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ABSTRACT 

Necessary conditions for optimal solutions of games are derived when pure strategies 
exist both for a minimizer and for a maximizer. The Kuhn-Tucker condition for a static 
game (continuous game) is obtained by use of a pair of Lagrangian functions. Next, Euler, 
Clebsch & Weierstrass conditions for a dynamic game (differential game) are also derived 
by use of a pair of Lagrangian functions, based on calculus of variations. Finally, the 
relationship between the Kuhn-Tucker condition and the Euler, Clebsch & Weierstrass 
conditions is discussed. 

§ 1. Introduction 

The purpose of this paper is to derive necessary conditions that optional solu
tions of games must satisfy. We study only the case when pure strategies exist 
both for a minimizer y and for a maximizer y. By a static· game is meant a so
called continuous game (BLACKWELL & GIRSHICK 1954) and by a dynamic game 
an ordinary differential game (BERKOWITZ 1961, 1964). 

As to the static game necessary conditions when a pay-off function F(u, u) 
and an inequality constraint fl(Y, y)::;;Q are defined as functions of only u and y 

have been obtained already (SHIMIZU 1969). The Kuhn-Tucker condition for such 
game was derived from consideration of a pair of Lagrangian functions. This 
paper extends that theorem to the case when it contains a state vector J! which· is 
defined by a process equation /(J!, y, y) =Q. 

Original Report (in Japanese) has been published in the Transactions of the Society of 
fnstrument and Control Engineers, Vol. 6, No. 5, pp. 429,.._,438 (fino). 
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KIYOT AKA SHIMIZU 

In his pioneering studies on differential games, Berkowitz derived necessary 
conditions based on calculus of variations. He considered the case when optimal 
strategies for the minimizer y and the maximizer 12 are of feed back regulation of 
~ and inequality constrains are given by b,(~(t), y(t))~Q and b'(~(t), 12(t))~Q. 

In this paper we consider a differencial game for which there is a constraint 
of type g(y, 12)~Q. Similarly to against the static game we consider a pair of 
Lagrangian functions and obtain the Euler equation and Clebsh condition cor
responding to g(Y, 12)~Q, etc. A pursuer-evader game (Ho 1965) is regarded as a 
special case of the general differential game. 

In appendix the relationship between static and dynamic problems is discussed 
showing that from the Euler, Clebsch & Weierstrass conditions (BERKOWITZ 1961, 
Buss 1946) the Kuhn-Tucker condition (KuHN & TucKER 1951) is derived. 

§ 2. Necessary Conditions for Pure Strategies of Static Game 

We will discuss a static game consisting of two players A (a minimizer) and 
B (a maximizer). The player A wishes to minimize a pay-off function selecting 
a strategic variable y, and the player B wishes to maximize the same function 
choosing 12 under given constraints. 

The game is governed by a process equation 

/(~, y, 12) =Q ( 1) 

and an inequality constraint 

( 2) 

where ~ is an n-dimensional state vector, y an v-dimensional minimizing vector 
and 12 an q-dimensional maximizing vector. The state of game is determined by 
Eq. (1) and choices of strategic variables (the minimizer y and the maximizer 12) 

are constrained by Eq. (2). 
The pay-off function is expressed as 

P=F(~, y, 12) ( 3) 

We assume that f, g, F are continuous differentiable functions with respect to 
~, y, 12 and of/o~ is a-non-singuler matrix. In addition, dimension of fJ is less than 

dimension of ( ~) and og/o!&., !:2.= ( ~) has a maximum rank. 

It is assumed that there exist pure strategies both for the minimizer and for 
the maximizer. Then our problem is to find a saddle point solution (the optimal 
minimizer y 0 and the optimal maximizer 12°) satisfying the constraints (1) (2). 
That is, for any y satisfying/(~, y, 12°)=Q and g(Y, 12°)~Q and for any 12 satisfying 
/(~, y0

, 12) =Q and g(y0
, 12)~0, the following inequality holds. 

