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ABSTRACT

Sufficient condition for the positiveness of the trapped electron velocity distribution
function in electron plasma is analyzed in the case of one-dimensional stationary wave
solution of Vlasov and Poisson equations. If the electrostatic potential ¢ has a value be-
tween ¢min and some critical value ¢, the sufficient condition for the positiveness is satis-
fied. The critical potential ¢ are evaluated in the limits of small and large ¢.

1. Introduction

The stationary one-dimensional nonlinear electrostatic wave has been studied by
BeErRNSTEIN, GREENE and KruskaL (1957) with use of Vlasov and Poisson equations.
The solutions of the basic equations were given as follows: If the potential and
the distribution functions of ion and untrapped electron were given, Poisson equa-
tion allowed the distribution of the trapped electron to be calculated. The latter
distribution function, however, is not always positive. An example was given by
HaTor! and SuciHARA (1970). The trapped electron distribution was shown to be
negative for some ranges of parameters of the untrapped electron velocity distribu-
tion.

ScHAMEL (1971) analyzed a necessary condition for the positiveness by assum-
ing the trapped electron velocity distribution to be isotropic. Instead of the Poisson
equation, TAsso (1969) used quasi-neutrality condition and showed that a sufficient
condition for the positiveness was satisfied in an interval of potential. But his
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theory cannot take account of potential forms, i.e., sinusoidal, solitary and shock-
like etc.. The aim of the present paper is to give a simple expression of a sufficient
condition for the positiveness of the trapped electron velocity distribution function
in an electron plasma.

2. Positiveness of f(E)
The basic equations for stationary electrostatic waves are

p H&v) | e di(x) 3f(z,0)

ox m dx ov

a*¢(z)
dz®

=0, (1)

—dr Sf v f(z, v)—dnens, (2)

where f and ¢ are the electron velocity distribution function in the wave frame
and potential, respectively. Ion density is denoted by #,. The general solution of
equation (1) is

F=RE),  E=-pmii—ep. (3)

Substituting (3) into (2) and denoting “trapped ” and “untrapped” by subscripts ¢
and #, we obtain

| " ap B E-+ep) F =ated), (4)
where

oo 1
ey == wn= (" apfuEImEep) (5)
is the density of trapped electron at x corresponding to ¢(z). Because of (4),
gledmin)=0. If the charge density MNeg¢)= —d?p/dz* and n, and f.(E) are prescrib-
ed, gleg) is a known function and (4) is an integral equation of the convolution
type for f,(E) and following BERNSTEIN, GREENE and KrRUsSKAL (1957), the solution
is given by way of Laplace transform

V2m 2m S“ ? dg(V) 1 _
FiE)= L vy = R (6)
From the expression (6), it follows that 761?7>0 is a sufficient condition for the
positiveness of f,(E). From (5) we have
dgV) 1 dN(V) 1 S"" SuE)
AV " e AV T 2vm Ve BV (7

Then the sufficient condition for the positiveness is given by
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dFE ——=5——7—2>0, (8)

L flE) M
—~e$min (E+ V)% 47‘:8

where

M= Maximum of%. (9)

For physically reasonable potential ¢, M is positive. {c.f. VALEO, OBERMAN and Krus-
KAL (1969).] If fu(E) is defined in the whole range of E, the first term of (8)
goes to oo as V—egmin and decreases monotonically to zero as V—co. Then V
dg(V)

av

has a critical value V.(=e¢,) beyond which
that of Tasso (1969).

In the limit of small and large ¢, the critical potential ¢. can be derived analy-
tically as follows: We have small ¢ expansion by making partial integration in (8),

1 fu(_e¢min) —_— sy M
\/m— \/e(¢_¢mln)+2 \/e(¢““¢min)fu(“‘e¢min)+"‘}“H>O. (10)

<0. The result is similar to

This expansion has meaning if e(¢—@min)< Vr, Vr being the width of f.(V). With

use of (10), the critical ¢, in the small ¢ limit is given by
47Tefu( e¢mln)]

¢ ¢mln— e [ \/ZmM . (11)

When V is much larger than Vi+ Vr, V, being defined by f.(V,)=maximum, it
follows that

1 S“’ JuE)AE )dE nu (12)
\/zm —e$min (E+ V)% ’
where #n, , the untrapped electron number density, is defined by
_(® __JABME 3
"“‘wam.-n Vem(E+V) 9

According to MoNTGoMERY and Joyck (1969), #, are connected with #,, unperturb-
ed number density, by

V
= N”"\/ g (14)
¢1+
Then in the limit of large ¢, it follows from (8), (12) and (14) that
2
__l_ 2renov Vr ]? 15
b= [ 1o

For the intermediate value of ¢, the following expression for the positiveness criter-
ion will be convenient

1 Su(—epmin) +4fu(3ep—4epmin) M
N/ 2me($— pmin) 6 4ze

>0. (16)
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where Simpson’s formula has been used for evaluating the integral.
For examples we take a potential given by

___ b
9la)= cosh? (kx)” (17)

This expresses a solitary wave if % is real and / is a positive integer. It follows
from (17) that
k2
M= - (Bl4+2),  Pmin=0. (18)

When & is pure imaginary and /= -1, the potential ¢(z) given by (17) reduces to
a sinusoidal one, and it follows that

M=2",  $nim=—d. ' (19)

It is to be noted that in both cases M are positive and the critical values ¢. exist.
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