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ABSTRACT

This paper deals with renewal processes with non-identically distributed random vari-
ables. Some limit theorems, which arise in connection with the distribution problems of
the age, the lifetime and the residual lifetime of the items in a renewal process, are given.
A central limit theorem for the renewal number is also shown.

1. Let {X; i=1,2,---} be a sequence of independent and nonnegative random
variables with 0<EX;=p;<oo, and let Fi(x) be the distribution function of X;. Re-
newal processes with independent and non-identically distributed random variables
have been investigated by several authors (KAwATA 1956, 1961 ; HaTorr 1959, 1960;
Cuow and RoBBins 1963; SmitH 1964).

When

(L.1) p=lim = 3
”n i=1

N~-r00

exists, KAwATA (1956) proved, without assuming the nonnegativeness of X;, that

T £ ]I
(1. 2) lim —- S > Pra<S.<z+hdz=—, (h>0),
T 1 )ecoo nm1 14
where
Sn= i Xt;
i=1

under some conditions.
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MakoTo MAEJIMA

In this paper we shall prove a theorem which includes KawATA’s result. Fur-
thermore, using this result, we shall give some limit theorems for the distributions
of the age, the lifetime and the residual lifetime of the items in a renewal process.
In the last section we shall show a central limit theorem for the renewal number
in a renewal process with non-identically distributed variables.

2. Throughout the paper we use the following notations.

N{t)=sup(n>0, S,<#), that is, N({) is the renewal number in (0, #]. (Se=0).
Ut)=t—Snw, that is, U{¢) is the age at the epoch ¢.

V(#)=Syw+1—t, that is, V(¢) is the residual lifetime at the epoch ¢.

X(t)=Svw+1—S~vw, that is, X(?) is the lifetime containing the epoch ¢.
Furthermore let us define

1 »+1
@1 F@#)=1lim — 3, Fi(®),

n—s00

when the right hand side exists as the weak limit. F(!) is not necessarily a dis-
tribution function. And set

an(t)= Pr(S,<¥).
Now we state some lemmas.

Lemma 1. Suppose f(#)>0,
gwe-s‘f(t)dtrvi,, as 510,
0 S

for some nonnegative number y, then

ct

| St~ 5y

as f—oo.

This is a well known Tauberian theorem (see e.g. WIDDER [1946, p. 192]).

Lemma 2. Let {X; i=1,2, ---} be a sequence of independent and nonnegative
random variables such that 0<EX;=;<oco. Suppose that the distribution function
Fi(x) of X, satisfies that

@.2) lim S”x,m(x):o
&oo0 JE

uniformly with respect to . If (1.1) exists, then

al
a1
y

lim s** 3 #pa(s)= for «=0,1,2, -,
slo n=1

where

oo

ou(s)= So’ e-5tdn(D).
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Some Limit Theorems for Renewal Processes

This lemma was first proved by KawaTA (1956) in the case a=0, and HATORI
(1960) proved it for any nonnegative integer a.

Note. KAwATA proved (1. 2) under the same conditions as in Lemma 2.

3. In this section we shall show a theorem which includes KAwATA’s result.
Let us consider functions G.(f) (n=1, 2, ---) which are defined for >0 with G,(0)=0,
and are uniformly bounded, nonnegative, nondecreasing over [0, R], and zero else-
where, R being some positive number. Furthermore we define

1 nh2
Git)=1m— Y, Git)
n—ooo W i=2
when the right hand side exists weakly.
Form

3. 1) HO= 3 S:Gwa—y)dan(w.
Letting G.(f)<M, we have
HO<MY, S:dan(w = M3 oult)

for which KawaTa (1956, p. 125) proved that

3. 2) >3 oa(t)<oo,

n=1
if (2.2) holds uniformly with respect to i, and hence the convergence of (3.1)
follows from (3.2). Then we obtain a following theorem.

TueoreM 1. Let {X;, i=1,2, ---} be a sequence of independent and nonnega-
tive random variables such that 0<EX;=p;<co. Suppose that the distribution
function Fi(x) of X; satisfies that (2.2) holds uniformly with respect to 7. Let
Go(t) (n=1, 2, ---) be functions which are defined for >0 with G,(0)=0, and are
uniformly bounded, nonnegative, nondecreasing over [0, R], and zero elsewhere, R
being some positive number. If

n—oo i=1

exists and
1 nt2
n—00 1=2

holds weakly, then

Coqgr 1>
hm——g H(t)dt:—g Gt
e 1T Jo " Jo
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MakoTo MAEJIMA

where

=3

Hy=3 gG (E—)dou(y),

n=14J0

(the convergence of which was assured above).