(4) 
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Constraint Qualification: Let {u0
, v0

} belong to the boundary of the constraint 
set. Let the inequality g(u, y) ~Q be separated into two groups 

and 

Then it is assumed that for each {?&0
, y0

} of the boundary of the constraint set 
any vector differential du, dy satisfying homogeneous linear inequalities 

( 5) 

( 6) 

is tangent to an arc contained in the constraint set. Furthermore, there exists 
some vector differential du, dy, d:c satisfying 

Now let us define a pair of Lagrangian functions 

(/Jt(:C, ?&, Y, p, J) =F(;t;, ?&, Y) + p T /(;t;, ?&, Y) + JT fj(U, Y) 

(/J2(:c, u, Y, p, J)=F(:c, u, Y)+pTf(:c, u, Y)+JTg(u, Y) 

( 7) 

( 8) 

THEOREM 1. In order that r&0
, y 0 be the pure strategies of the static game for 

the optimal minimizer and the maximizer, respectively it is necessary that r&0
, y0 

and some p0
, /,

0 satisfy the following conditions. 

(9) 

(10) 

(11) 

(p =unrestricted) (12) 

(13) 

Proof. This theorem can be proved by use of Farkas' lemma* in the case of 

* Farkas' Lemma in the case of both Inequality and Equality: 
An inequality gT~~O holds for all vectors ~ satisfying A~~Q and B~=Q where A, B 

are matrices if and only if l!=AT!+BT~ for some vectors t~Q and ~=unrestricted. 
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containing equalities also and by a method analogous to standard derivation of the 
Kuhn-Tucker condition* for a problem subject to inequality and equality con
straints. 

We assume existence of a saddle point solution {&:0
, zl}. Let the vector &:0 

minimize F(JJ(U, zl), u, y0
) under /(JJ(U, y0

), u, y0
) = Q and uCu, Y0

) ~ Q. Let Y0 maximize 
F(JJ(U0, y), u;0

, y) under /(JJ(U0
, y), u;0

, y)=Q and u(u0
, y)~Q (The constraint qualification 

(5) (6) is assumed to be satisfied). Therefore, at the saddle point (stationary point) 
y,0 and y0 constitute minimum and maximum points of F, respectively. Under this 
situation, however, the state vector JJ must constitute a saddle point also. Because 
the vector {&:0

, y0
} cannot constitute a saddle point under /(JJ, u, y)=Q if a saddle 

point is not formed also with respect to components of JJ. Thus JJ0(y,0
, y0

) may be 
separated into JJ~, a set of components forming a minimum and JJ~, a set of com
ponents forming a maximum. Here a composite vector of JJ~ and JJ~ becomes J;0

• 

For simplicity of description a function f and derivative ajjaJJ evaluated at the 
point {JJ0

, y,0
, y 0

} are written as / 0 and aj 0 /aJJ below. 
Then inequalities 

must hold for any vector differentials {du, dJJt} satisfying 

a[o du=O 
au - -

Furthermore, inequalities_ 

* min F(:c) 
X 

subj. to j(:c)=Q 

g(:c)~Q 

therefore 

therefore 

aro 
--1-du=O au - -

(14. a) 

(14. b) 

(15. a) 

(15. b) 

(15. c) 

(15. d) 

(16. a) 

The constraint qualification is assumed. Then necessary Kuhn-Tucker condition is given 
byL~=Q, L'!.=Q, L.!:::;;Q, r~Q. p=unrestricted whereL=F+pT f+JTg. 
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(16. b) 

must hold for any vector differentials d11, d:c satisfying 

a 10 

-
0
fJ d11~0 

11 -
(17. a) 

(17. b) 

ajo d =0 
()y 11 - (17. c) 

(17. d) 

Eqs. (15. b) (17. b) are trivial' since g does not include ;c. Eqs. (15. c, d) (17. c, d) 
are conditions given against the equality constraint. Eqs. (14. a, b) (16. a, b) are 
obvious from geometric consideration like the Kuhn-Tucker's proof (KuHN & 
TucKER 1951). Then applying the Farkas' lemma in the case of both inequality 
and equality to Eqs. (14) (15) and Eqs. (16) (17), we obtain 

(18. a) 

