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ABSTRACT 

A sequence of probability distribution functions controling behavior of a sequence of 
mutually independent random variables is given as an outcome of a "generator" stochastic 
process. Even if the law of large numbers holds for each outcome of the generator process, 
the limit may depend on the outcome. In this paper a sufficient condition where the 
limits in the law of large numbers are constant for almost all outcomes of the generator 
process is given. 

§ 1. Introduction 

Let us consider Bernoulli trials, i.e., repeated independent trials such that there 
are only two possible outcomes for each trial, say, " success " and " failure ", and 
their probabilities remain the same throughout the trials. It is usual to denote 
the two probabilities by p and q( =1-p). If Sn is the number of successes in n 
trials, then Sn/n is the frequency of successes and assymptotically tends to p as n 
increases. Accurately, as n increases, the probability that the frequency of successes 
deviates from p by more than any preassigned c>O tends to zero, i.e. 

This is the weak law of large numbers due to ]. BERNOULLI (1713). E. BoREL 
(1909) made a statement much stronger than the Bernoulli's, which has been known 
as the strong law of large numbers: For almost every sequence of trials the fre­
quency of successes tends to p, as n increases, i.e. 

P{lim Sn =P} =1. 
n-+oo n 

13 



Y ASUSHI ENDOW 

A. N. KoLMOGOROV (1928. 1929) obtained a generalization of these two theorems. 
lf the variances of the random variables Xk are bounded by one and the same con-

= 
stant, or more generally if L: Var (Xn)/n 2 <CXJ, then the sequence of mutually indep-

n=t 

endent random variables X1, Xz, ··· obeys the strong law of large numbers, i.e. 

1 n 1 n 
- 2: Xk- - 2: EXk ~ 0, as n ~ CX! 
n k=l n k=l 

holds with probability one. 
In this paper we consider one generalization of Kolmogorov's theorem stated 

above. Suppose that a sequence of probability distribution functions, which governs 
behavior of a sequence of mutually independent random variables (abbreviatied 
a seq. of mirv.'s) is not given a priori but is determined by an outcome of a stochas­
tic process called, a generator process. Even if the law of large numbers holds 
for each outcome of the generator process, the limit generally depends on the 
outcome. In this paper a sufficient condition imposed on the generator process is 
derived so that the limits are the same for almost all outcomes of the generator 
process. 

§ 2. The main theorem. 

Let us introduce some notations and definitions. 
Let 1={1, 2, 3, ···}, lo={O, 1, 2, ···}, R=( -CXJ, CXJ) and S={Fi, iEl}, where F/s are 

probability distribution functions. Put W1 =(!)1 • and W 2=(R)w•. Simbols BW1 
and BWz denote the smallest a-algebras containing cylinder subsets of W1 and 
Borel cylinder subsets of Wz respectively. Here we define two shift-transformations 
T1: Wt---+ Wt and Tz: Wz---+ Wz by 

and 

respectively. 

Wz3Wz=((xi0
l, X~0J, ···), (xi0 , x~0 , ···), ···) ~ 

Tzwz=((x?l, X~1 l, ···), (x?l, X~2l, ···), ···)E Wz 

Now let us introduce a probability measure P1 on a measurable space (Wt, BWt) 
and define Xn( ·) on W1 as a coordinate function, i.e. Xn(Wt) =in for Wt = (io, it, · · · , 
in,···). Let us call the sequence of random variables {Xn( · ): n~O} a generator 
process. Note that if T1 is measure-preserving, then for every iEI, 

Pt{w1: Xn(Wt) =i} =Pt{w1: Xo(Wt) =i}, for n~O. 

Let Pz be a probability measure on ( Wz, BWz) satisfying the condition that for 
every integers k, n1 < nz < · · · < nk, it< iz < · · · < ik and reals Xt, xz, · · ·, .Tk, 

Pz{wz: Yn1(it, Wz)~Xt, Yn 2(iz, Wz)~Xz, ···, Ynk(ik, Wz)~xk} 

=Fi1(xJ)Fi 2(xz) · ·· Fik(xk), 

14 



Note on a generalization of a law of large numbers 

where Fi,;ES and Yn,;Ci,;, ·) is a coordinate function on W2 such that 

Yn .i(i h Wz) = x~jil 

for Wz=((x{0l, xi0
l, ···), ···, (x{nP, xinil, ···), ···)E W2 • Thus {Yn(i,· ): n~O, i~1} is a seq. 

of mirv.'s on ( Wz, BWz, Pz). Note that the shift-transformation T2 is measure­
preserving and mixing. Let (W, BW, P) be a product probability space of (W11 

BW1, P1) and (W2, BW2, Pz). We define a seq. of r.v.'s {Zn( · ): n~O} on (W, BW, P) 
and a transformation T: W---+ W such that 

and 

respectively. 
Under the assumptions stated above, we have the following theorem. 