Proof. Let us denote the Laplace-Stieltjes transforms of H(f), Ga(¢), and a,(f) by

h(s) = Sme““dH(t), >0,
0

onls) = Sme‘“dGn(t), §>0
0

and

onls) = Swe-“dan(t), >0,
0

respectively. Then we have

h(s) = 21 tn 1 1(S)pnls).

Integrating by parts, we get

0uls) = S“ edGy(0)

- sgm e=SIGa(d)dt.

0
Here we put

o

du(s) =S e G o(t)dt.

0

Then

h(s)= 3 sdns1(S)en(S).
n=1
By the dominated convergence theorem, we have

]_ n+1 1 n+1 (oo
lim— S di(s) = lim — 3" S e Gt)dt
ni=2 ni=2Jo

N—00 n—o0

® st H 1 &
- S e[ lim L5 Gi(t)]dt
i=2

0 n—oo N

- Swe‘“G(t)thd(s).

We can describe

6.4 5 A= +enls),
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Some Limit Theorems for Renewal Processes

where ¢,(s)—0 as n—oo for any s. Furthermore, since

1 ntt
do)- 7 34

© 1 n+l oo
S GO~ 3, S e‘s‘Gi(t)dt‘
1=2

0 0

o 1 n+1
< So |62 Gi(t)}dt

< SR Glt)— %E:Gi(t)’dt.

0

it follows from (3. 3) that

n+1

1
=3'd;
n 5
converges to d(s) uniformly with respect to s as n—oco. From (3. 4), we have

An11(8)=d(8)+nen(s)— (m—1)en_1(s),

and consequently

21 dnei(S)on(s) =d(s) g:llpn(s)

+ 721 0n(S)(Men(S) — (1 —1)en_i(5)).
We also have

@3.5) lim A(s)=1lim 3" sdus1(S)gnl(s)
slo slo n=1
= lim sd(s) 3 pu(s)
slo n=1

+lim il 50n(8)#1en(S) — (1= Den_s(s)).

First, using Lemma 2 (a=0) and the dominated convergence theorem, we see that

3. 6) lim sd(s) 3 ou(s)= ~~1im d(s)
slo n=1 Uoslo

1. (=

= =lim S S G(t)dt
M oslo Jo
10>l

= —S [hm e““G(t)]dt
¢ Jo Lslo

- %S:G(t)dt.
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MakoTo MAEJIMA
Second, noticing that

2 lonen(s)| < sup [ex)] 3 mpuls) <oo,

we get
3% on(s)tn(s) — (1~ Den-+(5)
= él 1en(S)n(S) _50n+1(5))
= 3 nen(s)gu(s A=),
where

f,,(s):S e~ St dF,(t).
0
Now, for any given positive number ¢, we can choose an integer N independently
of s such that
lea(s)|<e  for m>N,

in view of the fact proved above that

n+1

%z ds)

converges to d(s) uniformly with respect to s. On the other hand, KawaTA (1956)
proved a following statement: there are positive constants C, and s, such that m,<C,
for n=1,2, --- and

fn(s)=1 —smn‘l's‘f]n;
where
|7n] <e(C14+2)=C. for 0<s<s,

uniformly with respect to ». Using this result, we have

s 23 meugS) L —Fans(s)

N oo
< S2C(C1+C2) Z n]en(s)l +€(C1 +C2>32 Z nﬂl’n(ﬁ)
‘n=1 n=1

for 0<s<s,, where

C= sup gu(s)<oo.
0<s<sy
n=1,2,, N

By Lemma 2 (a=1), we know
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o

lim s ) nea(s)= %

slo n=1

Hence
| = 1
llgl N Z~:1 nen(s)gon(s)(l —fai1($) | <e(Cy +C2)?
and since ¢ is arbitrary, we have

3.7 M $ 3, on(s)(tea(s) — (n—1)ens(s))=0

slo n=
From (3. 5)—(3.7), we obtain

3.8) lim A(s)= - Smc(z)dt.
slo " Jo

On the other hand, integrating by parts, we have

h(s)= S:e‘“dH(t)

=s Sme‘“H(t)dt for 0<s<s,,

0
(for details, see KAwATA [1956]). Therefore, from (3. 8) we finally obtain
lim s Swe‘“H(t)dtz 1 SwG(t)dt,
slo 0 ©" Jo
which, because of Lemma 1 (y=1), gives us the required result.
RemARrk. Putting

Gn(t)=% for 0<t<h (h>0),

=0 elsewhere

in Theorem 1, we get (1. 2), which is no more than KaAwATA’s result.