(for some .110 ;;;::Q, p0 =unrestricted) 

(18. b) 

(19. a) 

(for some j 10 ;;;::0, 1°=unrestricted) 

(19. b) 

Eqs. (18. a) (19. a) may be written as 

by adding zeros as components to .110 and j 10 to form ,1° and J0
• Consequently, 
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On the other hand from the original inequality 

(24) 

(25) 

Furthermore 

(26) 

(27) 

As necessary conditions of the game, Eqs. (20) to (27) must be satisfied simul
taneously for .1°~Q, j0 ~Q, <}/, s[i0 =unrestricted. We can, however, set ¢=¢ and 
J = J in general. This can be verified as follows1

). - -

Representing Eqs. (14) (16) and Eqs. (15) (17) in vector form at the same time, 
we have 

(28) 

for any vector differentials {dy, d~1, dy, d~z} satisfying 

dy 

(29) 

dy 

(_y_:_ 
ay , 

ajo ato ajo ) d~l =Q 

a~l ' a12 ' a~2 a12 
(30) 
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Therefore by application of the Farkas' lemma to Eqs. (28) (29) (30) we have for 
some vector ,110 ;;::Q and <}=unrestricted. 

( 
apo apo. 
au ' a.r1 ' 

- (- ar;lo - ar;lo )T to (- ato 
- au ' o, -----au' Q J + au ' (31) 

By adding zeros as components to .110 we have 

( 
apo. apo 
au ' a.r1 ' 

(32) 

Dimension of J is equal to the number of columns of the transposed matrix 

(- ~~ , Q, - ~~ , Q) which is equal to dimension of g. Similary, dimension of 

¢ is equal to dimension of f. Eq. (32) may be written separately as Eqs. (20) (21) 
and Eqs. (22) (23) in which <), j are replaced by p, J, respectively. Furthermore, 
since Eq. (21) and Eq. (23) appear to be the same type of equation, they can be 
expressed as Eq. (9) together with. Other conditions may be derived in the analo
gous manner. Hence the necessary conditions (20) to (27) are stated briefly as Eq. 
(9) to (13). 

Theorem 1 may be regarded as Kuhn-Tucker condition for the game. 

§ 3. Necessary Conditions for Pure Strategies of Dynamic Game 

We will consider a dynamic game in which a state is determined by a system 
of differential equations 

dx dt =f(,r,U,'/1), ,r(to)=.ro (33) 

where ,rEX is an n-state vector, UE U is an r-dimensional minimizer and QE V is a 
q-dimensional maximizer. The vectors u, 11 are constrained by an inequality con
straint. 

r;(u, y) ~Q (34) 

A pay-off function of the game is given by the integral form 

~
tl 

P=xo= /o(.r, u, u)dt 
to 

(35) 
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Then our problem is to determine the function u(t) which minimizes P subject 
to the process equation (33) and the constraint (34) and the function u(t) which 
minimizes P. The following assumptions are made : 

( i ) The functions fo, f, g are of the class CC2
) with respect to ;c, u and u. 

( ii) Dimension of g is less than dimension of u plus dimension of u, i.e. 
s<r+q. 

(iii) A matrix [agdawi], ~={u, u}, has maximum rank at each point in 
xxuxv. 

(iv) Let the minimizer u and the maximizer u be admissible, where the word 
" admissible " means belonging to the bounded and closed set and yielding the 
trajectory which is a piece-wise continuously differentiable function with finite 
derivative values and satisfies all constraints. 

Let us define a Hamiltonian function 

H(:c, U, U, <f;o, p)=¢ofo(x, u, v)+pTf(;c, U, U) (36) 

and a pair of Lagrangian functions 

f/J1(:c, t, u, u, ~' <f;o, p, 2.)=H(:c, u, u, <J;o, p)-pTx+JT(g(u, u)+a) (37) 

f/J2(:c, t, u, u, ~' <f;o, p, 2.)=H(:c, u, u, <f;o, p)-pT;tJ-JT(g(u, u)+a) (38) 

where ~=(~I, ~2, ... , ~s)T and a is a vector whose COmponents are ~~~0 (i=1, 2, ···, s). 
Then the following theorem holds and gives necessary conditions for the solution 
to the differential game. 