THEOREM. If T1 is measure-preserving and ergodic, and if L:: lmi!Pi<oo, then 
iEI 

for a.a. w (almost all w), 

1 n-1 l n k~o Zk(w) ~ EZo = J w Zo(w)P(dw), as n~oo, 

where 

Proof. From measure-preservation of T1 and T2 it follows that for every n~O, 
EIZnl = L:: El Yn(i, w2)!Pdw1: Xn(wi) =i} = L:: !milA< oo. Thus by Birkhoff's individual 

iEI iEl 

ergodic theorem (c.f. [3]) there exists a T-invariant and integrable function Z(w) 
such that, for a.a. w 

1 n-1 ~ 

- ~ Zk(w) ~ Z(w), as n ~ oo, 
n k=o 

and EZk=EZ for k~O. Since T1 is ergodic and T2 is mixing, T is ergodic. This 
can be proved in the same way as the mixing theorem (c.f. [3]). 

It follows from this that Z(w)=const. for a.a. w. Therefore EZo=EZ=const. 
=Z(w) for a.a. w and this completes the proof. 

CoROLLARY. If the same assumptions as in the theorem are satisfied and if 
also EIZol 2 <oo, then 

1

1 n-1 12 
E n k~o Zk(w)- EZo ~ 0, as n~oo. 

Proof. Since T is measure-preserving, we have EIZni 2=EIZol 2<oo for n~O. 
It follows from this by the mean ergodic theorem due to J. von NEUMANN (1932) 
that there exists a T-invariant random variable Z*(w) such that 
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This implies that as n-+co, 

1 n-1 

- L; Zk(w) ----* Z*(w) 
n k=o 

in probability. Choosing a subsequence {n*} c {n}, we have that for a.a.w 

1 n*-1 * L; Zk(w) ----* Z*(w), as n* ----* co. 
n k=o 

Hence by the theorem stated above, we must have Z*(w)=Z(w) a.e. This completes 
the proof. 

§ 3. Example 

Consider a Markov chain as a generator process. Let !={0, 1, 2, ···, N}, lo= 

{0,1,2,···}, R={0,1} and s={Fi=(~,1- ~),iEl}. We interpret (WhBW1) and 

( Wz, B Wz) as the same sense in § 2. Let also 

0 1 2 3 N-2 N-1 N 

0 1-c c 0 0 

1 1-c 0 c 0 0 

2 0 1-c 0 c 0 0 

3 0 0 1-c 0 c 0 0 

0 1-c 0 c 0 0 

M=· 0 

0 1-c 0 c 0 

N-2 0 0 1-c 0 c 0 

N-1 0 0 1-c 0 c 

N 0 0 1-c c 

where O<c<l. 
A normalized non-negative solution of the system of equations 

is P=(Pi: O<:i<:N), where 

and 

vM=v 

1 
N+1' 

when r=1, 

c 
r=l-c" 
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Let {Xn( · ): h~O} be a Markov chain, which is defined by the initial distribution 
p and the transition matrix M, on (W, BW, P1) with the state space S. It follows 
from PM=P that a shift-transformation T1: We~ W1 defined by 

(n~O) 

is measure-preserving and ergodic. Let P2 be a probability measure on ( W2, BW2) 
satisfying the condition that for every integers k, n1 <n2< ... <nk, i1 <i2< ... <ik and e1, 

k 

P2{w2: Yn/ih w2)=eh 1~j~k}= 0 X(ih ej), 
j=l 

where X(ihei)=ii/N, if ei=1 and 1-ii/N, if ei=O, and Yniih·) is a coordinate 
function on W2. Transformations n and T, a probability space (W, BW, P) and 
a seq. of r.v.'s {Zn( · ): n~O} are understood to be defined in the same way as in 
§ 2. Then by the theorem in § 2, as n-+co, for a.a.w 

1 n-l i (r(1-rN) yN+l) 1+r 
~ L: Zk(w)-----+ L: Pi-N= N(1 )2 -1- 1 N-l , when r~1 n k=o iEI -r -r -r 

1 
= 2 , when r=l. 

This relation also holds in the mean convergence sense as justified by the corol­
lary to the theorem stated above. 
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