4. Using the result given in the previous section, we shall prove some theorems
concerning the distributions of the age, the lifetime and the residual lifetime of the
items in a renewal process.

THEOREM 2. Under the condition that (1.1) and (2.1) exist and (2. 2) holds
uniformly with respect to 7, we have

@. 1) lim % S: PHUG)<z)dt = ;1; So [1—F()dt.
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MakoTto MAEJIMA

Proof. Suppose that z<¢. The event {U(¢)<x} occurs if and only if S,=y(<¢)
and X,.,>¢—y for some combination #,y. Since Ul)=t—y<z, t—x<y<t should
hold. Summing over all possible # and y, we have

PRUG<x)= 3" S [~Fnl—y)ldony)  for w<t.

n=1Jt—

Setting
Qu(y)=Faly)  for 0<y<az,

=0 elsewhere,
we have

co

PrUD<D)=, Sz_zdan(w— 5 SthH(t—y)don(y)

n=1J0
=A(, x)— B({, x),
say, for x<¢. Hence, noticing that
PrU)<x)=1 for x>t

we have

“2) 7\, o=\ A6 - pars - ar

Defining the functions A(f, x) and B(¢, x) even over 0<#<x by the right equalities
where they were defined above, this equation turns out to be

%S PRU® <2)dt = — S (A(t, 2)—B(t, 2))dt

+ % S: (L= A(t, 2)+ B(t, z)dt.

Obviously, since A(4, z) and B(¢, z) are bounded on 0<¢<xz, the second term on the
right hand side tends to 0 as 7—oo, and so we obtain

4. 3) ;im % S PriU)Lz)dt= hm —1—5 (A, =)— B(t, x))dt.

From (1. 2), we have

(. 4 lim HS AGt, )t =lim iS 3 Prit—z<Sa<tidt=".
T—co T n=1 122

On the other hand, Theorem 1 yields, since Q,(#) satisfies the conditions of G,(¢)
there, that

lim :1P S B, x)dt—hmTS dt Z S Quirlt—y)dony)

Toroo Tooo

=~ ("o,
¢ Jo
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where
QH=F() 0<t<x
=0 elsewhere.
Consequently,
. 1 (7 1 (=
(4. 5) hm——S B, x)dtz—g Fdt
T—0 T 0 [,l 0

and so (4. 1) follows from (4. 3)—(4. 5).

ReMARK. In Theorem 2, F(¢) is defined by (2.1) and we do not assume that
F(t) is a distribution function. Also, ¢ is defined by (1.1) and it is not necessary
that p is the expectation of a certain distribution function. However, under the
condition of the theorem that (2.2) holds uniformly with respect to i, it follows
that F(#) is a distribution function (statement A below), and that p is the expecta-
tion of the distribution function F(¢) (statement B below). Thus (4. 1) is a distribu-
tion function, that is, writing

D)= 11-Fn,
¢ Jo
D(0)=0 and D(c0)=1. We shall show these statements in the following way (D(0)=0
is trivial).

(1) Statement A. As it is obvious that F(0)=0, and that F(¢) is nondecreas-
ing and right continuous, it suffices to prove that F(co)=1. Since

S”xdm(x)z«l—m(t)),
we have
1—Fit)> % S“ 2dFy(x).

The condition, that (2. 2) holds uniformly with respect to ¢, yields that for any ¢>0
there exists #* such that

S rdFi(x)<e for ¢>¢*
13
uniformly with respect to ;. Thus

F(t)=1-—

and so

n+1

1 €
;§2Fi(t)21— T
Letting #—co, we have
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MAKOTO MAEJIMA

F(t)zl—; for t>1%,

and consequently F(co)>1. On the other hand, from the definition of F(¢), we
have F(#)<1 and so F(o0)<1, hence F(oco)=1.
(ii) Statement B. For arbitrarily fixed & we have

= S:xdFl(x)
=S dF, (m)+g 2dF ()

— EFy(E)— SjFi(x)dx+ ijdﬂ(x).

Therefore we get
1 n+1

4. 6) =lim — 2

noowo N i=29

= lim — Z [EF € — SF(x)d:c+8 wdF, (x)J

T—00

Now, because of the dominated convergence theorem, we have
n+l

lim — Z S Fiw)dn= S:F(x)d:c,

n—o

and we have from the definition of F(x)

lim — ZSFI(E) EF(8).