THEOREM 2. It is assumed that there exist pure strategies for the minimizer 
u and the maximizer u. Let U0(t)E U, U0(t)E V, ;c0(t)EX, to~t~t1, be an optimal 
admissible minimizer, an optimal admissible maximizer and the corresponding 
trajectory. Then there exist a constant ¢o~O and a non-zero vector {¢0 , p(t), 2,(t)} 
such that p(t) and J(t) are continuous on the interval to~t~t1, except perhaps at 
values of t corresponding to corners of the solution curve, where they possess 
unique right and left limits and satisfy the following conditions. Moreover, we 
can set ¢o = 1 assuming normality of the trajectory. 

( i ) (Euler equations) Along the optimal trajectory 

aRT 
:i:=--- ap (39) 

. aHT 
¢=---
- a:c (40) 

aH +,{Tag =O 
au - au - (41) 

aH -,{Tag _ 0 au - au -- (42) 

t,T g=O (43) 
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( ii) (Result obtained from Clebsch condition) 

J~Q (44) 

(iii) (Weierstrass-Erdmann's corner condition) At the corner of the solution 
curve p(t) and J(t) have well defined one-sided limits that are equal. 

(i v) (Weierstrass condition) For any element {,z;0 , y 0
, 1l, ¢0 , p} of the solution 

curve and for any admissible minimizer y and admissible maximizer u 

( v) (Transversality condition) p(f1) =Q ( 47) 

Proof. We assume that there exist pure strategies {y0
, u0

} for the minimizer 
and the maximizer. Necessary conditions for the pure strategies are obtained by 
combining necessary conditions for the optimal minimizer y 0 given 'l!='!l and 
necessary conditions for the optimal maximizer 'l/0 given y=y0 (BERKOWITZ 1964). 
The necessary conditions for the optimal control obtained by variational calculus 
are all seen in the famous Berkowitz's paper (1961). Thus we will apply only his 
results to derive the necessary conditions for the pure strategies of the game. 

Let us note that r; must not contain :c so as to yield the same adjoint equa
tion both for the minimization problem and for the maximization one.* 

Suppose that u=u0 be fixed. Then using f/J1 defined by (37) and applying the 
necessary condition for the optimal control (minimization) constrained by the 
inequality (34), we obtain the following condition in the case when r; does not 
depend on ,z;. That is, from Euler equation and Clebsch condition for the optimal 
minimizer we have 

oHT 
x=--- ap 

. oHT 
¢=---
- 0,2: 

(48) 

(49) 

(50) 

(51) 

along the optimal trajectory. In above non-negativity of J, being defferent from 
the Berkowitz's paper, is caused by direction of the inequality. 

* When g contains :c as its argument, it becomes that (/)1~~(/)2~ and no matter how 
signs of ¢ 0, cp, J in (/)2 are adjusted, we cannot set right description of stationarity condi
tions in which signs of J for minimization and maximization problems are consistent to 
each other. 

95 



KIYOTAKA SHIMIZU 

Next suppose that y, =1::!0 be fixed. Define the following Lagrangian and 
Hamiltonian functions 

dJ 2 =H-pT :j;-JT(g+t;) 

H=!o(JJ, Y,, v)+pTf(;x;, Y,, y) 
(52) 

we will apply the Berkowitz's theorem to our maximization problem under the 
same constraints. Then corresponding to maximization, direction of an inequality 
in Clebsch condition changes to the opposite direction for the minimization. But 
since the third term of d>z is defined with negative sign contrary to that of W1, 
we get J~Q, consequently. Namely as the Euler equation and the Clebsch condi
tion for the optimal maximizer the following must be held along the optimal 
trajectory. 

oHT 
x=~---- acp 

.: oHT 
¢=---
- a;x; 

(53) 

(54) 

(55) 

(56) 

It is easily proved, however, that we can set ¢=¢ and J=J. First, proof of 
¢= p is made with the manner similar to Berkowitz's (1964). From an evident 
transversality condition for the free terminal state problem, we have p(ti)=.p(ti) 
and furthermore since ¢(t) and ¢(t) are a solution to the same linear homogeneous 
differential equation, we get p(t)=.p(t) on the interval to~t~tl. 

