\}$ are understood to be defined in the same way as in $\S 2$. Then by the theorem in $\S 2$, as $n \rightarrow \infty$, for a.a.w

$$
\begin{aligned}
\frac{1}{n} \sum_{k=0}^{n-1} Z_{k}(w) \longrightarrow \sum_{i \in I} p_{i} \frac{i}{N} & =\left(\frac{r\left(1-r^{N}\right)}{N(1-r)^{2}}-\frac{r^{N+1}}{1-r}\right) \frac{1+r}{1-r^{N-1}}, \text { when } r \neq 1 \\
& =\frac{1}{2}, \text { when } r=1
\end{aligned}
$$

This relation also holds in the mean convergence sense as justified by the corollary to the theorem stated above.

Acknowledgment

The auther wishes to express his gratitude for the valuable comments received from Prof. Heihachi Sakamoto at Keio Univ. He also wishes to express his thanks to Prof. Gisiro Maruyama at Tokyo Univ. of Education for the help with improvements of this paper.

REFERENCES

Chung, K. L., (1966): Markov chains with stationary transition probabilities, Springer, 92-93. Gnedenko, B. V., (1969): The theory of probability, Mir Pub., 219.
Halmos, P. R., (1956) : Lectures on ergodic theory, Math. Soc. Jap., 13-21, 39.
Loève, M., (1963): Probability theory, Van Nostrand, 14-26.