Nn—oo

Hence we see that (4. 6) turns out to the equation,
1 n+1l (oo
p=eF @ - | P+ 1im =5 (" aar (o)
n—00 1=92dJ&
n+1

=S dF (@) + lim 2 S 2dF ).

n—o0

Letting &—oco, we get

p=\ adP @+ tim tim 5 (" dr)

£—co0 n—o0 1=2Jd¢

From the condition of the theorem that (2.2) holds uniformly with respect to 7,
the second term on the right hand side is 0, and then we have

p=\ 2dF @),
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Some Limit Theorems for Renewal Processes
which gives us
1( 1~
D(c0)=— S [1—-F(x)ldx=— S zdF(x)=1
o Jo #® Jo

TueoreEM 3. Under the condition that (1.1) and (2.1) exist and (2. 2) holds
uniformly with respect to i, we have

hmig Pr(V(t)<x)dt——1—S [L—F@)dt.
T—>00 T ©Jo

Proof. The event {V({)<z} occurs if and only if ¢<S,=y<é+z and X,..
>t+xz—y for some combination %, y, and hence summing over all possible # and
y, we have

o

PriV(t)<z)= 3, Si” [1—Frouat+z—y)doa(y).

n=1

Therefore we have

w%g PAV () <)dt
- ng%g at 3 (1Pt +o—ldonw)
=tim - (" =Pt
= i rg_;—s PRU® <)t
- n}o%g PRU®) <)t

+ lim %[ST PHU®)<z)dl— So Pr(U(t)gx)d:]

T
= lim L S PrUt)<x)dt,
T—oo T 0

and then the conclusion follows from Theorem 2.
TuroreM 4. Under the condition that (1.1) and (2.1) exist and (2. 2) holds

uniformly with respect to 7, we have

lim % S: PrX(t)<z)dt= % S: .

Proof. Suppose that x<¢. The event {X(#)<x} occurs if and only if S,=y(<t)
and {—y < X, <z for some combination #, y, and ¢t—z<y<?¢ should hold. Summing
over allv possible # and y, we have
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Prx@sa= 5\ (Fun@ =Pt~

n=lJit—zx

= i S:_anH(x)dan(y)

-5 Aut—dow
= A(t, x)— B, x),

say. Let us first consider A(¢, ). Since F(z) is a distribution function which has
been shown in Remark of this section above, we easily see that

1 n+1
F(z)=1lim - > Fi(x)
n—o0 =2

holds uniformly for z, from which we can write
1 nt1
lezFi(x)zF(‘r)-l_E"(x)’

en(x) going to zero uniformly for z as n—oo. From the above equation, we get

Fo1(#)=F(z)+neq(x) — (n—Den-a{x).
Hence we have

=)

At =%\ Fadonw

n=1

s S (@) — (= Der(2))dera(y)

n=1Jt—x
EAl(t, .73)+A2(t) .7)),
say. Using (1.2), we get

. 1 (7 x
4.7 lim 7:8 Ay, z)dt = — F(x).
T—oo 0 !

Noticing that

Z |oa(m)nen()| < sup [en()] Z noa(w) < oo,
n=1 n=1,2,- n=1
we have

oo

2. (nen(w) —(n—1)en-1(x))don(y)

n=1

- glnem)(dan(y)—daml(y)).

Let ¢ be a given positive number. Then we can choose an integer N independently
of z such that
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lea(z)|<e  for n>N.

Now we split Ax(¢, ) in the following way:

ity )= Z 1@ || doat) =\ donnti)|

+ f: lnen(x)[S:_Idon(y)—' Sz_rdam(y)]

n=N+

= dl(t, x)-le(t, x))
say. We then have

L Sral(t )t == 3 e (x)ST ([PAS < 8)— PAS, <t —2)]
T 0 ’ T = n 0 n = n =

+[Pr(Spc1<8)— Pr(Sp1 <t —z)]}dt.
We note here that

ST [Pr(snst)&—Pr(s,,gt—x)]dtl

- S: Pr(S.<t)dt— ST; Pr(Sngwdt’

T

= S Pr(Sngt)dt|£x.
T—x

Then we have

1 (7 d 2 X
ITSO a(t, x) 437;:1"0‘”’

where

C= max e, ()| <oco,
n=1,2,, N

and hence we get

4. 8) lim

T—oo

L{" dt| =0
-T"SO a,(t,:c) tl—- .