On the other hand, as to 2, it is that J~Q and J~Q. Furthermore since 
AiOi=O and ~iOi=O, then .Ai=~i=O when Oi~O. Therefore letting an index set of 
Oi=O be Io, 

As both Ai and ~i are of the same sign and non-negative, we can take .Ai=~i~O, 
iElo such that the above two equations are satisfied. We will state the reason 
below. Let l be a number of components of Io. Since there are (r+q+l) con
straint equations of the above two equations plus {gi=O, iE/0} against (r+q+2l) 
free variables of u, v, Ai, ~i, iElo, there remains freedom of l. Thus we can set 
Ai-~i=O for iElo. Thus we can set J=J all together and obtain Eqs. (39)-----(44). 

We will next explain the necessary condition (iv). For fixed v=y0 we have 
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from the Weierstrass condition for minimization such that Weierstrass' E-function 
defined for </J1 should be non-negative. Next for fixed u=y,0 we have 

from Weierstrass condition for maximization such that Weierstrass' E-function 
defined for </J2 should be non-positive. Therefore the minimizer y, and the 
maximizer 11 try to minimize and to maximize H with respect to y, and y, re
spectively. 

The necessary conditions (iii) (v) are obtained by the manner analogous to 
Berkowitz's (1961). 

Pursuer-Evader game is formulated as follows: 

(wi~O: weighting function) 

:j;=f(:p, U), :p(to)=:Po 

if=f(y, 11), y(to)=1fo 

where x is a pursuer, 11 is an evader, and y,, 11 are respective controls. We can 
apply Theorem 2 directly to the problem like above. When: y, and 11 are separated 
with respect to constraints as in above, one can formulate the problem by use of 
only one Lagrangian function. In order to understand meaning of Lagrange 
multipliers and its sign corresponding to inequality constraints, still it is con
venient to consider a pair of Lagrangian functions. 

Finally let us refer to the relationship between the necessary conditions of the 
static game and the dynamic game. Although we have studied these two types 
of problems individually, it can be shown that the necessary condition for the 
static problem (Theorem 1) i.e. the Kuhn-Tucker condition, is derived from the 
necessary conditions for the dynamic one (Theorem 2), i.e., the Euler, Clebsch & 
Weierstrass conditions. By this fact we can consider the static and dynamic 
optimization as a problem of the same category. (See proof in appendix.) 

§ 5. Conclusion 

The necessary optimality conditions for the static game and the dynamic one 
were derived from application of Kuhn-Tucker Theorem and Berkowitz's Theorem, 
respectively. Characteristics of our derivation here was to use a pair of Lagrangian 
functions. 
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APPENDIX 

On the Relationship between Kuhn-Tucker Condition and Euler, Clebsch & 
Weierstrass Conditions. 

In this section we will discuss the relationship between necessary conditions 
for static optimal control (Kuhn-Tucker condition) and for dynamic one (Euler, 
Clebsch & Weierstrass conditions). Although we consider only a minimization 
problem for simplicity of description below, the same relationship may be obtained 
for pure strategies of the game also. 

The dynamic problem is defined. 

~
tl 

min F(:;c, u)dt 
Y to 

subj. to ;j;= /1(:c, u) i.e. /(:c, :t, u)=Q 

Define Hamiltonian and Lagrangian functions as follows, respectively. 

H(:;c, U, p)=F(:;c, u)+pTfl(:C, U) 

(A. 1) 

(A. 2) 

(A. 3) 

(/J(;;c, ;j;, U, ~' p, J)=F(;;c, u)+pTf(:;c, ;j;, u)+JT(g(;;c, u)+5) (A. 4) 

where 5 is a VeCtOr which has ~~;;;::::0 (i=1, ···, S) as its COmponents and ~=(~1, ···, ,;,)T. 
Then necessary optimality conditions are given by the following theorem (It is 
assumed that appropriate assumptions like in § 2, 3 are made). 

THEOREM A. 1. (BERKOWITZ 1961) There exists an non-zero vector {p(t), J(t)} 
~Q, defined on the interval to~t~t11 such that p(t) and J(t) are continuous, 
except perhaps at values of t corresponding to corners of a solution curve where 
they possess unique right and left limits and satisfy the following conditions (for 
simplicity of description we consider only the case when a solution curve is 
normal, i.e. ¢o = 1) : 

( i) (Euler equation) 

a(j) =0 
ap -

a(}) _!!___ a(}) =0 
a:c dt a:c -

a(}) 
-=0-g~O a;, - -....., _, 

a(}) =0 
au -
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( ii) (Clebsch condition) 

(A. 9) 

(iii) (Weierstrass-Erdmann's corner condition) At the corner of the optimal 
trajectory, p(t) and J(t) have well defined one sided limits that are equal. 

(iv) (Weierstrass condition) From Weierstrass' E function, E~O, we obtain 

H(~0, U0
, p)~H(~0, u, p) 

( v) (Transversality condition) 

On the other hand the static problem is defined : 

min F(x, u) 
1& 

subj. to /(~, u) =Q 

(A. 10) 

(A. 11) 

(A. 12) 

(A. 13) 

If we consider that for every time tE [to, tt] Eqs. (A. 11)'"'-'(A. 13) hold, the above 
static problem can be considered as 

min lt1 F(~(t), u(t))dt 
y(t) )to 

subj. to f(~(t), u(t)) =Q 

g(~(t), u(t))~Q 

(A. 14) 

(A. 15) 

(A. 16) 

But since Eq. (A. 15) does not include ~ as its argument, y,0(t), minimizing Eq. 
(A. 14) ought to be constant on the interval t0 ~t~t~. Therefore y,0(t), ~0(t), the 
solution to the system of (A. 14)'"'-'(A. 16), become equal to y,0

, ~0 , the solution to 
the system of (A. 11)'"'-'(A. 13). That is, y,0(t)=.y,0

, ~0(t)=.~0 for every tE[to, lt]. 
Define the Lagrangian function (A. 4) for the system of (A. 14)'"'-'(A. 16) : 

Then from the fact that (/) does not include i;, we obtain 
( i ) As the Euler equation 

(A. 17) 
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af/J d of/J 
----. =0--+A-g·=O--+..tTg=O ar; dt ar; - t t - -

(A. 21) 

( ii) The original statement of the Clebsch condition is as follows (Buss 1946). 
For every non-zero vector {zr, p, l?}~Q that is a solution to the linear system 

o/1 ---p-Err=O oy, - - -

the following inequality holds. 

(E is a unit matrix) (A. 22. a) 

(A. 22. b) 

(A. 23) 

Now apply this condition to the static problem by substituting f for /1 in Eq. 
(A. 22. a). Then for every vector {zr, p, l?} ~Q it is necessary that the following 
inequality holds. 

(A. 24) 

If Oi~O at the optimal point {.z;0 , y,0
} then by Eq. (A. 21) ..ti=O. If gi=O at this 

point, let zr=Q, let p=Q and let If be a vector whose i-th component is equal to 
one and whose others are zero. Then {IT, p, If} ~Q and since .;i =0 by the fact that 
gi-.;~=0, {zr, p, If} selected as above is a solution to the system of (A. 22. a, b). 
Hence from Eq. (A. 24) we obtain ..ti~O. Consequently we always have 

(A. 25) 

(iii) From the definition of the Weierstrass' E function 

Since of/J/o:i:=Q and along the optimal trajectory of/J0/ou=Q, of/J 0jo~=Q and g+S=Q, 
we get 

(A. 26) 
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Obviously the conditions (iii), (iv) are not necessary for the static problem. 
Finally it is noted that the statement of the Euler Equation and the Clebsch 

condition, Eqs. (A. 18)'"'--'(A. 21), (A. 25) is surely the statement of the Kuhn-Tucker 
condition which was given in § 2 previously. 
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