For a(¢, ) we consider

L ot ] <

ST dt f: ne(XH[Pr(Sn<t)— Pr(S,<t—ux)]

n=N+1

+ [Pr(Sps1<8) — Pr(Sp1 <t —x)]} '

< —;; e ST dt i n{[Pr(S,<t)— Pr(Sp+1<0)]

+[Pr(Sa<t—x)—Pr(Sp . <t—2)]}.
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Note that
2 #lPr(Su<t)—Pr(Su 1 <8 = 3] Pr(S.<¢).
n=1 n=1

Then we obtain from (1. 2),

T T o
lim 1 S as(t, x)dt’ <lim e—l—g dt 3 [Pr(S,<t)— Pr(S,<t—x)]
70 1 | Jo e L Jo aTh
X
=e&—.
iz
Since ¢ is arbitrary, we get
|1 (T
4.9 lim —S as(t, x)dtl:O.
T—co T 0
(4. 8) and (4. 9) give us
1 T
4. 10) lim ——S As(t, x)dt=0.
T—oo T 0

From (4.7) and (4. 10), we have

. 1 (7 T
(4.11) lim — S A(t, x)dt = = F(z).
Tow 1 0 Y4

Next, considering

oo

B, )= Z S:_ Fnﬂ(t—y)d‘fn(?/).

n=1
we have from the proof of Theorem 1

4. 12) lim - ST B, mydt = L S F(e)dL.
7 Jo

T—o0 T 0

From (4.11) and (4. 12), we finally have

.17 x 1(=
lim A S PrX<z)dt=—F(x)— — S F(t)dt
T—o0 0 n " Jo

=1 S tAF(t).
o

5. Finally, we shall show a central limit theorem for the renewal number in
a renewal process with non-identically distributed variables. The proof is analogous
to the one in the case where random variables are identically distributed. We
state a well known Lindeberg central limit theorem for sums of independent
random variables as a lemma:
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Some Limit Theorems for Renewal Processes

Lemma 3. Let {X;,i=1, 2, ---} be a sequence of independent random variables,
and let Fi(x) be the distribution function of X;. Suppose that /;=FX; and ¢f= VarX,
exist, and that for any ¢>0

n

(5.1) lim —- L x

2
n—oo bn 1= Slm—#5|>sbn

(x—pa)*dFy(x)=0

holds, where

Then for every fixed z

Pr<Z(X #,)/b <x> — \/zngx e 7 du.

THeorEM 5. Let {X;, i=1,2, ---} be a sequence of independent and nonnega-
tive random variables, and let Fy(x) be the distribution function of X;. Suppose
that ;;=FX; and ¢}=VarX; exist, that

12 bn
®.2) p= ;i;lpi +o<7)
and that

.1
(5.3) b®=1im — b3,
n—oo M
where
bh= i J5

Then for every fixed z

((N(t) >/ \/ﬂ) >m m;Sfx‘%du,

if (5.1) holds for any ¢>0.
Proof. We note the relation
Pr(N(t)<n)=Pr(S,>t).

Since Xi, X,, -+ are independent random variables, Lemma 3 gives us that

PrSy>t)—Pr ((9 _ ;l ,ui) / bu> —x)

———»wlrfgw e_i‘?idu— 1 Sx e__u;du
'\/277-' - - \/é;é —o0 ’
when #—oo and {—oco in such way that
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(5. 4) (t— 5 ,e,-) /b,, 2 (v fixed).

1=1

Now,

(5.5) Pr(N(t)<n)=Pr<<N(t)— %) / N, ’::’j_; < (n— 7’:—) / J%)

Here, we write
(n=2) |5 = 2t o
o L bvn ¢
Since (5. 3) is no more than

(5. 6) b\/;’l,‘——bn=0(bn),
we get from (5. 2), (5. 6) and (5. 4) that

3

6.7 np—t _Zp ol
bv'n bn+0(bn)
as n—oo, f—oo according to (5.4). From (5.7), we have
Voup_ t_
b bv'n
Since
\/bnp —_— 0 (n—c0),
we have
t
(5. 8) b

as n—o0, t—oo according to (5.4). Again we may write

From (5. 8),
(5. 9) ”TF’ -1

as n—oo, t—oo according to (5.4). Thus it follows from (5. 7) and (5. 9) that

¢ th?
(5. 10) (n— —> / w0, .
j ‘/#3
From (5.5) and (5. 10), we may easily obtain the conclusion.
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